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Abstract 
Fisher et al. (2006) developed a hierarchical Bayes model to estimate the number of people without health 
insurance within demographic groups for states. The Centers for Disease Control and Prevention are inter­
ested in estimates of women without health insurance by demographic groups in families that earn less than 
200% of the poverty line. Our approach jointly models direct estimates from the Annual Social and Eco­
nomic Supplement to the Current Population Survey (CPS ASEC), and Census 2000 Sample Data, tax, food 
stamp, and Medicaid data, using a multivariate, hierarchical approach. We have improved the preliminary 
model in Fisher et al. (2006) by adding census data, improving the mean and variance models for the direct 
estimates and the administrative records data, and developing a raking procedure. In addition, for variance 
estimation, we have developed a method that takes into account the variance of the direct estimates that 
are used in the raking procedure. 
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1. Introduction 

Policymakers are interested in estimates of health insurance coverage. Our current research is funded in 
part by the Centers for Disease Control and Prevention (CDC). The CDC provides free screening services 
for breast and cervical cancer to low-income, uninsured, and under-served women through the National 
Breast and Cervical Cancer Early Detection Program (NBCCEDP). The CDC wants to estimate percent 
eligible (the proportion of low-income women eligible for the screening) and participation rates (of the people 
eligible, the proportion screened) for the screening services, for various demographic groups within states 
and counties. The estimates that we are developing will allow the CDC to make estimates of percent eligible 
and participation rates with an acceptable level of precision. 

Evaluation of many other federal programs can benefit from state-level health insurance estimates. For 
example, the Centers for Medicare and Medicaid Services (CMS) could use estimates of uninsured children 
at or below 200% of poverty, by race and ethnicity, to help states target medical services towards at-risk 
children. At the county-level, Medicaid administrators would have an additional tool for distributing the 
state’s federal allotment to counties where the need for medical services may be greatest. In general, federal, 
state, and county programs that deal with health issues could calculate eligibility and participation rates of 
services for the uninsured by income categories. 

In order to meet the needs of policymakers, the Census Bureau’s Small Area Health Insurance Estimates 
(SAHIE) program is developing model-based small area estimates of health insurance coverage at the state 
level for areas defined by age, race, Hispanic origin, sex, and income to poverty ratio (IPR), and at the 
county level for areas defined by age, sex, and IPR. This paper focuses on the state-level estimates. Small 
area estimates for 2001 based on the model described in this paper can be found at the SAHIE web site, 
http://www.census.gov/hhes/www/sahie/index.html. 

2. The problem and our approach 

To meet the needs of the CDC at the state level, we need to estimate the number of women who are 
eligible for screening services through the NBCCEDP. More specifically, for each state, the CDC would like 
estimates of the number of women that are below 200% and 250% of poverty and are uninsured, for certain 
age categories and race/ethnicity categories. The age categories are 18-64 (for cervical cancer screening), 
and 40-64 and 50-64 (for breast cancer screening). The race/ethnicity categories that the Census Bureau 

∗This report is released to inform interested parties of ongoing research and to encourage discussion of work in progress. 
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those of the U.S. Census Bureau. 
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can reliably provide are White non-Hispanic, Black non-Hispanic, and Hispanic. We need to make estimates 
for below 200% of poverty and below 250% of poverty because states have different eligibility criteria for the 
screening services. 

In order to make these estimates, we use an area level model (Rao 2003) in which the areas are defined by 
cross-classifications of state, age, race/ethnicity, sex, and IPR categories. There are 51 states including the 
District of Columbia, 5 age categories (0-17, 18-39, 40-49, 50-64, 65+), 4 race/ethnicity categories (White 
non-Hispanic, Black non-Hispanic, Hispanic, and Other non-Hispanic), 2 sex categories, and 3 IPR categories 
(0-200%, 200-250%, and >250% IPR). Note that we have chosen these particular categories so that we can 
make all of the estimates of interest using one model. We have included the 65+ age group even though it 
has virtually 100 percent insurance coverage because two of the administrative records data for income - tax 
exemptions and food stamps - include this age group. We do not include this age group in the insurance 
coverage model. 

Our model is similar to the Fay-Herriot model (Fay and Herriot 1979), however, it differs in several 
respects: (1) we use a Bayesian model, (2) we model two direct estimates (an estimate of the number of 
people in income categories, and an estimate of the proportion of people with insurance) from the CPS ASEC, 
instead of one direct estimate, and (3) we model Census 2000 Sample Data estimates and administrative 
record data, instead of using them as predictors in a regression model. The administrative data that we use 
are tax exemptions, Food Stamp participation, and data from the Medicaid/SCHIP programs. 

Fisher (2003) and Fisher and Gee (2004) addressed a fundamental assumption in regression models like the 
Fay-Herriot model that the predictors are measured without error. In their “errors-in-variables” approach, 
they modeled the predictors of poverty for the Small Area Income and Poverty Estimates program assuming 
that they possess non-negligible variances. This was extended to small area estimates of insurance coverage 
in Fisher et al. (2006). 

In the basic area level model, let N�i be the direct estimate of Ni, the small area population value to be 
estimated. The basic area level model is given by 

θi = g(N�i) = θi + ei 

Tθi = zi β + vi 

where the sampling errors ei are independent and the vi are independent and identically distributed area-
T Tspecific random effects. The predictors z = 

�
xi ,A

T
� 

may include both administrative data Ai = i i 
T

(A1i, . . . , Api) and other area-specific auxiliary data xi. Our approach models both the direct estimates and 
the administrative data as possibly nonlinear regressions of the Ni and the Ni are modeled by a generalized 
linear model 

Ni = Ni + ei 

T g (Ni) = x γ + vii 

Aji = hj (Ni) + uji, j = 1, . . . , p 

where the sampling errors ei are independent, the vi are independent and identically distributed area-specific 
random effects, and the uji are independent random effects for the administrative data. 

We model two direct estimates because we have auxiliary data that are related to either income or 
insurance coverage. We then combine these two quantities to get our estimate of interest. The two quantities 
are (1) NIPR[i, a, r, s, k], the number of people in state/age/race/sex/IPR cell, and (2) PIC [i, a, r, s, k], the 
proportion of people in state/age/race/sex/IPR cell that are insured. We combine these two quantities to 
get NIC [i, a, r, s, k] = PIC [i, a, r, s, k]NIPR[i, a, r, s, k], the number of insured. The number of uninsured can 
be obtained from NUI [i, a, r, s, k] = NIPR[i, a, r, s, k]−NIC [i, a, r, s, k]. Throughout the paper, we will use i 
to index state, a to index age, r to index race, s to index sex, and k to index IPR. 

We made the following improvements to the model initially developed in Fisher et al. (2006). The model 
with the improvements is fully described in the next section. 

• model the CPS ASEC estimates in income categories, N�IPR[i, a, r, s, k], as totals instead of proportions, 
• model the sampling variances instead of using parameters from the CPS ASEC generalized variance 

function, 
• increase the number of predictors in the income and insurance logistic models, 
• model the administrative data as totals instead of proportions, 
• include Census 2000 Sample Data, 
• allow the expectation and variance parameters to vary by groups and the variances to change nonlin­

early with size, and 
• rake to national CPS ASEC direct estimates. 
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3. The current model
 

3.1 The first part of the model: income 

3.1.1 The CPS ASEC direct estimate of the number in income categories 

The CPS ASEC direct estimates are averages of estimates from three ASEC surveys - 2001 through 2003. 
These surveys collect income for calendar years 2000, 2001, and 2002. The average income estimates are 
centered at 2001. 

We have the CPS ASEC direct estimate of the number in cell [i, a, r, s, k], N�IPR[i, a, r, s, k]. We assume 

that N�IPR[i, a, r, s, k] is normally distributed and unbiased: 

NIPR[i, a, r, s, k] ∼ N (NIPR[i, a, r, s, k], vǫ,IPR[i, a, r, s, k]) , 

where we model the sampling variance, vǫ,IPR, by 

q[i, a, r, s, k](1 − q[i, a, r, s, k]) 
vǫ,IPR = λ1[r, k]POP [i, a, r, s]1+λ2 

S[i] 

where q[i, a, r, s, k] is the proportion of those in the ith state who are in cell [i, a, r, s, k], i.e. q[i, a, r, s, k] = 
NIPR[i, a, r, s, k]/POP [i] (POP [i] is the demographic population estimate for state i), S[i] is the number of 
households in the three CPS ASEC samples in state i, POP [i, a, r, s] is a demographic population estimate 
for cell [i, a, r, s], and the λ’s are parameters to be estimated. The multiplicative variance parameter (λ1) 
differs by race by IPR and λ2 does not vary. The sampling errors are assumed to be independent across 
state/age/race/sex/IPR cells. 

3.1.2 Proportions in income categories 

We model PIPR[i, a, r, s, k], the proportion in IPR category k in state/age/race/sex cell [i, a, r, s]. It is 
important to note that we have the demographic population estimate POP [i, a, r, s], which we consider to 
be known without error, therefore PIPR[i, a, r, s, k] is related to NIPR[i, a, r, s, k] by 

NIPR[i, a, r, s, k] = PIPR[i, a, r, s, k]POP [i, a, r, s]. 

We model PIPR[i, a, r, s, k] as a 3-category logistic model with normally distributed model error: 

exp(µIPR[i, a, r, s, k] ) 
PIPR[i, a, r, s, k] = �3 

exp (µIPR[i, a, r, s, k]) k=1 

where µIPR follows a normal linear model µIPR[i, a, r, s, k] = X [i, a, r, s, k]βIPR + uIPR[i, a, r, s, k]. 
X [i, a, r, s, k] is a row vector of predictors and βIPR is a vector of regression coefficients. The model error, 
uIPR, is normally distributed uIPR[i, a, r, s, k] ∼ N( 0, νµ,IPR), where νµ,IPR is a constant to be estimated. 

The predictors in the vectors X [i, a, r, s, k] are: 

• indicators of age, race and sex groups each interacted with indicators of the IPR categories (i.e., there 
is a fixed effect for each age by IPR, race by IPR, and sex by IPR group) 

• age by sex by IPR interactions 
• age by race by IPR interactions 
• interactions of a tax nonfiler rate with IPR. 

−TAX The tax nonfiler rate is defined as POP where POP is the demographic population estimate for a 
POP 

domain, and TAX is the number of IRS exemptions for that domain. 

3.1.3 The Census 2000 Sample Data estimates 

We model the Census 2000 Sample Data estimates of the numbers in income categories as 

CEN [i, a, r, s, k] ∼ N CEN [i, a, r, s, k], vCEN [i, a, r, s, k]

�λ2 [r] 
where CEN�[i, a, r, s, k] = α[r]NIPR[i, a, r, s, k] and vCEN [i, a, r, s, k] = λ1[r] CEN [i, a, r, s, k] . The 

α’s and λ’s are estimated. Note that the parameters are allowed to differ by race. Here and below, we refer 
to the α’s as expectation parameters, and the λ’s as variance parameters. 
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3.1.4 Tax exemptions
 

The numbers of tax exemptions in 2001 are aggregated at a higher level. We model them as follows: 

TAX [i, aT , kT ] ∼ N TAX[i, aT , kT ], vTAX [i, aT , kT ]

where aT and kT are the tax age and tax IPR categories, with aT = 1, 2 and kT = 1, 2. Here aT = 1 
represents age 0-17, aT = 2 represents age 18 and over, kT = 1 represents IPR ≤ 200%, and kT = 2 
represents IPR > 200%. The mean of the distribution of the number of exemptions is given by 

TAX[i, aT , kT ] = α[aT , r, kT ]NIPR[i, a, r, s, k] 
a,r,k 

where the sum is to the appropriate aT and kT level. The variance is vTAX [i, aT , kT ] = λ1[aT , kT ]POP [i, aT ]λ2 . 
th POP [i, aT ] is the demographic population estimate for the aT tax age category within the ith state. We 

estimate λ1 but constrain λ2 to be fixed at 1.7. λ2 could not be reliably estimated but by setting it to a 
central value, 1.7, the diagnostics for the tax exemption data became acceptable. 

3.1.5 Food Stamp participation 

We model 2001 Food Stamp participation using only the 0-200% IPR category because people in house­
holds with income near or below the poverty line are eligible for Food Stamps. The detailed requirements 
can be found at http://www.fns.usda.gov/fsp/applicant recipients/eligibility.htm. In particular FS[i] ∼ 

N 
�
�

�
where � = α

� 
NIPR[i, a, r, s, 1] and vFS [i] = FS[i]. The parameters α and λFS[i], vFS [i] FS[i] a,r,s λ�

are estimated. 

3.2 The second part of the model: insurance 

3.2.1 The CPS ASEC direct estimate of the proportion insured 

We assume that the CPS ASEC direct estimate of the proportion insured, P�IC , follows 

PIC [i, a, r, s, k] ∼ N(PIC [i, a, r, s, k], vǫ,IC [i, a, r, s, k]). 

PIC [i,a,r,s,k](1−PIC [i,a,r,s,k]) The sampling variance follows vǫ,IC [i, a, r, s, k] = λfi . This variance form is based 
bNIPR[i,a,r,s,k] 

on the generalized variance function (GVF) used for calculating CPS ASEC variances.1 The fi are state 
factors accounting for differences in sampling rates among states. The GVF is of the above form, except 
that NIPR is in the denominator, and λ is a constant that has been determined. We chose to estimate λ 
rather than plug in the GVF factor because the GVF may not be appropriate for all levels of aggregation. 
We chose to use N̂IPR in the denominator instead of NIPR because otherwise the variance model for P�IC 

would affect the estimates from the income model. 

3.2.2 Proportions insured 

We assume that the proportion insured follows a logistic model: 

logit(PIC [i, a, r, s, k]) = X [i, a, r, s, k]βIC + uIC [i, a, r, s, k] 

with uIC [i, a, r, s, k] ∼ N (0, νµ,IC). The constant νµ,IC is a parameter to be estimated. The X [i, a, r, s, k]’s 
are row vectors of predictors, and βIC is a vector of regression coefficients. The predictors in the X vectors 
include (1) state, age, race, sex and IPR indicators, and (2) age by IPR, race by IPR, sex by IPR, age by 
sex, and race by sex interactions. 

1See the “Source and Accuracy Statement” section in U.S. Census Bureau (2006). Note that in the document, the GVF has 
a small quadratic term that we ignore here. 
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3.2.3 Medicaid/SCHIP data 

We model the 2001 Medicaid/SCHIP data via its distribution conditional on the number insured, NIC . 
However, NIC = PICNIPR, therefore parameters from both the income and the insurance parts of the 
model appear in the model for the Medicaid/SCHIP data. We assume 

MED[i, a, s] ∼ N MED[i, a, s], vMED[i, a, s] . 

The mean is given by 

� = 
�

α[a, r]NIC [i, a, r, s, 1] MED[i, a, s]
r 

where NIC [i, a, r, s, 1] = PIC [i, a, r, s, 1]NIPR[i, a, r, s, 1], the number insured in the IPR category 0 - 200%. 

The variance is vMED[i, a, s] = MED[i, a, s]. We constrain the α’s to be the same for all age groups λ[a] �

except 0 to 17, and the same with the λ’s. We also constrain the α’s to be the same for White non-Hispanic 
and Other non-Hispanic race categories. 

4. Model selection 

4.1 Selecting predictors for the regression models 

For the regression parts of the income and insurance models, we considered as possible predictors interac­
tions of the categorical variables, as well as a continuous variable derived from tax exemptions. We decided 
which predictors to keep in the model by looking at approximate 95% confidence intervals for the regression 
coefficients. The confidence intervals were constructed by taking the posterior mean of the regression coeffi­
cient plus or minus two times the posterior standard deviation. We considered a predictor significant if the 
95% confidence interval for its regression coefficient does not include 0. We generally kept a predictor in the 
model if it was significant. We applied this test to classes of predictors so that if one predictor in a class 
were significant, we kept all of the predictors in that class. 

4.2 Selecting parameterizations 

We sometimes allowed the expectation and variance parameters (the α’s and λ’s above) to vary by groups. 
In some cases, exploratory data analysis showed that some groups are predictive of the CPS ASEC direct 
estimate. These analyses suggested that we allow expectation parameters to vary by those groups. In other 
cases, we tried plausible parameterizations, and if the estimates of the parameters differed substantially, 
we generally allowed them to differ in the final model. The parameterizations are described in the model 
sections. 

4.3 Model diagnostics 

Our primary diagnostics for evaluating the form of the model are posterior predictive p-values (PPP-values) 
and standardized residuals. A PPP-value is defined as Prob

�
T (y(rep), θ(rep)) ≥ T (y(obs), θ(rep))|data

�
for 

some function T , where y(obs) is the observed value of y, θ(rep) is drawn from the posterior distribution of 
the parameter vector θ, and y(rep) is drawn from the posterior predictive distribution of y conditional on 

θ(rep)θ = . We focus on two possibilities for T : T1(y, θ) = y and T2(y, θ) = (y − E(y|θ))2 . The former 
measures model fit with respect to the predicted mean of y, and the latter measures model fit with respect 
to the predicted variance of y. A large proportion of PPPs near 0 or near 1 indicates a poor model fit. We 
obtain standardized residuals by dividing the difference between an observed value and its predicted mean 
by its predicted standard deviation. 

4.4 Diagnostics for the income model 

For the income part of the model, we paid particularly close attention to the diagnostics for the CPS ASEC 
direct estimate. The average of the PPPs for the mean is 0.51, the mean of the PPPs for the variance is 0.51, 
and the average of the standardized residuals squared is 1.00. None of these results suggest that the model fits 
poorly. We plotted the PPP for the mean, the PPP for the variance, and the standardized residual against 
the log of the population, the log of the sample size, and the log of the posterior mean of NIPR[i, a, r, s, k]. 
Figures 1, 2, and 3 show the plots of the standardized residuals. In the plots, there are no obvious patterns 
except in the plot of the standardized residual vs. the log of the posterior mean of NIPR[i, a, r, s, k]. There 
is a group of points with small values of the posterior mean and negative standardized residuals which we 
should investigate further. 
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Diagnostics for the Census 2000 Sample Data estimates, tax exemptions, and Food Stamps are generally 
good. For the Census 2000 Sample Data estimates, the average of the PPPs for the mean is 0.43, the average 
of the PPPs for the variance is 0.43, and the average of the standardized residuals squared is 1.66. The first 
suggests that the means of the posterior predictive distribution of the Census 2000 Sample Data are too 
low, and the last two suggest that the predicted variances are too low. Figures 4 and 5 show plots of the 
standardized residual against the log of the population and the log of the posterior mean of NIPR[i, a, r, s, k], 
respectively. The plots appear to show a slight upward trend. The trend is most pronounced when the plot 
is restricted to points from the IPR > 250% category, as shown in Figure 6. Otherwise, the plots appear 
fairly featureless. 

For the tax exemptions, the averages of the PPPs for the mean for each of the four cross-classifications 
of tax age and tax IPR range from 0.46 to 0.52. The averages of the PPPs for the variance for the four 
cross-classifications range from 0.47 to 0.49. The average of the standardized residuals squared range from 
0.99 to 1.00. 

The average of the PPPs for the mean for Food Stamps is 0.46, and the average of the PPPs for the 
variance is 0.47. These are consistent with a good model fit. The mean of the standardized residuals squared 
is 1.51, but the median is 0.42. There appear to be outliers in the standardized residuals that increase the 
average of the standardized residuals squared. 

4.5 Diagnostics for the insurance model 

We analyzed the diagnostics for the CPS ASEC direct estimate. The average of the PPPs for the mean is 
0.48, the average of the PPPs for the variance is 0.49, and the average of the standardized residuals squared 
is 1.01. All of these values are consistent with a good model fit. The plots of the PPPs and the standardized 
residuals have some patterns in that the spread of the standardized residuals decreases as the population 
increases. This suggests that the predicted variance is too small for large values of the population. 

For the Medicaid/SCHIP data, the average of the PPPs for the mean is 0.56, and the average of the 
PPPs for the variance is 0.53. The average of the standardized residuals squared is 1.40, with a median of 
0.31. There appear to be outliers among the standardized residuals. 

5. Raking to direct estimates 

For each cross-classification of age, race/ethnicity, and sex, we control the estimate of the number insured 
to the national CPS ASEC estimate of the number insured. This is from the 2002 CPS ASEC which is used 
to estimate poverty for 2001. We do this for two reasons: (1) to make the small area estimates consistent 
with the national direct estimates, and (2) to correct for possible deficiencies of the model. 

We control the estimates as follows: for each cross-classification of age, race/ethnicity, and sex, we sum 
the small area estimates of the number insured over states and income categories to get a national estimate. 
We then calculate a raking factor by dividing the CPS ASEC direct estimate by this national estimate. So 

the raking factor is N�IC [a, r, s]
��

NIC [i, a, r, s, k]. i,k 

We then get a raked estimate of the number insured for each cross-classification of state, age, race/ethnicity, 
sex, and IPR by multiplying the raking factor by the small area estimate of the number insured: 

NIC [a, r, s]
N raked [i, a, r, s, k] = 

�
NIC [i, a, r, s, k].IC �

NIC [i, a, r, s, k]i,k 

We obtain the number uninsured by subtracting the raked number insured from the number in the IPR 
category, N raked [i, a, r, s, k] = NIPR[i, a, r, s, k] − N raked [i, a, r, s, k]. UI IC 

5.1 Accounting for the variance of the direct estimates 

In our estimates of the variance of our raked small area estimates, we wanted to take into account the 
variance of the direct estimates N�IC [a, r, s] that were used as controls in the raking. To do this, we did a 
separate run of the Markov Chain Monte Carlo simulation with the following change: for the direct estimates 
NIC [a, r, s] that were used as controls, we estimated their variances using the GVF method. We then treated 
the controls as random quantities with normal distributions and the estimated variances. In each iteration 
of the MCMC simulation, instead of using N�IC [a, r, s], we used a draw from a normal distribution with mean 

NIC [a, r, s] and variance from the GVF method. This allowed the variances of the raked small area estimates 
to reflect contributions from the variances of the controls. This method assumes that the direct estimates 
NIC [a, r, s] are independent from the small area estimates of proportions NIC [a, r, s]

��
i,k NIC [i, a, r, s, k]. 



6. Future research
 

Sampling variances and correlations. Further research into the variances of the direct estimates for 
both the income and insurance parts of the model is needed. One possibility is to investigate alternative 
functional forms for the variances. Another possibility is to estimate the variances outside of the model, 
using the CPS ASEC replication method and modeling to smooth the large variability of the variance 
estimates. 

The models for the direct estimates assume that the sampling errors are independent. Because of 
household clustering in the CPS ASEC, we would expect significant correlations among the direct 
estimates. Research would be needed to include these correlations in the modeling of the direct 
estimates. 

Modeling the Census 2000 Sample Data estimates. When we tried some alternate parameterizations 
in modeling the Census 2000 Sample Data estimates, we obtained some surprising results. When we 
allowed the variance parameters to differ over some demographic groups, we obtained very different 
estimated values for those parameters. We should investigate to determine the underlying reason for 
this. We also noted a trend in the plot of the standardized residuals against the predicted number 
insured. This suggests that we consider alternative functions or parameterizations for the mean of the 
Census 2000 Sample Data estimate. Further, there is reason to expect that the variance of the Census 
2000 Sample Data has two components. One component is due to sampling error in the Census 2000 
Sample Data and the other component is due to model error. 

Modeling the administrative record data. We should attempt to improve the models for the adminis­
trative data: tax, Food Stamps and Medicaid/SCHIP. Some of the diagnostics showed outliers or trends 
that suggest areas for research. We especially should consider alternate forms and parameterizations 
for the variance functions. We should also consider alternatives for the expectation functions. 

Raking. In order to obtain consistency with published national direct estimates at the age by sex and 
race by sex levels, we controlled the estimates to the national age by race by sex direct estimates 
for the number insured. We found that the variances of the direct estimates controlled to were not 
negligible, and investigation showed that when the variance of the control was not taken into account, 
the variances of the estimates could be substantially underestimated. We should also reconsider the 
value of forcing modeled estimates to match direct estimates, when the variances of the direct estimates 
are not negligible such as controlling to age by sex and race by sex estimates by two-way raking. 

Other data sources. We should look for other sources of data that could be used as predictors in the IPR 
or IC logistic regression models (sections 3.1.2 and 3.2.2), or could be modeled conditional on IPR or 
IC numbers. 
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