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1 Introduction

This paper describes technical details of a model to estimate the number of
people without health insurance for small areas. These models were devel-
oped for a study to assess the feasibility of producing estimates suitable for
the purposes of the Centers for Disease Control and Prevention’s (CDC’s)
National Breast and Cervical Cancer Early Detection Program (NBCCEDP).
For NBCCEDP the primary interest is in estimates of the numbers of women
without health insurance within particular age groups and income groups de-
fined by Income to Poverty Ratio (IPR). We produce estimates of the number
uninsured by county, age group, sex, and IPR category. For a more detailed
discussion of the project, see U.S. Census Bureau (2006).

The group eligible for screening differs by state and program. All are
females without insurance coverage. Eligible age groups are 18 to 64 years
of age, 40 to 64 years of age, and 50 to 64 years of age. Eligible income
categories are those with IPRs of between 0 and 200% or between 0 and
250% of the Federal Poverty Level. Other subsets of the population are of
less interest in this study. However, because we expect them to be correlated
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with the sets of interest, we include them in the model, and obtain estimates
for them.

Our approach is to model the number of people without health insurance
by demographic subgroups that cover the entire population. In particular,
we estimate the number uninsured, Ny, for groups defined by county, sex,
age group, and IPR category. We actually model the number insured, Ny¢.

We use demographic estimates of the number of people in each of the
county by age by sex groups, and treat them as known. We estimate the
number insured by estimating two proportions: p;pgp jk, Which is the pro-
portion of those in county h, in age group ¢ of sex j who are in IPR category
k; and pre pij k. the proportion with health insurance in county/age/sex/IPR
category h,1, j, k.

We have several data sources. First, we have the Annual Social and Eco-
nomic Supplement (ASEC) of the Current Population Survey (CPS) direct
estimates of proportions in the IPR categories, prpg h.i jk, and of proportions
insured by county/sex/age/IPR, prc s k. We have Food Stamp participa-
tion rates by county, fs,. We have the Medicaid Eligibles File, which is a list
of enrollees. From this file, we calculate proportions of the population that
are enrolled in Medicaid by county, age, and sex. In the future, we will have
American Community Survey (ACS) direct estimates of IPR membership by
age and sex, but they are not available yet. The predictors for the models
are described in the following sections.

Fisher and Riesz (2006) describe a model used for similar estimates at the
state level. In that model, the data are all conditioned on the IPR categories
and insurance coverage is conditioned on the numbers in the IPR categories,
so that the number in the IPR category and the proportion insured in the
IPR category are estimated jointly. For county-level estimates, this is no
longer practical. Instead, we use a pair of models, one for IPR and one for
IC, which seem to yield good results and are easier to implement. They are
similar to the models presented in Ghosh et al. (1998), but differ in the way
the survey data are modeled.

In contrast to the assumption in the model for state estimates, we assume
here that the proportions in the IPR categories and the proportions insured
within the IPR categories are independent, conditioned on the predictors and
the various parameters. This assumption was made to facilitate model devel-
opment for the feasibility study, and will be challenged in future work. We
describe a method for challenging the conditional independence assumption
in the Model-Checking section below.



The paper proceeds as follows. Section 2 describes the model and data
for the proportions in the IPR categories. Section 3 describes the model and
data for insurance coverage. Section 4 describes model-checking methods.
Section 5 contains results from preliminary runs of the model. Section 6
describes future research.

2 Income to Poverty Ratio Model and Data

2.1 Model

The model for proportions in the IPR categories assumes that those propor-
tions follow a multiple-category logistic regression model, and that the CPS
direct estimates of those proportions are independent, normal, and unbiased.
More precisely, we have the following.

PrernijklP1PR b ~ N(PrPR 1G> VIPRHGE)

where prpr i jk is the CPS direct estimate of the proportion of those in the
h,i,j county/sex/age domain who are in the k" IPR category, Vipg.cn.ijk iS
sampling variance, and

DIPRAiiE = exp(@1PRhi k)
IPR? b '7 -7 -
My exp(drpR )

where

¢IPR,h,i,j,k: = XIPR,h,i,j,anPR + UTPR,hi,j,k -

Here, Xiprpijk is a vector of covariates for county h, sex 7, age group 7,
and IPR category k. The urpgr i are random effects, or model error, and
are assumed to be independent with

UTPR,h,i,j.k ™ N(O, VIPR,u)-

The matrix, X, includes indicators for sex/age categories, and county or
higher level variables, including administrative records data and region. We
can rewrite the expression for ¢ as

Grrrhijk = PRk + Biprik + Virrjk + (BV) PRk + Z1PRhiiké1PR

+ UrPR Ak



Here, «, 3, and ~ represent main effects in the Generalized Linear Model
(GLIM), (87)rpr is the sex/age interaction, and Z represents the additional
covariate information. Note that the main effects and interactions are equal
to zero when any of their indices are 1. These are the corner-point restrictions
(c¢f Ghosh, et al. (1998)).

For the CPS ASEC sampling error, Vipr i jk » we use the Generalized
Variance Function (GVF) for the CPS ASEC. The GVF for a proportion, p,
in a population of size N is given by

_ P —p)
N

where b is the Generalized Variance Function parameter for a rate in the
CPS ASEC (U.S. Census Bureau, 2005) multiplied by a factor to account
for the fact that the CPS ASEC direct estimate in our data is a three-
year average. For the year 2000, the parameter is 1249, and the correlation
between adjacent single-year averages is 0.3. We can show it follows that,
in our situation, b = 574.54. In the future, expect to include parameters to
be estimated in the variance function. This could take into account possible
weaknesses in the GVF, which was formulated for higher level estimates.
Estimates at higher levels may have different properties. For example, the
larger areas’ estimates may be more affected by the population controls,
where survey aggregates are ratio-adjusted to agree with other estimates
derived from the decennial census and administrative records. We also put an
upper bound of 0.25 on the variance, because that is the maximum variance
for a variable that must be between 0 and 1. For numerical reasons, the
variance is bounded below at 0.0001. Thus the sampling variance is

025 : 0.25<Vipgcniik
ViPrenije = ViPrenigre 00001 <Vipp pije < 0.25
0.0001 : o.w.

Varo

where
PrPRbi k(1 — DiPRbjk)

‘/;(F’R,e,h,i,j,k: = VUIPR,e * 5'74.54 ik

The normality assumption is clearly not strictly met, since the propor-

tions in the IPR categories must sum to 1.0 and must all be in the interval

0, 1] if they are formed by dividing the direct estimate of the number in the

(h,i,7j, k) cell by the directly-estimated number in the (h,,7,) cell. It is not
clear that this is the best choice, since the latter has a high variance itself.
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The TPR categories and age categories are defined in Tables 1 and 2,
respectively.

Table 1: IPR Group Definitions

IPR Group IPR Range
1 0 to 200% FPL
2 200 to 250% FPL
3 more than 250% FPL

Table 2: Age Group Definitions

Age Group Ages
0 to 17

18 to 39
40 to 49
50 to 64
65 or more

Y | W I N~

We use flat prior distributions for all of the non-zero regression param-

eters. For the variance of urppp,ijkr, We use an inverted gamma prior,
ViIPRu ™~ IF(Ol,lO)

2.2 Data

The predictors for the IPR section of the model, besides the effects a, 3, 7,
and their interactions, are the elements of the matrix Z, which are described
here.

Log Food Stamp Participation by IPR category Two variables, m =
1,2,

LOGFS;MU"k’m = IOg(FSz/pO]QZ)I(k = m),
where I(.) = 1 if its argument is true, 0 otherwise.
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Logit Exemptions Tax data are available in four categories for each
county, defined as follows:

e FTAX},; is the proportion of child exemptions in families with
IPR < 2.0;

e FTAX} 9 is the proportion of child exemptions in families with
IPR > 2.0;

o FTAX} 2, is the proportion of non-child exemptions in families
with /PR < 2.0; and

e FTAX} 9 is the proportion of non-child exemptions in families
with IPR > 2.0.

Tax data are represented in our model as
FTAX) o
LTAX ) ikm =1 ——>= ) I(k=
h727]7k7m Og <FTAXh7m71> ( m)’

where m = 1 if j = 1, and m = 2 otherwise.

Logit Nonfilers The nonfiler rate is the proportion of people not among
tax exemptions. We use the logit of this rate.

K
> Pophj — FTAXp 2

7j=2

popp,+1 — FTAXh,m,l

LNFh,i,j,k,m = log I(k = m),

Mean Log IPR This is the county mean of persons’ log IPR from the IRS
data;

FI,
LIPRy; jjm = ( > log ( pT >) I(k=m)

exemption r€Dy,

FI is family income, F'PL is the Federal Poverty Level, and D), is the
set of indices corresponding to county h.

Variance Log IPR This is the variance of persons’ log IPR.

South This is an indicator of the South Census region, multiplied by the
indicator for IPR category.



Medicaid The logit of the Medicaid rate for the county/sex/age category.

Census IPR The Census 2000 proportions in the IPR categories within the
county /sex/age domains was tabulated and transformed to the logistic
scale.

Note that data from the American Community Survey are not incorporated
into this model yet. Future versions of the model will include them.

3 Insurance Coverage Model and Data

3.1 Model

The model for proportion with insurance coverage within a county/sex/age/IPR
category is similar to the model for IPR proportions. The model assumes
that the proportion insured follows a logistic regression model and that the
CPS ASEC direct estimates are independent, with

Prohigklpronijr ~ N(Pronijk Vic.enijk)

Here, prop,ijk is the CPS direct estimate of the proportion of those in the
h,i,j, k county/sex/age/IPR domain who are insured, Vic e p.ijx 1 sampling
variance. Then

exp(@rc hijk)
1+ exp(drcpijk)

Pichijk =

where

Orohijk = XIChijkNic +Urchijk -

X1,k 1s a vector of covariates for county h, sex ¢, age group j, and IPR

category k. The random effects or model errors follow u ¢ YN (0, v100)-
As before, the model can be equivalently written as a model with fixed effects
and additional covariate information

brchije = Qrok+ Bicik + ek + (BY)icijk + Zionijkéic

+ Urc bk



The basic function for the CPS ASEC sampling error is again taken from
the Generalized Variance Function (GVF) for the CPS ASEC, so that

0.25 : 025 < Vfc,e,h,i,j,k
Vicenijr = Vl*c,e,h,i,j,k 0.0001 < VI*C,e,h,i,j,k <0.25
0.0001 : o.ww.

where ( )
. _ P10,k k(L = Prcnigk
Vicnije = 1219.2 ¥ .
h7i7j7k

The factor 1219.2 is the GVF parameter 2652 for health insurance estimates
times a factor to account for the fact that the CPS ASEC direct estimate is
a three-year average.

We use flat prior distributions for all of the non-zero regression parame-
ters. For priors for the variance parameters, we use vic, ~ I1I'(0.5,1.0).

3.2 Data

The direct CPS ASEC estimate for the proportion insured, pp; ; « is the ratio
of the estimate of the number insured to the estimate of the population in
the corresponding county /age/sex/IPR category.

The following variables were used as predictors in the Z;- matrix.

South Indicator for the event that the county is in the South Census region.
]SO(/v7—7fv{}17i7]'7,1C = ](h S S)
Here S is the set of indices for counties in the South Census region.

West Indicator for the event that the county is in the West Census region.
Here W is the set of indices for counties in the West Census region.

Medicaid by IPR Medicaid participation rates, transformed to the logistic
scale. We obtain files from the Centers for Medicare and Medicaid
Services in the Department of Health and Human Services. From these
we tabulate the numbers of participants for each county, age group,
and sex. Income information is not available on the Medicaid data.



See U.S. Census Bureau(2006) for a detailed description of the data.
In this application, we transform the Medicaid participation rates to
the logistic scale as follows.

Nme [N 1
MED}M'J =lIn ( LR i ) )

Nuij — Nimed,hyij + 1

whenever N, ; j > Npedn,i;- This prevents missing values and preserves
the domain for model estimation, though this method should be exam-
ined more closely in the future. One possibility is to model it as a
response, as in the state model. In a small number of county/sex/age
combinations, the inequality did not hold. In these cases,

MED’WJ = ln(Nmed,h,i,j - 05)

We allow the effect of Medicaid on the conditional distribution of the
insurance coverage rate to change by IPR category, so the model in-
cludes interactions between M E D), ; ; and the IPR categories,

MEDIPRy; jjm = MEDy,,; ; * I(k=m).

Food Stamps Food Stamp Participation, transformed to the logistic scale.
We obtain files for Food Stamp participation from the Food and Nu-
trition Service at the United States Department of Agriculture. From
this we tabulate the number of participants for each county. No demo-
graphic information is available from these data. The transformation
is similar to that for the Medicaid variables.

Nps,nt1 .
log (m) : N> Npsph

LFSh; k= {

log(N, —0.5) : ow.
For the Medicaid and Food Stamps variables, we add 1 to the numerator
and denominator so that the variable is defined even when the reported
Medicaid or Food Stamp participation is zero. The motivation is that
the resulting value is defined, yet still smaller than if only one person
had participated. When the reported participation is larger than or
equal to the population, we treat the variable as if only one-half of one
person did not participate. These are imperfect solutions to certain
problems in the Medicaid data, and in future versions we expect this
to be unnecessary.



4 Model-Checking

We rely heavily on Bayesian model-checking methods to examine the fit of
these models. Primary among our methods is the use of posterior predictive
p-values (PPP-values). For some discrepancy function, designed to examine
some aspect of the model fit, T'(Y, #), where Y is the data and 6 is the set of
parameters, the posterior predictive p-value is defined as

p= P [T (Y(rep)’ e(rep)) ~T (Y(obs)7 9(rep)>j| ’

where the (rep) superscript indicates the variable is drawn from the posterior
predictive distribution:

(Y gter)) ~ P(y|6) P(6]data).

A high proportion of posterior predictive p-values close to 0 or 1 indicates
that some aspect of the model fits poorly. The function T can be chosen
to check some particular piece of the model. Useful choices here, for a data
point y and generic parameters 6, are

Tl (ya 6) =Y,

and

Ty(y.0) = (y — E(y]0))*,

A PPP-value close to 1 for T3, for example, indicates that replications from
the posterior distribution yield values larger than the observed most of the
time, which suggests that means might be large or, put another way, that the
estimates are biased upward. Similarly, PPP-values for 75 close to 1 indicate
that a variance estimate is biased upward.

One assumption of our model is that the proportions in the IPR cate-
gories and the proportion insured are conditionally independent, so we can
estimate these as two separate models. There are reasons to expect that this
assumption does not hold. For example, it may be the case that a person in
the 200% to 250% IPR category in a county with 80% of its population in
the lowest IPR category has a different probability of having insurance than
a person with similar predictors in a county with more people in the upper
IPR categories. A method to check this assumption, at least as a correlation,
is to form PPP-values for the discrepancy function

Ty(y,0) = (yrpr — E(Y1pr|9)) (y1c — E(Yic|0)) -

10



Table 3: Average measures of variability for estimates of uninsured rates for
females 0 to 200% of FPL.

Age || Mean Standard Deviation || Mean Coefficient of Variation
18-64 0.084 0.30
40-64 0.081 0.36

Table 4: Average measures of variability for estimates of uninsured rates for
females 0 to 250% of FPL.

Age || Mean Standard Deviation || Mean Coefficient of Variation
18-64 0.070 0.28
40-64 0.067 0.33

We have not performed this check yet because of the difficulty of implemen-
tation. We have plans to do this in future work.

5 Results

Tables 3 and 4 contain average posterior standard deviations and coefficients
of variation (CVs) for estimates of uninsured rates for some groups of in-
terest. The CVs are about 0.3, which is reasonable, but with further model
development, we expect to get smaller CVs.

The diagnostics for model fit do not appear to show any drastic failures
of model fit. For the IPR part of the model, the mean of T} above, which
assesses model fit with respect to the mean of the direct estimate is 0.50;
and the mean for 75, which assesses fit with respect to variance is 0.59. For
the IC part of the model, these means are 0.53 and 0.69 respectively. These
are close to the ideal of 0.5, except that it appears that our model tends
to overestimate the sampling variance for the direct estimates of both IPR
membership and insurance coverage.
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6 Future Research

Preliminary results for the IPR part of the model are promising. Results
from the IC part of the model have not been as good, perhaps because of the
small samples within county/age/sex/IPR groups. We expect to improve on
these results with further model development.

One area of research is to investigate alternatives to the variance function
or, more generally, the whole sampling error distribution. Domains with
direct estimates of 0 or 1 should be given special attention. One approach is
to treat them as censored, as in Fisher and Gee(2004), where direct estimates
of 0 in a poverty model are treated as if they are censored at some small
number and not observed otherwise. Alternatively, we could use a mixture
of a continuous model such as the normal or beta distribution and a Bernoulli
distribution. The mixing probability would then be modeled on the basis of
covariates.

We have other data sources to explore. One data set with potential for
IPR proportions is the American Community Survey, which has a large sam-
ple size and is collected regularly. Perhaps the most significant data set is
the Minimum Data Elements from the CDC. These data have the numbers
of people screened under the NBCCEDP. This will allow for another layer of
modeling for screening rates. It will be possible to model the screening rates
within the county/sex/age/IPR/UI categories, using methods that are di-
rectly analogous to those for insurance coverage within county /sex/age/IPR
categories. Thus, if screening coverage is correlated with other available
variables, we will be able to use that information to improve the small area
estimates, detect characteristics of domains which have low screening rates,
and improve the estimates of proportions in the IPR categories.

We need to work to establish consistency with other estimates at higher
levels, such as the county-level estimates (Fisher and Turner, 2004) or the
state-level estimates in the companion paper. We need to establish whether
the aggregation of the small domains to the higher levels yields the better es-
timates, or if they should be controlled somehow to the higher level estimates.
Large inconsistencies between the two should be investigated.
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