01/10/98
3. Categorizing and Cross-Classifying Datain CREATE

3.1 Overview

The issues of categorizing and cross-classifying data in VPLX are closely linked but nonetheless
distinct. This chapter combines the topics but presents them in separate sections.

Categoricd data are commonplace in surveys and many other statistical applications. Even variables
with underlying continuous distributions, such as age, may be collected and analyzed categorically.
Estimated totals and percentages are among basic statistical products associated with categorical
data.

Discrete variables may dso be used to cross-classify other variables; in this role they are termed class
variablesin VPLX. Classvariables may cross-classify both categorical variables, such as labor force
status, and real variables, such as earnings. Any survey variable that can be analyzed categorically
can be made into a class variable instead. It is aso possible to form both categorical and class
variables from the same information. For example, the percentage distribution based on a categorical
variable for age and cross-classifications of other variables based on a class variable for age can be
obtained simultaneoudly.

Section 3.2 covers the CATEGORICAL or CAT statement, which identifies how the levels of a
categorical variable are to be identified from a real variable. These statements appear in the
categorization section of the standard order for the CREATE step shown in Exhibit 1.1.

Section 3.3 introduces both CLASS and BLOCK statements, which work together to specify cross-
classfications. CLASS statements, which appear in the categorization section along with any
CATEGORICAL statements, define individual class variables that may be used as cross-classifiers.
The BLOCK statements that follow in the output section specify how other variables are to be cross-
classified by the CLASS variables. Section 3.4 describes LABEL, which may be included in the
output section. Section 3.5 addresses amore specidized form of cross-classification suitable for large
applications through BY variables.

3.2 CATEGORICAL (CAT) Statements

The CATEGORICAL statement converts a rea variable into a categorical variable. CAT may
abbreviate CATEGORICAL. Range specificationsindicate what values of the real variable comprise
each level of the resulting categorical variable. Labels of up to 24 characters for each level may
follow. For example,

1.3.2

cat sex (1/2) 'Male' 'Fenal e

Thisexampleillustrates asmple casein which asingle variable is converted from areal variable into
categorical. Following the variable name, one or more sets of ranges follow, separated by “/,” and
bounded by opening and closing parentheses. Inthis case, red values of 1 are converted into the first
leve of the categorical variable, and 2 into the second. If the real variable has some other value not
covered by the specified ranges, such as 0 or 9 in this instance, then the observation is excluded from
the resulting categorica variable.

Section 2.5.3 presented rules for range specifications, which are identica in IF, CAT, and CLASS
statements. Generally, “res’ for residual is not used with IF but instead with CAT and CLASS. In
this instance,

cat sex (1/2/res) '"Male' 'Female' 'DK ;

the use of “res’ placesdl other red vauesinto athird level. The “low” and “high” specifications are
also useful with CAT and CLASS statements.

cat inconme (low 0/ 1 - 19999/20000-39999/40000-59999/
60000- 79999/ 80000 - 99999 /100000 - high)
"None or loss' '$1 - $19, 9999
'$20, 000 - $39,999" '%$40,000 - $59, 999’
' $60, 000 - $79,999" '$80,000 - $99, 999’
' $100, 000 or nore';

Note that in the previous example each level is matched to an accompanying label. If no labels are
given, then the labels are set to the first 24 characters of the ranges. For example,

cat age (0-17/ 18-29/30- 44/ 45- 64/ 65- hi gh)
isequivaent to,

cat age (0-17/18-29/30-44/45-64/65-high) '0-17" '18-29" ' 30-44
'45-64' ' 65-high';

Note also that the labels enclosed in apostrophes are separated by one or more blanks. Commas may
also be used to separate labels. If two apostrophes are adjacent, then they are trandated into asingle
apostrophe within the label,

cat (103 (1/2/3,4/res) 'Yes', "No', 'Don"'t know or refused',
"M ssi ng/ no answer';

1.3.3

CAT statements may be used to categorize several variables simultaneously. The same range
specifications and labels are then applied to each.

cat 9103 - ql17 ql21 ql1l23 (1/2/3,4/res) 'Yes', 'No',
"Don''t know or refused','M ssing/no answer';

The extended SIPP example from Exhibit 1.5 included the following,

if pp_intvwl .in. {1,2} .and. agel >= 15 then;
if grd_cnmpll == 1 then; I conpl eted grade
hi cnpgrdl = higradel
else if grd_cnpll == 2 then;
i f higradel == .or. higradel == 21 .or.
hi gradel == 25 then;
hi cnpgrdl = hi gradel;
el se;
hi cnpgrdl = higradel - 1; ! adjust other grades
end if;
end if;
end if;

grade not conplete
do not adj ust

21 (sone coll ege)
25 (sone grad sch)

...simlar code for hicnpgrd2, hicnpgrd3, and hicnpgrd4 for waves 2-4

cat hicnpgrdl - hicnpgrd4 (0-11/12/21-23/ 24/ 25-26)
'Less than HS' 'HS graduate' 'Sone coll ege
' Col | ege grad' ' Sonme post-grad'

di spl ay

list hicnmpgrdl - hicnpgrd4

Esti mate Standard error

Conpleted ed., intvw 1l : PERCENTS
Less than HS 25. 8180 . 5240
HS graduate 34.0098 . 4617
Sone col | ege 22.2100 . 3438
Col | ege grad 9. 1430 . 2843
Sone post-grad 8.8193 . 2695

Exhibit 3.1 An extract from i1-3.lis. A variable corresponding to highest completed grade is first
constructed within the recode section of the CREATE step. The real variables are then converted to
categorical with a single CAT statement. The DISPLAY gives percentages for the resulting variable.
A display of estimated totals is also possible, but was not included in the example.

1.3.4

The example illustrates an important point about CAT statements:. the syntax specifies ranges for a
sngle variable at a time to determine level assgnment. When levels defined by more complex
relationshipsinvolving two or more variables are required, a variable summarizing these relationships
must be constructed within the recode section first.

All of the previous examples convert real variables into categorical variables. At the point in the
program where the CAT statement appears, VPLX converts the real variable into the resulting
categorica leve, and the origind red vaueislogt. In many applications, however, the origina value
is need for other purposes. There are two programming strategies to preserve the original value. The
firs isto define as many different versions of the real variable as necessary in the recode section and
then to change each of them into categorical variables. For example, if two different age groupings
were of interest,

{age5 agelO} = age;

cat age5 (0-4/5-9/10-14/15-19/20- 24/ 25-29/ 30- 34/ 35- 39/ 40- 44/
45- 49/ 50- 54/ 55- 59/ 60- 64/ 65- 69/ 70- 74/ 75- hi gh)

cat agelO (0-9/10-19/20-29/30-39/40-49/50-59/60-69/70- hi gh)

produces two different categorical variables without changing the status of age as a real variable.
Alternatively,

cat age into age5 (O-4/5-9/10- 14/ 15- 19/ 20- 24/ 25- 29/ 30- 34/ 35- 39/ 40- 44/
45- 49/ 50- 54/ 55- 59/ 60- 64/ 65- 69/ 70- 74/ 75- hi gh)
cat age into agelO (0-9/10-19/20- 29/ 30- 39/ 40- 49/ 50- 59/ 60- 69/ 70- hi gh)

achievesthe same effect. When INTO appears in the command, it is not treated as a variable name
but instructs VPLX to create a new categorica variable while leaving the real variable unchanged.
As a consequence of this syntax, INTO cannot be used as a variable name (1).

Findly, the INTO feature may be combined with the ability to categorize several variables at once.
The syntax takes the form:

CAT vlistl INTOvlist2 (rangel / range2 ...) ['labell " ['label2'[...]]]

wherevl i st 1 and vl i st 2 must have the same length, that is, the same number of variables. New
variables appearing in vl i st 2 become defined by this statement.

The following example is based on the same simple data set as Exhibit 1.3.

create in = il-1.dat out = vplx1l.vpl ; | Beginning of CREATE step

i nput roons persons weight cluster ! input statenment to read
stratum/format (5F2.0) ; ! data ("input section")

cat roons into roonsl (4-5/6-high) ! Creating a 2-1evel variable
'"4-5 roons' '6 or nore roons'; I fromroons, with | abels

cat roonms into roons2 (4-5/6-7) ! A 2-level variable, where 8+
"4-5 roons' '6-7 roons'; ! are dropped

cat roons(4-5/6-7/8); ! This converts roons into a

! 3-level categorical variable,

1.3.5

I with default |abels for |evels.

bl ock roonsl roons2 roons ; ! Block statenment to keep the
! 3 categorical variables

di agnostic information from VPLX onitted

di spl ay ! Begi nning of DI SPLAY step
list roonmsl roons2 roons ! specification of
total (roonmsl roons2 roons) I display
Esti mat e St andard e
roonsl . PERCENTS
4-5 roons 50. 0000 16.
6 or nore roons 50. 0000 16.
roons2 . PERCENTS
4-5 roons 75. 0000 25.
6-7 roons 25. 0000 25.
roomns . PERCENTS
4-5 50. 0000 16.
6-7 16. 6667 16.
8 33. 3333
roonsl . TOTAL
4-5 roons 3. 0000 1
6 or nore roons 3. 0000 1.
roons2 . TOTAL
4-5 roons 3. 0000 1
6-7 roons 1. 0000 1.
roomns . TOTAL
4-5 3. 0000 1
6-7 1. 0000 1.
8 2. 0000

rror

6667
6667

0000
0000

6667
6667

. 0000

. 0000

0000

. 0000

0000

. 0000

0000

. 0000

Exhibit 3.2 An extract from i3-1.lis. Three categorical variables are created from rooms. The second
omits 2 cases. The percent distribution shown by display is based on the cases falling into one of the
defined levels, so that the estimated percent with 4-5 rooms for the second variable disagrees with

the first and third.

1.3.6

3.3CLASSand BLOCK

CLASS and BLOCK statements are designed to work together. The CLASS statement is
syntactically identical to the CAT statement, except to begin with CLASS. As asimple example,
analogous to the first in section 3.2,

class sex (1/2) 'Male' 'Fenale

defines sex as apotentia cross-classfier for other variables. All of the other syntactic options for the
CATEGORICAL statement, such as the definition of multiple class variables in a single statement,
are available to CLASS as well.

Frequently, avariableis cdled upon for both categorical and classification purposes. In these cases,
separate categorical and class variables should be created. For example,

cat sex into sex1l (1/2) 'Male' 'Fenale
class sex (1/2) 'Male' 'Fenale

bl ock sexl ;
bl ock unenpl oyed / cl ass sex ;

di spl ay
list percent (sexl)
list unenployed / class sex

Once a class variable is defined by a CLASS statement, it becomes available for use as a cross-
classfier by one or more BLOCK statements in the output section. In general, aBLOCK statement
consists of BLOCK and one or more of the following:

C alist of variables associated with the block, excluding class variables,
C a/CLASS specification of associated class variables,
C one or more /SELECT specifications giving conditions that must be satisfied to include an

observation in the block. If more than one /SELECT specification is present, observations
must satisfy each of the /SELECT conditions for inclusion.

The following BLOCK statement from Exhibit 1.5 illustrates all three aspects,

bl ock c_esr1l / class sex * race * ethnicity
/| select if c_pp_msl .in. {1}
/| select if c_agel .in. {15-high};

1.3.7

Thisblock cross-classifies C_ESR1 by sex, race, and ethnicity, a 2 (sex) by 4 (race) by 2 (ethnicity)
cross-classification. The subsequent two /SELECT specifications each impose conditions on
incluson of the observation. Note that the /SELECT specifications use the “.in. { }” syntax
appearing in the IF statement. No other logical expressions are allowed, so for more complex
selection criteria, asingle variable must be defined in the recode section of the CREATE step for use
withthe“.in. { }” syntax of /SELECT (2).

The BLOCK statements determine the contents of the output VPLX file. For each block defined in
the CREATE step, aweighted count (the sum of weights for observations included in the block) and
totas for the associated variables are aggregated, cross-classified by the class variables, and subject
to the /SELECT conditions. If no weight variable is present, then all totals are unweighted. The
DISPLAY step uses the weighted count for the block to calculate means of real variables. The
DISPLAY step can also display the weighted count associated with any block.

Although class variables can be used to cross-classify more than one block, other variables can be
associated with a most one block. I equivaent information is required in more than one block, then
different variables must be created. The list of associated variables should not include the weight
variable, if it is present, or any stratum, cluster, replicate weight or other variables used in defining
the replication method.

BLOCK statements exclude observations from the totals for the associated variables in two ways:
C if the conditions of one or more /SELECT conditions are not met, or

C if the observation does not fall into one of the defined levels of one or more of the associated
class variables.

It is important to keep both of these conditions in mind in using BLOCK and CLASS statements.
Indeed, if aDISPLAY step shows systematically lower totals than expected, the problem may be due
to exclusion of cases because one or more class variables does not have avalid level.

If no BLOCK statements appear, then asingle block is created by associating all regular variables,
cross-classified by any defined CLASS variables. For example, Exhibit 1.4 showed a CREATE step
with only an INPUT statement; in this case the variables rooms and persons were associated with a
single block.

For smple gpplications, reliance on the default by omitting BLOCK statements may give satisfactory
results unless variables pertain to different universesrequiring /SELECT in separate blocks. In more
complex applications involving the definition of many variables, however, 20 or more CLASS
variables may be required, and the computer resources can be rapidly exhausted by producing the

1.3.8

complete cross-classification of other variables by al class variables. BLOCK statements specify the
class variables to use with associated variables and therefore make large applications possible.

Toillugtrate severa of these points, consider two possible applications, based on modifying part of
the SIPP example shown in Exhibit 1.5,

cat c_esrl (1/2/3/4/5/6/7/8) 'Wrked all weeks'

"Job, miss 1+ wk,no layoff', 'Job, sonme tinme on |ayoff',
"Part job, no layoff/look', 'Part job, wlayoff/look',
"No job, all look/layoff', "No jb, some |ook/layoff',

"No job, no | ook/layoff';
class sex (1/2) 'Male' 'Femle';
class race (1/2/3/4) "Wite' 'Black' 'Aner. Indians'
"Asian and Pacific |slanders';
class ethnicity (14-20/res) 'Hi spanic origin' 'Non-Hi spanic';
block c_esrl / class sex * race * ethnicity;

compared to

{c_esrla c_esrlb c_esrlc} = c_esrl;
cat c_esrla c_esrlb c_esrlc (1/2/3/4/5/6/7/8) 'Wrked all weeks'

"Job, miss 1+ wk,no layoff', 'Job, sonme tinme on |ayoff',
"Part job, no layoff/look', 'Part job, wlayoff/look',
"No job, all look/layoff', "No jb, some |ook/layoff',

"No job, no |ook/layoff';
class sex (1/2) 'Male' 'Femle';
class race (1/2/3/4) "Wite' 'Black' 'Aner. Indians'

"Asian and Pacific |slanders';

class ethnicity (14-20/res) 'Hi spanic origin' 'Non-Hi spanic';
bl ock c_esrla / class sex;
bl ock c_exrlb / class race;
bl ock c_exrlc / class ethnicity;

Because of the use of resin the class statement for ethnicity, al observations will be assigned one of
the two levels. Unexpected values for sex or race, however, will cause the variable to be omitted
from the single block in the first version but only the affected block in the second version. For
example, if acode of 5 appearsfor race on some observations, those observations are dropped from
the single block in the first case but only dropped from the second of the three blocks in the second
case. Thefirst example resultsin alarger output VPLX file than the second, but allows all possible
cross-classifications by the class variables, whereas the second would only permit the display of
employment status by one class variable at atime. The first example requires fewer statements and
is somewhat easier to program. Thus, small to moderate sized applications such as this (3) should
tend to use the first programming strategy, which isto use several class variables at once in relatively
few BLOCK statements. For large applications, however, it may be necessary to limit the size of the
output VPLX fileto only the information required for subsequent operations and display by defining
more specialized blocks.

1.3.9

Exhibit 3.3 shows an example based on modifying the situation presented in Exhibit 3.2, by forming
class variables rather than categorical variables from rooms.

~

S0 00~ UTO 01 F

np

A
OUDNWNERO

i

1
1
2
2
3
3

NDAEFELDNOON

*

create in =

i nput roo
st
{personsl

ut data are the six records of

i1-1.dat out = vplx1l.vpl ;

nms persons
ratum /f or mat

wei ght cluster
(5F2.0) ;

- persons3} = persons;

class roons into roonsl (4-5/6-high)

"4-5 1

oons' '6 or nore roons';

class roons into roons2 (4-5/6-7)

"4-5 1

oonms' '6-7 roons';

cl ass roons (4-5/6-7/8);

bl ock pers
bl ock pers
bl ock pers

Stratif
Si ze of
Si ze of
Si ze of

Tot al si

onsl / class
ons2 / class
ons3 / cl ass

roonsl ;
roons2 ;
rooms ;

ed jackknife

bl ock 1 = 4
bl ock 2 = 4
bl ock 3 = 6
ze of tally matrix = 14

i 1-1.dat:

Begi nni ng of CREATE step

i nput statenent to read
data ("input section")

make 3 copi es of persons

Creating a 2-level variable
fromroons, with | abels

A 2-level variable, where 8+
are dropped

This converts roons into a
3-level class variable,
with default |abels for

Separate bl ock statenents for

each of the three class variables
effects

to show their different

replication assunmed

**** End of CREATE specification/beginning of execution

End of p

3 strata observed on inconming file

di spl ay

list total (
total (
total (

rimary input file after obs #

personsl) /class roonsl /
persons2) /class roons2 /
persons3) /class roons

6

Begi nni ng of DI SPLAY step

list specification to show
each bl ock in order

| evel s.

1.3.10

roonsl 4-5 roons
Esti mat e St andard error
personsl TOTAL 10. 0000 7.0711
roonsl 6 or nore roons
Esti mat e St andard error
personsl TOTAL 14. 0000 8. 2462
roons2 4-5 roons
Esti mat e St andard error
persons2 TOTAL 10. 0000 7.0711
roons2 6-7 roons
Esti mat e St andard error
persons2 TOTAL 8. 0000 8. 0000
roons 4-5
Esti mat e St andard error
persons3 TOTAL 10. 0000 7.0711
roomns 6-7
Esti mat e St andard error
persons3 TOTAL 8. 0000 8. 0000
roomns 8
Esti mat e St andard error
persons3 TOTAL 6. 0000 2. 0000

Exhibit 3.3 An extract from i3-2.lis. Parallel to i3-1.lis in Exhibit 3.2, three class variables are created
from rooms. The second omits 2 cases. Following the BLOCK statements, the report from the
CREATE step provides the size of each block. For example, the first block is of size 4, representing
the product of the 2 cells for the weighted number of observations and for personsl times the 2 levels
of the class variable, roomsl. The DISPLAY step shows that 2 observations with 6 people are
excluded from the second block, because the class variable rooms2 excluded the two observations
with 8 rooms.

1.3.11

Exhibit 1.5 included the following CLASS and BLOCK statements

class sex (1/2) 'Male' 'Fenul e’
class race (1/2/3/4) "Wite' 'Black' 'Aner. Indians
"Asian and Pacific |slanders'

class ethnicity (14-20/res) 'Hi spanic origin' 'Non-H spanic';
class c_tenurel - c_tenurel2 (2/res) 'Renter' 'Omner or other';
cat c_esrl - c_esr12 (1/2/3/4/5/6/7/8) 'Wrked all weeks

'Job, mi ss 1+ wk, no layoff'

"Job, sone tine on |layoff’

"Part job, no layoff/look

"Part job, w layoff/l ook

"No job, all Iook/layoff’

"No jb, sone |ook/layoff"

"No job, no | ook/layoff'

| abel statenents omtted

cat hicnpgrdl - hicnpgrd4 (0-11/12/21-23/ 24/ 25-26)
'Less than HS' 'HS graduate' 'Sone coll ege
' Col | ege grad' ' Some post-grad'

bl ock hicnpgrdl / select if pp_intvwl .in. {1}
| select if agel .in. {15- high};
bl ock hicnpgrd2 / select if pp_intvw2 .in. {1}
| select if age5 .in. {15- high};
bl ock hi cnpgrd3 / select if pp_intvw3 .in. {1}
| select if age9 .in. {15- high};
bl ock hicnpgrd4 / select if pp_intvw4 .in. {1}
/| select if agel3 .in. {15- high};
block c_esrl / class sex * race * ethnicity
/| select if c_pp_msl .in. {1}
| select if c_agel .in. {15-high};
bl ock c_esr2 / class sex * race * ethnicity
/| select if c_pp_ms2 .in. {1}
| select if c_age2 .in. {15-high};

Simlar block statenents for nonths 3-12

The first BLOCK statements define the universe for highest grade completed but without an
accompanying /CLASS specification. The subsequent BLOCK statements for the labor force status
cross-classify by sex, race, and ethnicity. Although defined, the CLASS variable for TENURE is not
associated with any of the BLOCK statements, and it is consequently excluded from the output
VPLX file.

3.4 LABEL

By default, the label for each variable is its name, but more informative displays can be created by
labeling key variables with labels of up to 24 characters. Exhibit 1.5 provided two example
statements

| abel c_esrl 'Jan. 1987 Labor Force Status
c_esr2 'Feb. 1987 Labor Force Status

1.3.12

c_esr3 'Mar. 1987 Labor Force Status'
c_esrd 'Apr. 1987 Labor Force Status'
c_esr5 'May 1987 Labor Force Status'
c_esr6 'Jun. 1987 Labor Force Status'
c_esr7 "Jul. 1987 Labor Force Status'
c_esr8 'Aug. 1987 Labor Force Status'
c_esr9 'Sep. 1987 Labor Force Status'
c_esr10 'Cct. 1987 Labor Force Status'
c_esrll 'Nov. 1987 Labor Force Status'
c_esrl12 'Dec. 1987 Labor Force Status';

| abel hicnpgrdl ' Conpleted ed., intvw 1
hi cnpgrd2 ' Conpl eted ed., intvw 2
hi cnpgrd3 ' Conpl eted ed., intvw 3
hi cnpgrd4 ' Conpl eted ed., intvw 4

Note that variable names and |abels alternate, with a single ending semicolon. If an apostropheis
required, then two adjacent apostrophes are treated as a single apostrophe within the label (the same
rule asfor labels of levels of class and categorical variables stated in Section 3.2).

Label statements are not executable statements, that is, they do not cause any action to occur for each
observation. Thelabd issmply stored on the outgoing VPLX file. The variables named in the label
statement must have been defined by previous statements, but their placement is otherwise arbitrary.
They may be placed in the output section aong with BLOCK statements, since they affect the
information stored on the VPLX file and are thus concerned with output. In fact, they were placed
for convenience near the corresponding CAT statement in the classification section in Exhibit 1.5.

3.5BY

TheBY feature of VPLX correspondsto asimilar feature in SAS. Generaly, it is advantageous to
usethisfeature only for large problems. For small and moderate problems, the same purposes can
usually be accomplished as effectively and with fewer complications through CLASS.

TheBY gatement classifies one or more variables as BY variables. The variables may either be redl
or class variables. In either case, the file must be in sort by the BY variables. In cases where the
replication method also has an associated sort, such asthe jackknife, the primary sort must be the BY
variables, followed by the sort required by the replication method as the primary sort.

The syntax of the statement is smple,
by vli st

where vlist is alist of one or more variables to be declared as by variables. If more than one BY
variableis used, then vlist should reflect the order of importance, asin,

1.3.13
by state county tract block ;
The BY statement should appear in the categorization section of the CREATE step. Theuse of a

variable asaBY variable is recorded on the VPLX file, and DISPLAY and other VPLX steps that
might use the file will take this into account.

/* The input data are the 12 records of i3-3.dat:
571111
681211
521321
411421
841531
821631
6 71142
7812402
621152
511252
941162
921262
*/
create in = i3-3.dat out = vplx1l.vpl
i nput roons persons weight cluster
stratumcity /format (6f2.0)
cl ass roons (4-5/6-high) ! Aclass variable simlar to
"4-5 roons' '6 or nore roons'; I roonsl in i3-2
class city (1/2) ' New York' ! city is nmade into a class variable
'Los Angel es';
by city; I BY statenent
bl ock persons / class roons ; I Note: this block statenent is

! equivalent to the default option
I when no block statenent is present

Stratified jackknife replication assumed
Si ze of bl ock 1 = 4
Total size of tally matrix = 4
**** End of CREATE specification/beginning of execution
End of primary input file after obs # 12

6 strata observed on incoming file
di spl ay ! Begi nning of DI SPLAY step

list total (persons) /class roons

1.3.14

city : New Yor k
roons : 4-5 roons
Esti mat e St andard error
per sons : TOTAL 10. 0000 7.0711
roons : 6 or nore roons
Esti mat e St andard error
per sons . TOTAL 14. 0000 8. 2462
city : Los Angel es
roons : 4-5 roons
Esti mat e St andard error
per sons . TOTAL 1. 0000 1. 0000
roons : 6 or nore roons
Esti mat e St andard error
per sons . TOTAL 23. 0000 3. 0000

Exhibit 3.4 An extract from i3-3.lis, showing a BY variable based on city. The CLASS statement for
city associates a label for each value of city. Without the CLASS statement, the numerical results
would have been the same but city would have been shown as 1.000 and 2.000 in the display. The
DISPLAY step automatically produces results by city without additional instruction. The example is
quite artificial, however, since more flexibility is available simply by leaving city is a class variable
only.

In the example in Exhibit 3.4, VPLX examined the entire file, finding 6 strata, and then created the
replicate samples reflecting all 6, even though only 3 were present in each city. In other Situations,
strata might appear in more than one BY group. In genera, VPLX builds a consistent replication
representation across the entire file. Volume Il includes further technical detail on the use of BY .

The BY feature is used during part of the VPLX processing for the monthly Current Population
Survey (CPS). One of the steps involves separate adjustments for each of 8 rotation groupsin the
survey. Since the calculations are of the same form but entirely separate for the rotation groups, it
is advantageousto usethe BY feature to restrict the size of the large arrays that must be considered
to one rotation group at atime.

1.3.15

Another use of the BY feature isto carry out Monte Carlo studies, particularly of variance estimators.
An independent program, written in Fortran or SAS, can generate multiple Monte Carlo samples.
A singleinput fileto VPLX may be built, containing perhaps thousands of replicate samples identified
by avariable that may then beused asaBY vaiable. VPLX can compute estimates from each of the
replicate samples and output them to a single file for further analysis, using VPLX, SAS, or other
analytic tools.

NOTES

1. Section 1.6 enumerates the list of excluded variable names, all of which have some syntactic role.
Inclusion of an excluded name on an input list or in other operations to define variables will generally
be detected and treated as an error.

2. Although it would be convenient to couple the /SELECT IF syntax with the full range of logical
expressions available for IF and ELSE IF, a syntactic complexity occurs in attempting to interpret “/”
as division as part of an arithmetic expression or as a delimiter in the BLOCK statement. This problem
does not occur with the .IN. { } syntax.

3. Although the SIPP example was selected to provide some flavor of larger applications, it still is rather
modest. One measure of this is the use of double precision storage, reported by VPLX at the end of
i1-3.lis as 133832 out of 1000000. Thus, there was reserve storage for problems over 7 times as large.
In fact, VPLX can consider even much larger problems by making multiple passes of the data, although
at the cost of longer calculation time. The program determines whether multiple passes are necessary;
no specific instruction is required from the user.

