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PREFACE

The ASA Fellowship presented a unigque opportunity for the author to work on
the topic "Data Analysis of Time Series." This report is an attempt to summarize
the author's work on the ASA Special Project for Time Series methods development
at the Bureau of the Census.

This report consists of four main parts. The first two deal with Seasonal
Adjustment and Forecasting quantitative series, based mainly on nonmetric fil-
ters. Analysis and Prediction by various types of examples, mainly economic
data, are presented as well as a brief description of X-11 and a comparison of
our approach to X-11. The third part deals mainly with analysis and forecasting
qualitatives series. In the final part, we deal mainly with graphical methods
in order to study relationships among a given set of empirical series.

I would 1ike to thank Louis Guttman, Ingram Olkin and Arnold Zellner for
their outstanding comments and for encouraging me before and during my fellow-
ship period. My gratitude is extended to Estella B. Dagum, Charles Tapiero,
George Tiao and Joe Kruskal for their help and suggestions. Thanks must also
go to T.W. Anderson, David Brilinger, W.P. Cleveland, W.S. Cleveland, Morris
Hamburger, Joseph Kadene, Charles Nelson, and John Tukey for fruitful discus-
sions and helpful comments.

Let me take this opportunity to comment on the special atmosphere which
allows me to work with the talented people in the Statistical Research Division
(SRD) at the Bureau. My friends and co-workers in the Division and within the ASA
Special Projects Group deserve special recognition for their continued interest
and support. Special thanks go to David Findley of SRD for his kindness, for
sharing comments and ideas, and for offering methodological help; and to Ted
Holden for his outstanding pragramming help. [ would like to thank Bill Bell,
Will Gersch, John Irvine, Genshiro Kitagawa, Sandy MacKenzie, Nash Monsour, and
Kirk Wolter. Finally, my deepest thanks and appreciation to Lillian Wilson for
her efforts to improve my English, and for typing this report. It was a real

pleasure to be helped by Mrs. Wilson during my ten months with SRO.






INTRODUCTION

This report deals with data analysis of empirical series. The main concept
in such data analysis is the concept of order among the observations. An im-
portant special case of these series are the Time Series in which the order is
determined by Time. Indeed, most of the examples included in this work are
(economic) Time Series, but not exclusively. We are concerned with relation-
ships between the values of the observations and their order, namely, the behav-
ior of observations over time.

Our point of view is, briefly, that Data Analysis requires a loss function
to be minimized (or a measure for goodness-of-fit to be maximized). The loss
function is based on definitions that are related to the research problem.
Actually, we measure the amount of deviation of empirical data from a priori
definitions.

Qur point of view is that analysis of empirical series is a special case
of the general problem of dividing the space of indices of observations into in-
tervals. For time series the division is into both equal and unequal intervals.
Equal intervals are needed for estimating fixed seasonal patterns. Unequal in-
tervals are needed for the trend, moving seasonality, etc.

Three main goals achieved in analyzing economic time series are:

(a) Decomposing into components while knowing the periods length.

(b) Seasonal adjustment of current data, and

(c) Forecasting.

The question of model identification and estimation may (or may not) be in-
volved in the above three topics. In order to do (a) and (b), the well-known
X-11 program as well as X-11-ARIMA were developed. The latter was developed es-
pecially for goal (b). The X-11 procedure, see Shiskin, Young and Musgrave
(1967) represents the culmination of a major phase of continuing research in

the area of seasonal adjustment. Today, the X-11 program is also the most widely



used for economic time-series.

Four main parts comprise this report: The first two parts deal essentially
with seasonal adjustment and forecasting quantitatives series, mostly based on
economic data. The third part deals with analysis and prediction of qualitative
time series. In the last part, interrelationships among various components of
Time Series are treated and used for graphical methods.

We will only consider discrete time series with observations y; made at
times t=1,...,N, where N, the length of the series, is the total number of ob-
servations made. In Figure 1, a typical Time Series study is exhibited. Our
goals are mainly two-fold: (a) Study the structure of a given empirical series,

and (b) Prediction for some range ahead.
Hence, for the first N data points, our goal is to reveal their structure while
Prediction is the main goal for the next k points of time, presuming that the
structure remains the same.

Figure 1: A typical Time Series Study: Structure Analysis of the first
N data point and prediction the next k points over time.
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In order to study the structure of a Quantitative Series, a Nonmetric approach
is suggested in part 1. Analysis by examples of various types of series are
given as well. The proposed method is designed to compose an empirical time
series into its main three components: trend, periodicity and irregularity.

Filters are used in two stages:
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(a) remove either fixed or moving seasonality in order to produce seasonally ad-
justed data (S.A.D);

(b) Remove irregularity from S.A.D. in order to estimate it as well as the trend.

Both seasonality and irregularity could be either purely multiplicative or pure-
1y additive fashion. Seasonality could also be a kind of a mixed model. The
filters are nonmetric since the loss function has no specific formula but a very
general shape called polytonicity (or monotonicity as a special case). The
method search for the smallest number of tones (monotone segments) possible for
trend, or in other words, minimize the number of turning points. Thus it is
called - Least Polytone Trend Analysis (LPTA).

A computer program has been developed which enables analysis of arbitrary
series, either by a prespecified length of period or by estimating the period's
length if not known in advance. Robustness of the nonmetric approach enables
analysis of very short series, series with missing values, and other series with
lTimitations that cannot be easily handled otherwise.

In Chapters 5 and 6 the LPTA method is extended to deal with complex season-
ality as well as convex (concave) series. To conclude part 1, in chapter 8 some
thegretical and empirical results for economic time-series obtained by this ap-
proach are compared with those from the X-11 program. A brief description of
X-11 and some notes are given in chapter 7.

In order to deal with prediction, two approaches are suggested in part 2,
chapters 10 and 11. In chapter 12 a way to improve X-11 is discussed. Examples
are given throughout the report; specific series are presented in Chapter 3(a)-
(e), 4(a), (b) and in chapter 9.

For Qualitative series the main two goals of revealing the structure and do-
ing forecast is presented in part 3. Various methods to compete with a multivar-
iate time series in a special way is discussed in part 4. In Figure 2, charts

of various types of series that are analyzed in this report are presented.



Figure 2: Charts of various types of series which are analyzed in this report.
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The report ends in a chapter for conclusions. A family of coefficients of mono-
tonicity and polytonicity is presented in some detail in Appendix A. A special
case of this family is used very intensively in this report. Some of the origin-
al series we used are given in appendix B. The estimation of trading days ef-
fects and their appropriate adjustment would hopefully be extended in further

research in the future.



PART 1
DECOMPOSITION OF QUANTATIVE SERIES
2. SEASONAL ADJUSTMENT OF QUANTITATIVE SERIES.

This chapter presents a nonmetric technique for periodic analysis of numer-
jcal empirical series, such as seasonal time-series. I1lustrations will be given
for the decomposition of economic time series into (polytone) trend, fixed
seasonality, and irregular components.

Existing techniques for analyzing periodic time series tackle separately
the problems of estimating the period-length (for example, by spectral tech-
niques) and of decomposing the series into trend, periodicity, and irregular
components. The decomposition is often carried out by first employing one of
the moving averages techniques (filters) to estimate the trend, and then fitting
a function (trigonometric, polynomial or any other) to estimate periodic compo-
nents. For a comprehensive survey of data analytic techniques for time-series,
see Makridakis (1976). Recent development in Seasonal Adjustment is given in
Pierce (1980). Discussions of specific methods are contained in Burman (1965),
B.L.S. (1966), Shiskin et.al. (1967), Durbin and Murphy (1975), Cleveland, et
al. (1978), Raveh (1981), Akaike (1981), and others. Fase et al. (1973) and
Kuiper (1978) made an instructive comparison of several decomposition methods.

We propose here an alternative technique which is not based on ejther mov-
ing-averages nor on regression, as are most other approaches. Data Kna]ysis
techniques usually require a figure of merit, namely criterion of fit bé maxi-
mized (or loss function to be minimized), and a set of definitions, in order to
measure the goodness-of-fit or the amount of deviations from 'ideal' prespeci-
fied series. Following the above point of view, let Y{ denote the value of a
quantitative time series at time t. One way for presenting a decomposition of

a mixed model of Y{ into its components is given in eq. (2.1) below:

(2.1) Yt = Tt . It -St + St + L t=1,...,N
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where Ty denotes the underlying trend at time t. Sy and st are the multiplica-
tive and additive seasonal components, respectively. It and it are multiplica-
tive and additive irregular components, respectively. The purely multiplicative
model is obtained by using the constraints sy = iy = 0 for all t. A purely addi-
tive model is obtained by using the constraints St = I = 1 for all t.

In trying to decompose empirical time-series, one is faced with the problem
of estimating at least some 2-:n parameters (for the simplest model) from 'just'
n gi;en numerical observations. Thus, some constraints are required in order to
reduce the arbitrariness in the estimation process.

Obviously, there are infinite ways to express a given series by eq. (2.1).
First, we 1imit oursevles to a simpler model of eq. (2.2).

(2.2) Yo = Tp o I © Sp + s t=1,...,N

=Ll Sp sy
where Z, = T; - [ is the periodicity-free series which is known in literature
as Seasonally Adjusted Data (S.A.D.). The coefficients Si, st present the
seasonality pattern. These coefficients could be constants or any systematic
function of time depending on whether the seasonality is fixed or of a moving
fashion, respectively, The trend Ty is a polytone series of order m.

Most authors estimate the trend using moving-average filters. After elim-
ination of the trend from the original data, the seasonal component is fitted by
various approaches. B.L.S. (1966) and Shiskin et.al. (1967) computed moving-
averages (within months for monthly series), while Durbin and Murphy (1975) fit-
ted the seasonal component by means of a stepwise regression method applied
to additive and multiplicative Fourier components.

In this report, definitions for the periodicity (seasonality) and trend
components will be given simultaneously for an 'ideal' series (e.g. series with-
out irregular components). For empirical series including irregular components,

we estimate in the first stage the seasonal components; in the second (and final



8

stage, we estimate the trend and the irregular components simultaneously.

SOME DEFINITIONS AND NOTATIONS

A numerical time-series is a sequence of numerical observations [Yi] over
some real interval a < t <b. Such a sequence is called periodic if the interval
(a,b) can be partitioned into sub-intervals of equal length, called periods, so
that there may be a change in the general level of the Y; between periods but no
change in the pattern of observations within periods. The term periodic pattern
will be used loosely to designate, for a given or an assumed period length, a
periodically recurring shape (if such exists) of the piecewise linear graph con-
necting successive points (t, Y¢).

Let us restrict ourselves to the discrete case where t assumes a finite
number of equally spaced values and write t=1,...,N, instead of a <t < b,

A series [Y¢] is polytone of order m if there are (m-1) turning points so
that the series [Y¢] is monotone between successive turning points, the sign of
the monotonicity on one side of a turning point being reverse of that on the
opposite side of that point. The series [|t][], t= -N, -N+1,...,-1,0,1,...,N,
for example, is a series of polytone order m=2 with 2N + 1 elements. The single
turning point is located at the (N+1)th observations.

A series [Yi] is piecewise monotone of order m if there are m segments of

indexes within which [Y¢] is monotone with the same direction (either positive
or negative). For example, the series t - [t] , t=1/N, 2/N,...,i/N,...,1,...,3
(where [t] is the greatest integer which is less or equal to the quotient) is a
piecewise monotone of order m=3 with 3-N observations. Clearly, if m=1 the
polytone series is a monotone one.

In Figure 2.1 below, two kinds of positive monotone series, a polytone ser-

ies (of order m=2 ) and a piece-wise monotone series are plotted.
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Figure 2.1: (a) and (b) are two types of monotone series; (c) is a polytone ser-
ies of order m=2. (d) is a piece-wise monotone series.

To express [Yt] iﬁ periodic terms, it will be useful to replace the obser-
vation index t by an index of the form i + pa, where p is the proposed period
length, i is the position of the observation within a period, and a is the per-
iod index in the sequence of periods, with the first indexed 0, the second 1,
etc. We denote the number of complete periods by n, so that a = 0,1,...,n-1.
Given this notation, a sequence [Y¢] (t=1,...,N) can be written as [Y1+pa]
(i=1,...,p; a=0,1,...,n-1).

The series [Zi+pa] given in eq. (2.3) is said to be linear periodic trans-
formations of [Y¢]:

(2.3) Z

= (Y s(a))/Sga) (i=1,...,p; a=0,1,...,n-1)

i+pa itpa T~ 3
where the transformation coefficients sga) and Sga) represent multiplicative
and additive periodic coefficients, respectively. When Sga) # 1 and sga) £ 0,
Equation (2.3) represents a mixed multiplicative-additive seasonality model.
Equation (2.3) can be written in a different way:

(2.4) Y - sfa) 4+ s(a)

= Zi+pa ] y

i+pa
which is similar to eq. (2.2) above and to Durbin and Murphy's model, except for
the irregular component.

For fixed seasonality, the linear transformations are periodic in the
strong sense, namely they depend on the period length p and on the observation

position i but not on the particular period a. In other words, Sga) =

546-1) and sga) = sga-1) for all a=1,...,n-1. Hence, for this case let us
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use the notation of S§ and sj, respectively. Transformations such as (3) enable
us to remove the variation in data caused by periodic effects. If the trend is
monotone and the variation is proportional to it, then a multiplicative model
might be appropriate. An additive model might be adequate when variation is in-
dependent on the trend level. For a constant level trend there is little differ-
ence between the above two models. Mixed models of course can capture much more
complicated variations in data caused by periodic events. Models of fixed but
mixed seasonality can also capture variations which look like moving seasonality
where either multiplicative or additive models are adopted.

For moving seasonality, the linear transformations are periodic in a weak
sense. In other words, they depend on the observation position i and on a speci-
fic function of (time) period a. Hence, Sga) = fga)sga']) for a=1, 2,...,n-1.
Fixed seasonality is a special case of moving seasonality when fga) =1 for
all i=1,...,p and a=0,1,...,n-1.

If [Y¢] is not a Polytone (Monotone) series, it might be possible that a
period length p and coefficients Ssa) and sga) can be found for which the
transformed series [Zy] is a polytone or nearly polytone. Then, such [Z{] can
be regarded as an underlying (Periodicity-free) polytone trend Ty or as seasonal-
1y adjusted data namely "trend and error" respectively. The p pairs of coeffici-
ents Ssa), sga) define the periodic pattern of observations i.e., the season-
al components.

In empirical time series an irreqgular component usually exists, thus, the
transformed series, namely, the seasonally adjusted data [Z{] is a "trend and
error" curve which means that it is only approximately Polytone. In a second
stage, a decomposition of [Zy] into trend and irregularity components is ob-
tained. In order to deal with empirical deviations from ideal polytonicity a
family of coefficients which designate to measure polytone association is used.

(see Raveh, 1982b). Some background on a family of Monotonicity and Polytonicity
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coefficients is given in Appendix A. Specifically, to assess the extent to which
any series, say [Y¢] 1is polytone (of order m), the formula below is used:
m Ik

z .Z. (Yi'Yj)Wij5k
(2.5) B = K=1 1>j

m Ik
I I |Y1'lewij
K=1 i>j

where the original series is partitioned into m consecutive sub-series Iy, K=1,
...smand §¢ = (-l)K'1 within Iy. The .inner summation is over all (i,j)ely,
such that i>j. The outer summation is over all m sub-series Ig, such that K=1,

-.,Mm. The weights wjj are non-negative numbers linked to each pair of observa-
tions i and j. Obviously, -1 < up <1, and |up| =1 only if the series is per-
fectly polytone, whether of positive or negative slope interchangeably.

The coefficient of Polytonicity for transformed series [Z{], t=1,...,N is
given in eq. (2.6) and denoted by uép). It is a function of the 2p coefficients
St, St as well as the original series. The lower index m indicates the order of
Polytonicity, while the upper index p indicates the period length. For the rest
of this report, unless otherwise indicated, Wjj = constant and the formula will

be simpler. For example,

m Ik (

I I Z;-25)8y
(2.6)  uwlP) = k=1 i>j ’

m Ig

D X IZi-Zjl

K=1 i>j

A series [Y¢] is said to be a fixed periodically and polytone series if
there exists a series of linear periodic transformations (2.3) 1in the strong
sense which transforms [Y¢] into a polytone series [Zt]. In practice, a perfect
transformation will not be insisted upon (depending on the irregular component).
Instead, only a "sufficiently large" value for the figure of merit Iuép)l will
be sought. In data analysis acritical value for goodness-of-fit does not exist

as in the case of principal component analysis, as well as for the goodness-of-
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fit in Multidimensional Scaling methods such as Kruskal's stress or Guttman's
coefficient of alienation. The researcher should have some feelings to the cri-
teria of fit values as well as to the data. A similar unsolved problem is how
to choose appropriate a« level, for Statistical inference purposes. We have to

keep it in mind whenever the expressions "close" or "close enough" are used.

LEAST POLYTONE TREND ANALYSIS (LPTA): WHAT IT IS, WHAT DOES IT DO?

The order of polytonicity of the unobserved trend [Y¢] should be assessed.
This is done by estimating the smallest order of polytonicity, m (m=1,2,...) of
the original data. We keep in mind the parsimony principle, namely minimum
turning points* for high fitness, and thus the procedure's name, "Least Polytone
Trend Analysis." Second, if [uyl| departs substantially from 1, say |ugyl < .95,
such departure may be assumed to originate from periodic fluctuations (the sea-
sonal components, modifying the polytonicity of the trend) or by an irregular
component, or both. In such cases we search for a series of linear periodic
transformations with a suitable period length p and coefficients Sgp), sgp)
(i=1,...,p) and function f(a) that converting the original series [Y{] into an
approximately polytone series [Z{] in an optimal manner. That is, bringing
luép)l as close to 1 (the theoretical maximum) as possible. The claoser Max
Iuép)l is to 1, the closer the series [Yt] is to being periodically and Poly-
tone. This does not imply that the deseasonalized series should have as few
turning points as possible. The criterion of fit (2.7), which is based on (2.6),
might be 'close enough' to 1 while there may be relatively many turning points,
each having small deviations from an 'ideal' basic polytone series. A minimum
number of turning points 1is required at the step of estimating the trend

component.

Both turning points and outliers are inconsistent with previous, recent observa-
tions. The difference between them is that turning points are consistent with
later observations while outliers are not.
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The maximization of |uép)‘ as a function of the 2p variables (S,...,Sp)

= §p, (sl,...,sp) = Sp in the general mixed model (or only p variables in the
simple purely multiplicative or purely additive model) for fixed seasonality,
may be achieved by known Quasi-Newton or Powell, or Zangwill algorithms, see
Zangwill (1967). These algorithms require an initial guess for the 2p unknown
variables and by a successive procedure converge to optimal values. As an ini-
tial guess, the coefficients fb =1, Sp = 0, have been used, presumably the
neutral assumption of no seasonal effects. For the usual case where [upl <1
(recall that luél)l = Iuml), the measure ﬂ%p) is defined as the improvement

in terms of Polytonicity gained by the transformations,

Max [ulP)-1u(1)]
2.7) Mép ] ax | uy Mo

1 - ufl]
Clearly, 0 < M(P) < 1. Furthermore, M{P) = 1 if and only if the series [Y,]
is perfectly (without irregularities) periodically Polytone of order m where
[Z¢] is the polytone trend and Sps Sp are periodicity multiplicative and additive
components, respectively. M&p) = 0 if and only if there is no periodic compo-
nent, namely the series is of "trend and error" type.

When Mép) is 'close enough' to 1, Z; is 'only' periodicity-free series,
i.e., S.A.D., and §p, Sp are the periodicity components. In the next stage, the
trend T, would be estimated simultaneously with the Iy . When Mép) is ‘'close’
to zero it means that no periodicity component (at least with period's length p)
exists and this component is negligible in further analysis. When the period
length of a series is not known in advance, a previous step is to estimate it.
it. This is done by selecting the smallest period length which yields a peak
value "sufficiently close" to 1 for the series M&p); p=2,3..., (see chapter
3(a). The order of polytonicity is estimated as the minimal suitable parameter
m. Assuming a polytone trend, the seasonal effects (the 2p coefficients) are

estimated simultaneously with the periodicity-free series [Zy] and finally the
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trend component (T¢) is estimated simuitaneously with the irregularity compo-
nent (I¢).

So far we have discussed the problem of estimating both the period's length
and the seasonal components for a decomposition model. The [Zi] series is a per-
jodicity-free series representing the "trend and error". In order to separate
the S.A.D. into two parts, trend and irregularities, trend Ty is estimated as the
closest polytone (monotone) series to the S.A.D. In other words, the required Tt
t=1,...,N for multiplicative irregulars are those numbers that minimize (2.8a)
subject to the constraint of polytonicity. For example, Ti<Tp<...<Ty for the
positive monotonicity case. I(T) mirrored the irregular magnitude. For purely

additive irregular component eq.(2.8b) is used.

N
(2.8a) 1T) =L 1 |z,/7, - 1IP
N t=1 usually p=1
1 N p
(2.8b) I(T) =2 ¢ |Z - T.]
N =1 t t
where
(2.9&) It = Zt/Tt
t=1,...,N

(2.9b) iy

zt ~Tg

are the multiplicative and additive irregularity components, respectively. The
initial guess to the iterative process to minimize (2.8a) or (2.8b) for the trend
is computed by ordering the S.A.D., separately in each tone of the trend compo-
nent. The sorting is in ascending or descending order depending on the tone di-
rection. Thus, the first guess of the trend component is just the S.A.D. ordered
in a polytone shape, Likewise, their sum is equal by definition. Since the ini-
tial guess is so close to the final estimation, we use it (in this rerort) 27 a
trend. In order that the trend as well as the irregular components would be
uniﬁue the N nuq?ers Iy are forced to be "around" 1 (or 0) by using thevéonstraint
1

= I I4=1 and I i,=0 for multiplicative and additive models, respectively.
N g=1 ¢ =]
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There are three main options to proceeding with the trend estimations.

These options are designated various degrees of smoothness. The three options
are:

1) Smooth the trend by symmetric moving-average of length 4 with the weights

1/4(1,2,1). The first and last observation are forecasted based on formula (7.6).

2) Minimized the sum of squares, below, for given A2 > 1

(a2T4)2

w e

(Z‘i - Ti)z + Xz.
3
(A) (

based on experience A = 103 is chosen. Recall, zj the input are the seasonally

(2.10)

i=1

W u 13

3
)

adjusted data. This minimization is a trade-off between (A) the sum of the re-
siduals and (B) the amount of distance of the trend from being local linear. As
A increase, smoother trend is obtained as well as increment in the sum of resid-
uals (A) (smooth is in terms of local linearity).

3) Do option 2 where zj are the estimated trend which are obtained in

option 1.

Briefly, the proposed approach has the following four steps:

1. Estimate the period's length p if not known in advance.

2. Estimate the order m of Polytonicity of the trend.

3. Estimate the seasonal components §p, sp
4. Estimate the trend [T¢] and the irregular component Iy

by maximizing IH%D)I.

simultaneously by minimizing I(T).
The four steps above are executed keeping in mind the parsimony principle
of Teast order of Polytonicity (m) of the trend.
Nonmetric approaches differ from metric in that they do not use a priori
metric specifications. The proposed technique is nonmetric since the loss func-
tions that are minimized are based on deviations from Polytonicity shape and not,

for example, on a sum of squares from a specified polynom as in filters of mov-
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ing averages.

Classical models for an economic time-series, which typically use decompo-
sition methods in order to produce periodicity-free (seasonally adjusted) ser-
jes, estimate the seasonal component and "remove" it from the data. As Kenny
(1975) said: "For one thing, it pre-supposed that we have some knowledge of the
underlying trend in practice, the trend must be estimated from the same data
from which we estimate the seasonal effects. Since estimating the seasonal re-
quires knowledge of the trend, and estimating the trend involves eliminating the
seasonal, there are clearly some logical problems."

The present nonmetric technique requires a minimum knowledge of the trend,
i.e., that it is Polytone. Presuming a Polytone trend, we estimate the seasonal
effects (the 2p coefficients) simultaneously, and assess the extents to which
the trend is indeed polytone. For moving seasonality the function f(a) should
be estimated as well.

The LPTA procedure could be presented by means of matrices as well. Let us
restrict the discussion to the purely multiplicative model below;

Yo = TerlpsS¢ = Zy Sy t=1,...,N

The above equation could be written in the following way:

a | | ! r

| Yq, . | | Z,. | | s{a) |

| TR 0 . | {. |

S R ST
(2:12) 1 Ypupg | R Z, | | s{a) |

| | l o I

[P R L R R T

|y |. o '*pa o P

[ | [ . | —

. | | . . |

| Ylp(n-1) | | Lep(n-1) |

. | I 0 . |

| | ; 0 o

!Yp+p(n-1)ll l| . e e . e e W .ZNlI
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or Y = 7S where

) e
| | | o |
(2.12) :1 s{a+) ; - i £.(a) i i s{a) i
I | | . | | . |
IECEN . s
P | | S R L

or §ﬂa+1) = F(a) where F is a diagonal matrix. F matrix is a Pattern Transi-
tion matrix which transforms the seasonal pattern of any period to the next one.

Periodicity in the strong sense, or fixed seasonality, means that the Pat-
tern Transition matrix F is identify maxtrix, i.e., F=I. In other words, the

same seasonal pattern remains along time. In addition, constraints 1like

(2.13a) g fi(a) = p

or
n-1
r fi(a) =1 or
a=0

(2.13b)

Zi—

where f;(a) = constants for all i=1,...,p, namely, f;j(a) is a function of a only
should hold.

Perijodicity in a weak sense means moving seasonality fashion. Thus the
fi(a) should be constants unequal to 1 or function of the period a and con-
straint 1ike (2.13) should hold in order to keep the entire set of seasonal pat-
terns on the same scale. The seasonal factors have the same pattern and only
the amplitude is changed over time.

If f;(a) are random numbers and their arithmetic mean equal 1, it seems to
me that no seasonal component exists and the series could be decomposed into

trend and irregularity only.
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3. NONMETRIC FILTERS FOR FIXED SEASONALITY

In this chapter we restrict the discussion and the analysis of various types
of series to fixed seasonal patterns. In order to clarify our approach which uses
nonmetric filters let us present some empirical series by example. In the first
example the transformation parameters S;, sj, are compared with the seasonal fac-
tors obtained by the Census X-11 and Burman's program. Some other economic

monthly series from the Bureau of the Census data basis are demonstrated as well.

Example 3.1: A Study of a 5 Year Series

Consider the series "U.S. Total Retail sales in Millions of Dollars" for the
years 1960-1964. This is a sub-series of the example analyzed by Shiskin et al.
(1967) for examplified X-11. In figure (3.1) the graph of the original series
[Y¢] and the periodicity-free series, namely S.A.D., [Z{] are given. The ori-
ginal series is given in Table A in Appendix B.

Figure 3.1: "U.S. Total Retail Sales in millions of $ in the years 1960-1964.

++s... Original series; -.-. Seasonally Adjusted Data (S.A.D.)----
trend component.

retail | 960-196¢
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Examination of the graph of [Y{] makes clear that there is an increasing
trend (positive monotonicity). Also, it is easy to see that the seasonal effect
is of 12 months period. The seasonal fluctuations are neither perfect propor-
tional nor independent to the trend level and thus indicate the possibility of
additive model in an equal case as multiplicative model. The coefficient of
monotonicity (polytonicity of order m=1) uf1) = 0.720 indicates a positive
trend. By computing maximization of lu1|(12) while using the purely multipli-
cative model we obtained Max u{12) = 0.953. The criterion for fit M{12) = 0.832
reflects a good indication that [Y¢] is adequate to a periodically Polytone time-
series of period length P=12. While using the additive model a slightly better
goodness-of-fit was obtained; Max uilZ) = 0.95 and M1(12) = 0.841. The mixed
model obtains slightly better results than the additive one, Max uilZ) = 0.956,
M{lz) = 0.842. In Table 3.1 the vectors of seasonal pattern §12, S1p are given
for the multiplicative and additive models as well as the "seasonal factors"
obtained by X-11 and Burman's methods. In Table 3.1, the arithmetic mean for
each month of the multiplicative and additive factors obtained by X-11 are given.
The values for the multiplicative model are given in percentage form for compar-

ative purposes.

Table 3.1: The (Seasonal) Periodicity components computed by the 3 methods
Multiplicative Model

Method Jan Feb Mar Apr  May Jun Jul  Aug Sep Oct Nov

Dec

Burman 89.3 84.3 98.0 99.6 104.4 103.6 99.1 100.8 96.4 102.1 102.2 120.1

89.5 84.4 97.5 99.0 103.3 103.0 99.0 100.4 97.0 102.7 103.2 120.8

90.1 86.1 97.6 100.9 102.4 103.1 98.7 100.0 96.3 102.3 101.5 120.9

Additive Model

-2030 -2922 -462 -200 648 572 -234 72 -620 514 605

Burman -2093 -2927 -420 -111 844 678 -166 159  -790 530 448

-1862 -2737 -478 -124 428 668 -225 28 -720 483 282

4063
3349
4012
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The values obtained by the three different methods for the two models seem

to be very similar to each other.
It is necessary to keep [Zt] in the same scale of original data [Y¢] by set-

ting some constraints on seasonal patterns. A natural constraint for additive
model is: .; s; = 0 that is, the arithmetic mean of s; equals zero. For multi-
plicative ;;;e1, one of the three following constraints on 5i's is suggested:
.; [S;] = p that is, their arithmetic mean 1; or ;?[Si]‘l = p that is, the ar-
i=1 - i=1

jthmetic mean of the reciprocals equals 1; or m Sj =1; that is, their geometric
mean equals 1. It seems to me that the 1a£¥;L one is the most appropriate.

Nevertheless classical methods have not adopted it.

Anyhow, X-11 program uses the second constraints for each 12 months of a
calendar year. Adopting the constraints for every 12 consecutive months means
that the model should have a fixed seasonal pattern. Next step is to estimate
the two other components, trend and irregularity. In Figure (3.1) the monotone
trend is exhibited by a solid line. Coefficient of convexity of the trend u, =
= 0.33 indicating a Tittle bit of convexity trend. More details about convexity
measures are given in chapter 6. In Figure (3.2) the irregular component (in
percentages) is presented for the multiplicative model. The constraint 1/N g I4=1
(or 100%) is used for N=60 observations. In other words, the arithmetic megzlof
the irregularities is 100% for multiplicative model.

Figure (3.2): Irregular component (in percentages). The arithmetic mean of the
irregularities equal 1 or 100%.
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Some Census Series

In order to demonstrate the trend components for longer series, fourteen em-
pirical examples were analyzed by multiplicative model. The various values for
the coefficients are given in the Figures and their seasonal patterns are pre-
sented in Table (2.5)-(2.23). In these figures the original series denoted by
...... and the trend component by a solid Vine __.

The first twelve series are taken from the collection of thirteen series
prepared at the Bureau of the Census for the ASA-Census-NBER conference on ap-

plied time series analysis of economic data. This conference was held October

13-15, 1981, at Washington D.C.

JNEMMAN

Table (2.5): Fixed Seasonal Patterns for the various series (Multiplicative Model).

| Jan Feb Mar Apr  May Jun Jul Aug Sep Oct Nov Dec

|
LSAGEMEN k 91.6 92.5 94.2 99.2 102.5 107.2 107.1 105.6 104.4 103.6 98.4 93.7
BLSVEW16-19 1 90.7 89.9 90.0 83.0 85.8 150.2 127.4 105.7 103.6 95.3 95.5 82.3
BLSALLFOOD | 96.7 95.9 96.0 95.8 96.7 99.9 101.9 106.6 106.9 103.5 101.0 99.0
Demandeposit|102.7 98.1 98.3 100.5 97.4 99.2 100.0 98.9 99.7 100.4 101.1 103.5
CurrenclMlAI 99.6 99.0 99.6 99.4 99.6 99.9 100.4 100.3 99.8 100.1 100.5 101.6
| 80.7 76.2 93.4 96.2 96.6 92.3 89.5 97.9 100.0 105.6 108.8 162.7
WIGROCERY = 99.6 99.2 101.9 100.1 99.3 100.1 98.3 97.9 99.8 10l1.8 101.4 100.7
RautoDLRS % 88.8 92.3 108.8 106.7 111.0 110.1 103.4 103.4 93.1 103.2 93.6 85.5
%lO0.0 104.7 111.4 109.1 108.3 110.0 92.2 91.9 93.7 92.1 93.8 92.7
INS36U0 E 90.8 99.3 90.9 89.0 90.9 102.2 106.7 114.5 115.8 108.4 95.6 95.6
INS62VS = 82.5 88.0 99.9 101.8 104.0 114.5 103.2 104.4 103.8 105.5 101.4 90.9
CON-HSS1F = 75.1 84.4 112.7 112.6 113.2 111.2 106.9 109.5 101.8 107.8 89.4 75.5
E 70.8 73.4 87.5 90.8 99.3 96.1 92.4 99.4 91.6 97.5 108.3 192.8

|

96.5 98,2 95,3 87.0 80.4 145.5 130.8 97.4 88.7 89.1 95.7

95.2
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Figure (2.2): (BLSAGEMN) Agricultural employment, men, 20 years and older; 1-67
to 10-80. 166 observations, u = -~ 0.64, ug = 0.37, Mx ug = 0.69.

Turning points Ee: 18,55,85,121.
Goodnessof-fit = b§ = 0.50. Source: Bureau of Labor Statistics

bleagems n 167 - 10/80}

Figure (2.3): (BLSVEW16~19) Unemployment, women, 16-19, CPS data; 1-67 to 10-80.

166 observations, u = 0.70, up = 0.58, Mix up = 0.87, Turning
point is 108.

Goodness-of-fit = h%z = 0.70. Source: Bureau of Labor Statistics

Lowswi®- 18187 - 10/80)
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Figure (2.4): (BLSALL FOOD) A1l employees in food industries; 1-67 to 12-79. 156

observations. u

Goodness~of-fit = = 0.84.

3,,5?2

.38, Mx uj3

= 0.90, Turning points are: 33 and 96.
Source:; Bureau of of Labor Statistics.

oll on ployess in feod irdumirise 1907-1979
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Figure (2.5): (Demandeposit) Demand Deposit
11-80. 155 observations. yj =
(= linear trend.
Goodness-~of-fit = 5{12) = 0.89.

component of M-1A Mney Supply; 1-68 to
0.99, Max yy = 0.999, u, =0.04

Source: Federal Reserve Board.

dunand  capesit (08 - 11/8G8
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Figure (2.6): (Currency) Currency component of M-1A Mney Supply. 1-68 to 11-80.
155 observations. u; = 0.99, Mx uy = 1.00, yy = 0,81 (% convex
trend).

Goodness~of-fit Nf’d = 1.0. Sgyce: Federal Reserve Board

cwrency sic (08 - 11/00)
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Figure (2.7): (RSWomen) Retail Sales of Women“s apparel. 1-67 to 7-80. 163 observations.
up = 0.85, ‘)"099’“11\ 0.42.
Goodness~of f1t 12 = 0.95. Source: Bureau of the Census, Business Division.

wouwn ¢ etail rewomen (87 - 7/00%
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Figure (2.8): (WIGROCERY) Wholesale inventories Grocery Stores, (Mil.of $). 1-67 to 7-80.
163 observations. u3 = 0.996, Mix u3 = 0.998, Turning points are: 96 and
102.
Goodness~of-fit = %12) = 0.56. Source: Bureau of the Census, Business Division.

vigreos ry 182 - 7/830)

b

A

] 1 A L i A A A A L
i 13 3 k4 1 [} 73 L 4 108 121 (> 13 -4

Figure (2.3): Irregular component of WIGROCERY series. (Miltiplicative model.)

wigrooe ry (87 - 7/801
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Figure {2.10): WIGROCERY series where the maximum Tocal linearity option was adopted
while smoothing trend.

wigrece ry (87 - 7/801

Figure (2.11): Irregular component of WIGROCERY series (local linear trend).
(multiplicative model)

wigroce ry (87 - 7/80}
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Figure {2.12): (Rautodirs) Retail Sales of Automotive Dealers. 1-67 to 7-80. 163 ob-
servations. up = 0.86, Mix pp=0.93, Turning point is: 84 (piecewise

monotone of ord {2§).
Goodness~of-fit = =0.48. Source: Bureau of the Census, Business Division,

rovtadirs (67 - 7/680)

Figure (2.17): Irregular component (multiplicative) of Rautodlirs series.
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Figure (2.14): (INSL11VS) Industry Value of Shipments, Blast Furnaces and Steel Mlls
(M1.0f $) 1-58 to 10-80. 274 observations. uy = 0.83, Mixfup| = 0.86.
The turning poi f js 202 (piece-wise monotone trend).
Goodness~of-fit =N§ 2)20.19. Source: Bureau of the Census, Industry Division

inellve 158 - 7/800

YR DUIES SRS SR SN WO SEN SN T SUNNY NISUNE SHNNE SUN S [ WY S SH SR TR |

I 13 25 ¥ 48 81 73 5 97 139 121 1D 145 17 163 191 193 205 217 229 241 253 %63

Figure (2.15): (INS36UQ) Industry-unfilled orders, Radio a ? }V. (M1.0of §) 1-58 to
10-80. 274 obs?{ﬁ ions. u, = 0.68, Mx '“g 2)|=0.74.

Goodness of fit = =0.18. Source: Bureau of the Census, Industry Division

|

nelbua 153 - 13,50 :
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Figure (2.16): {INS62VS) Industry-Value of Shipments, Beverig?s (M1.0f $). 1-58 to
10-80. 274 observations. uy = 0.986, Mx |u i |= 0.998, Wy = 0.91.
Goodness~of-fit = M12) = 0.83. Source: Bureau of Census, Industry Division.

whe Sive (53 - 1O/D0)
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1 1 b
P13 235 ¥ 43 81 73 ¥ 97 163 121 13T 145 17 169 180 193 205 217 12T 241 &SI XS

Figure (2.17): (CON-HSS4F) Housing Starts, South, Single family Dwellings. Actual No.
units. 1-64 to 10-79. 192 observations. Local linear smoothness. ug =
0.63, Mx |ugl= g 81. Turning points are: 72, 103, 133 and 174.
Goodness~of-fit = hgl 0.48. Source: Bureau of the Census, Construction
Division.

¢ on heelf 184 - 79)

r )

|
N, Wl

' n A n A I L

A A A,
1 13 = b 4 L] L1} n o ¥ 1% 121 13 168 ¥ s 8




30
Figure (2.18): Irregular Component of CON~HSS1F series {multiplicative model)

s on heslf (84 ~ 79)
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Figure (2.19): (RVSTOR) Retail Sales in Variety Stores. 1-67 to 9-~73. 153 observations.
ug = 0.53. Max up = 0.98. The turning is on 111 observation (piece-
wise monotone }E?nd).
= 0.96.

Goodness~of-fit = h@ Local Tinear trend. Source: Bureau of Census
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Figure (2:20): (RVSTOR) Series of Figure (2.19) local monotone trend
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Figure (2.21): Irregularities of RVSTOR of figure (2.19)
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Figure (2.22):

Irregularities of RVSTOR of figure (2.20)
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Figure (2.23):

Goodness~of fit = 0.47.

164 observations. uye = 0.4, Mx u

0.68. Additive or
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(UNE MMAN) Mnthly Unemployed megl ?ed 16 to 19. 1-65 to 8-73.

Mving Seasonality models seem be

ter, see chapter 4.
Source: Bureau of Labor Statistics

monthly wwspoyed nates 16-19! 55-'73)
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3(a) Estimating the Period's length--Nonmetric Periodogram Analysis.

The definition of period length was given earlier as the minimal P, P=2,
...,N/2 for which the definition of periodicity-polytone time series exists.
For the case p=1 the periodicity is degenerate. p=2 describes the minimum per-
jod's length, i.e., the fluctuations are between every two consecutive observa-
tions. On the other hand, it is usually difficult to distinguish periodicity
when there are less than two periods. It is clear that if [Y¢] has period's
length p, then kp k=1,...,[gj is also a period's length.

The graph of the criterion of goodness-of-fit M&p) versus p is used to
estimate the period's length. Mép) varies between O and 1. Intermediate val-
ues indicate intermediate measures of deviation from the ideal definition of per-
fect periodicity (with period length p). It is obvious that there always exists
M&k.P)ZMép) k=1,2,...,[gj, since the range of the function is wider. In
order to estimate the period's length, it is necessary to estimate p that brings
Mép) close enough to 1 and p is a prime number or the minimal multiplier of a
prime number which is the minimal between them. M&p) is computed for p=2,...,
[g] (by definition M{1)=0). In other words, M(P) is a peak value 'suffici-
ently close’ to 1.

In order to exemplify the method of period's length estimation, the values
M§p) p=1,...,24 (m=1), for the series of example 1 (using the multiplicative
model) are presented in Figure (3.5). The values are given in Table (2.6).

Figure (3.5): Graph of M{p) versus p (p=1,...,24).
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The peak value M§12) = 0.832 is very sharp and indicates p=12 as the
minimal p which brings Msp) closer to 1. Of course, the value M524) = 0.910
is greater, but it is not worthwhile in that case to double the number of para-
meters. Incidentally, the peak value at p=6 is not sufficiently close to 1 and
hence one cannot estimate it as a period's length.

The main goal of the periodogram technique and the Spectrum Analysis is to
estimate periodicity (simple or complex) in a given series; see Anderson (1971)
or Kendall (1973). The estimated period's length (or its reciprocal, the fre-
quency) is achieved at the peak value by Tooking at the graph of the periodogram
(or Spectrum or Autocorrelations) for the plotted values versus the period's
length. The main idea is to seek maximum adaptation between the original series
[Y;] and a trigonometric function (usually cos ZTEE) with a known period's
length. For instance, one may plot the expression:

N
z

s2(x) = [%t ,

N
Yi cos ZEE]Z + Lg z Y; sin ZIEJZ
A N t=1 A

as a function of the period's length. Its peak value is obtained while [Yi] has
periods of length A. In the proposed LPTA method, the linear transformations
(2.3) are more generalized than trigonometric function for discréte data.

Table (2.6): Values of Mip) for p=1,...,14 that were obtained by
the LPTA method for the series of example 1.

| P m{p) p m{p) |
| |
|1 0.000 13 0.108 |
| 2 0.032 14 0.097 |
| 3 0.043 15 0.123 |
| 4 0.104 16 0.121 |
| 5 0.014 17 0.258 |
| 6 0.337 18 0.411 |
| 7 0.032 19 0.304 |
| 8 0.110 20 0.269 |
| 9 0.057 21 0.206 |
110 0.109 22 0.279 |
111 0.084 23 0.341 |
112 0.832 24 0.910 |
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3(b) Choosing the Appropriate Type of Seasonality

In this section usage of the figure of merit M&p) is demonstrated as a
criterion for choosing the appropriate type of seasonality model from among the
three following: Multiplicative, Additive, or Mixed.

Let us denote the coefficient of goodness-of-fit Mép) which has been de-
fined in (2.7) by M&e)mx' Thus it measures the amount of adaptation of a
given series to an ideal periodically and polytone series which its seasonality
shape is mixed one. The Tength of the period p and the order of polytonicity m
are fixed through the stages of estimating the seasonality patterns. Likewise,
let us denote by Mé?% and M&Q% the coefficients of goodness-of-fit for purely
additive and purely multiplicative models, respectively. The multiplicative and

additive models use simpler linear periodic transformations of [Y¢] of the form:

Zitpa = Yi+pa/5$p) and
Zivpa = Viepa - s{P) (i=1,...,p; a=0,...,n-1),

respectively. Obviously, each of these simpler models involve only p parame-
ters. When the period-length p of a series is not known in advance then, our
first step is to estimate it. This is done by computing Mé?%x for a vari-
ous periodi¢ lengths p=2,3,... and plotting these coefficients of goodness-of-

fit versus p, as presented below in figure (3.bl)

Figure (3.bl): The graph M&?%x versus p=2,3,...,30 for a typical periodic
series that has period-length p=12.
u(P) A

m,mx

1.0 7
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The length of period-p is estimated as the smallest p which generates a

peak value of M&E%x sufficiently close to 1.0. Thus a typical graph for

a periodic series that has period-length p=12 is presented in figure (3.bl).

Seasonal adustment methods usually used a specific period-length that can not

be changed like the X-11, Shiskin et.al. (1967) that used p=12. For the three
seasonality models, above, the following inequalities hold:

0k o)
%p) L %meil
»mm

One of the three types of models may be appropriate if the respective coef-

0<

ficient is close enough to 1. If M&?&x is as low as zero or nearly zero
no such model is appropriate and the series might be decomposed into trend and
error only.

In the case that N&E)m is greatek (Tower) than M&fg the purely multiplica-
tive model is better (worse) than the purely additive one.

In the case that N&E%x is only slightly greater than Mgf% (or Méfg )
we choose the simpler model multiplicative or additive (depending on the coeffi-
cients) since they use only half the number of parameters for the model of sea-
sonality. In the case that M&?&x is "much greater" than Mgem)m (or qgfg)
the mixed model is chosen as the appropriate model. There is no strict rule for
computing the amount of difference that M&?&x has to be greater than N%Em)
for being chosen as the suitable model as well as the impossibility of estimating

the exact number of components in principal component analysis.

Some Examples

In this section we use the procedure for choosing the appropriate seasonal-
ity models for some known empirical series used in literature in other connec~

tions.
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Example 3(bl): The Chatfield-Prothero Case-Study

About ten years ago Chatfield and Prothero (1973) (C-P), investigate a case-
study of "Sales of a Company X." The authors modeled this series of 77 observa-
tions and forecast 6 units ahead by using Box and Jenkins (BJ) approach. The en-
suing discussion by 15 known researchers had amplified and illuminated various
aspects of time series modeling, estimation and forecasting. One of the main im-
pacts of the fruitful discussion concerned the choice of an appropriate data
transformation, see Box and Jenkins (1973) and Wilson (1973). The actual use of
the B-J procedure in the time series forecasting is demonstrated in detail.

One primary reason for the publication of the case-study was the unsatisfac-
tory results obtained by C-P. As a response, Box and Jenkins have provided a
critical appraisal of the C-P paper as well as an alternative and better fore-
casting. An assumption that the seasonal component is of a multiplicative type
was not a controversial one by any of the discussants.

Here, we pointed out that a mixed (multiplicative-additive) seasonality
might be more appropriate.

The Chatfield-Prothero case-study is a monthly series of “"sales of Company
X" from January 1965 till May 1971. This series has 77 observations. In figure
3.b2, a chart of the series is presented and it indicates that the trend is
monotone (positive slope) and the fluctuations (seasonality) are in part system-
atic and increased with time. The original series is given in Table B in Appen-
dix B.

Chatfield and Prothero used the model: ARMA(1,0)(0,1);» on the transformed
series Wy = VVy2logigY¥t, where Yy t=1,...,77 is the original series. Box and
Jenkins on the other hand used the same model for power transformation:

= .25
Wy = V91577,
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Figure (3.b2): The Chatfield-Prothero case study of monthly series. Jan.1965 May 1971.
...... original series, -.-.-. Seasonally Adjusted Data (S.A.D.)------
trend component. The latter two components were obtained by mixed mode.
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By using our proposed method with p=12 as the period's length and m=1 as the

order of polytonicity, the computed coefficients for goodness-of-fit are given

Table (3.bl): The three types of coefficients of goodness-of-fit Mép) for the ex-
amples. For these monthly series the period's length assumed to be p=12.

|
Type of Model |

5 | .61 | .73 | .79

| [
]
} Example : Additive-M{!8) murtipticative-M{12)  Mixed-u{12) |
| | | | I
1 71 1 .85 | .90 1
| | | | |
{ 2 { .78 { .93 ; .95 |
|
|3 { .88 { .88 l .89 |
| | |
{ 4 | .87 | .88 I .89 :
] l
12 12
I R BT T |
] l
| |
] |
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in Table (3.bl). Thus, in this case it seems that the appropriate model is the
mixed one, despite the finding that the multiplicative model is substantially
better than the additive one as assumed by Chatfield and Prothero and the other

discussants.

Example 3b.2: International Airline Passengers in Box & Jenkins (1970, p.304)

The first 102 observations of this series were analyzed. The series is
plotted in figure 3.b3 below. The trend is clearly monotone and p=12 is assumed.
By looking at Table 3b.1 it is straightforward that the multiplicative model has
much greater coefficient of goodness-of-fit than the additive model. The coef-
ficient of the mixed model is slightly greater than that of the multiplicative
model and thus it is not so clear which model is more appropriate using the
pr--iciple of parsimony. We personally prefer the multiplicative model for this
well-known series. Box-Jenkins assumed multiplicative model as well.

Figure (3.b3): First 102 observations from the series "Monthly International Airline
Passengers."

-
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Example (3.b3): Passenger Miles (Millions Flown on Domestic Services by U.K.

This series was analyzed by Anderson (1976) assuming an additive model.

The series includes 119 observations from July 1962 until 1972. The order of
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polytonicity of the trend is m= 1, i.e., monotonicity. Coefficient of monoton-
icity of the original series u1 = 0.337 and the coefficients of goodness-of-fit
for the three seasonality models are given in table 3bl. Thus it seems that both
the multiplicative and additive models are equally good and "better" than the
mixed model that has only very slightly greater goodness-of-fit but uses double

the number of parameters.

Exampie (3b.4): U.S. Total Retail Sales in Millions of Dollars {Shiskin et al.

1967)

This series of 144 observations was analyzed by Shiskin et al. in their ex-
ample demonstrating the X-11 method, using the multiplicative version. The co-
efficient of monotonicity for the original series uj = 0.868 indicate an in-
creasing monotone of the trend. From the coefficients presented in Table (3b.1)
it seems that the multiplicative and mixed models have nearly the same goodness-

of-fit and so the preferred model is the more simple, i.e., the multiplicative.

Example (3b.5): Unemployed Men in the U.S.A. in the years 1949-58,

This series of 120 observations was anlyzed by B.L.S. (1966) using the mul-
tiplicative model. A graph of this series is presented in figure 4. We estima-
ted the order of polytonicity as m=5 and the turning points are 11, 53, 68 and 100
observations. The coefficient of monotonicity uj is about zero but ug = 0.71.
The coefficients of goodness-of-fit for the three models are given in Table
(3.b.1). These coefficients indicate that the mixed model is supposed to be an
adequate model. A multiplicative model is much better than an additive model.
Conclusions: For purposes of demonstration five known examples were analyzed
and the appropriate models were chosen. The results are in part similar to pre-
vious disuccsions and in part not. The same models were estimated for short sub-
series of only 35 observations. From the presented examples it seems that some-
times it 1is difficult to choose the appropriate model in spite of using the

principle of parsimony.
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Figure (3.b.4). Unemployed men in U.S.A. in the Years 1949-1958.
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(3.C) Very Short Series and Missing Data

Classical methods for seasonal adjustment cannot handle series with missing
data without substituting estimated values. Likewise they cannot decompose very
short series. Thus, X-11, Burman and B.L.S. methods need, for example, at least
36, 60, 96 observations, respectively. The present technique overcomes these
two limitations.

For the case of missing observations, zero weights wij = 0 are given for
either i or j, the missed observations in eq. (2.5). These weights are combined
according to formula (3.c.l).

mo Iy
z

L (25-2:)8," W4
(3-C.1) “r%p) - k=1 i>j 17457°K iJ
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0 either i or j are missing data
where wyj = .
1 otherwise
To illustrate an analysis of a short series with missing data, consider the
last two years (periods) of example (3.1), "U.S. Total Retail Sales in Mil. of
Dollars" in the years 1963-1964. Chart of the sub-series is exhibited in Figure
(3.C.1). Assume that some observations, say, those at time points 2, 6, 7, 8,
9, 10, 11 are missing (or censored for some reason). In table (3.c.l) the ser-
jes is presented. The values in the parenthesis are the missing observations.
By using the multiplicative version of the proposed technique, the following
values were obtained: u{l) = (0.639, and Milz) = 1.0. In Table (3.C.2) the
seasonal pattern (in percentages) is given for the three series: (i) the sub-
series in the years 1963-1964; (ii) the sub-series with seven missing values;
(ii1) the series in the years 1960-1964.

Table (3.C.1): The subseries of the two years 1963-1964 of example 1: The values
in parentheses are the missing observations.

Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec
18261 (17087) 19653 20518 21228 (20737) (20540) (21018) (19267) (21528) (21494) 25104
19154 18758 20502 21186 22508 22242 22145 21778 21313 22605 21720 27719

Table (3.c.2): Periodicity components for the 3 series

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(i) 90.7 88.2 96.8 100.4 104.6 102.2 101.2 100.1 94.6 102.2 100.2 118.8
(i) 92.8 89.7 98.0 100.9 104.1 101.8 101.2 99.0 95.0 99.8 95.8 121.7
(iii) 90.1 86.1 97.6 100.9 102.4 103.1 98.7 100.0 96.3 102.3 101.5 120.9

The estimated seasonal patterns for these three series are very similar to

each other. This example indicates that the nonmetric technique has the property
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of stability. An adjustment procedure is said to be stable if the estimated
seasonal pattern is not seriously disturbed by updating a series when new data
become available. One can generalize this property (which is not defined math-
ematically) applying it to a series and its sub-series.

Figure (3.C.1): U.S. Retail Sales 1963-1964. ----: Original data, -.-.-.

S.A.D. _trend component (multiplicative model). The circles are
for missing data.
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3.(D): Series With Discontinuous Trend

An invisible assumption of decomposition methods is of continuousity of the
trend component. For example, it is usually possible to smooth series by moving
averages filters since the trend is continuous. The recent papers by Kitagawa
(1981), Akaike and Isiguro (1981) and Schlicht (1981), which do not use moving-
averages, are based on the assumption that the trend is approximately locally
linear, namely, that it is continuous with a specific shape.

In this section we examplify that the LPTA does not need such assumptions
on the trend and the process of estimating the seasonal pattern is not distorted

as, for instance in X-11 .
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As an empirical example, let us deal with a 'nice' series: "Consumption of
Electricity for Public Lighting in the U.S. in the Years 1951-1958." The ori-
ginal series is given in Appendix B, table €, and its graph in Figure 3.D.1.
The S.A.D. and trend estimation is presented in Figure 3.0.1 as well.

Figure 3.D.1. Consumption of Electricity for Public Lighting in the U.S.

in the Years 1951-1958." ...... Original Data, -.-.-. S.A.D.,
trend component,

This series has monotone trend (or, to be more specific, this monotone trend is
approximately linear), a fixed seasonal pattern, and reasonable irregularity.
Let us do the following two transformations: we multiply (a) the last half and
(b) the first half of the series by constants k>1 (or add constants k>3). This

transforms series and their original are presented in Figure 3.D.2, below.
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Figure 3.D.2: A 'nice' series that has monotone trend, a fixed seasonal pattern
and reasonable irregularity. In (a) and (b) the last half and the
first half of the series have been multiplied by k>1, respectively.

(Q) (b

Seasonality and irregularity have not been changed while using multiplica-
tive {additive) decomposition model with multiplication (additive) transforma-
tions. Only the shape of the trend has been changed and thus the same estima-
tions are exptected to the seasonal patterns of the original as well as the two
transforms series. For the above series, the constant k=10 have been used for
both (a) and (b) transformations. Seasonal factors extimated by X-11 for the
series and its two transformations as well. The arithmetic mean of the seasonal
factors, separately, for each month is given in Table 3.0.1. The fixed seasonal
patterns obtained by our LPTA methods for the same series are given in Table

3.0.1 as well,
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Table (3.01): The estimated seasonal (in percentage form) pattern for both the.

original and the transformed series as obtained by X-11 and the LPA
method. (multiplicative model).

METHOD SERIES JAN. FEB. MAR., APR. MAY JUN. JUL. AUG. SEP. OCT. NOV.

DEC.

|
[Original 119.7 106.5 103.5 93.3 87.0 81.3 83.4 89.8 96.3 106.3 112.8 119.6
X-11 |
| Transformation
| (a) 124.6 113.6 111.8 99.6 91.1 82.0 79.2 82.1 88.4 99.2 109.2 119.2
| Transformation
(b) 119.4 103.1 95.7 84.6 79.8 77.5 83.7 93.9 102.9 115.6 119.8 124.2
Original 119.8 106.8 103.7 93.3 86.6 81.3 83.5 90.1 96.6 105.9 112.6 119.8
LPA

(a) 119.5 107.6 103.3 93.2 87.4 81.9 83.9 90.4 96.5 105.4 112.1 119.0

Transformation

(b) 119.8 106.6 103.5 92.6 85.9 80.3 82.8 89.6 96.3 106.8 112.8 119.4

|
|
l
|
| Transformation
|
I
I
l
l

Very similar seasonal patterns were estimated by the LPTA method for the series
before and after the multiplication (by K=10) transformations. Very cifferent
estimation was obtained by X-11 to the original series and the two transforms
series which have the same seasonal pattern and irregular component by defini-
tion. The above results mirrored the fact that the LPTA method is robust against
an abrupt change in the trend here. On the other hand, X-11 does not have this
desirable property. An abrupt change in the trend yields 'strange' estimation
results for the other components. X-11 adjusts or removes very differently the
very same seasonal patterns when they are combined with different shapes of
trends! The amount of distortion in the estimated seasonality (as well as

irregularities) is a monotone function of the abrupt change as well.

3.(E) Series with Zero-Value Observations

Here analysis of a series that has zero-value observations is presented.
For a series with zero-value observations (not missing data) and a trend other

than constant, the additive model is inappropriate by definition. This inappro-

|
l
|
I
|
|
|
|
l
l
I
I
|
I
|
l
l
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priateness is caused by the fact that the deviations of the zero-value observa-
tions are proportional to the level of the trend. In other words, multiplica-
tive model (or mixed one) might be adequate, but not the additive model.

The LPTA technique estimates the periodicity component by using a multipli-
cative model which the X-11, for example, cannot do. The example is "Export of
citrus in millions of $" from Israel in the years 1961-1968. This series has
only eight active months in a year. In June, July and August, there is no mar-
keting; in September the marketing is almost zero; hence these four months are
omitted. In Table 3.e.l the original series is given. In Figure 3.e.l the graph
is plotted.

Table (3.E.1l): Exports of citrus fruits in millions of $ from Israel in the
years 1961-1968 (Original data)

YEAR Jan Feb Mar Apr May Oct Nov Dec
1961 10.7 10.3 10.5 6.0 0.0 4 1.0 1.7
1961 10.6 11.1 12.7 7.2 0.8 5 2.4 4.0
1963 15.1 17.3 18.5 12.5 3.4 2 2.4 5.3
1964 13.1 11.8 11.8 7.8 1.3 5 1.4 5.0
1965 13.9 15.6 14,7 14.1 2.9 .8 2.8 6.0
1966 16.2 19.2 16.9 11.7 1.9 2.1 3.3 2.6
1967 17.8 19.9 19.5 14.4 5.2 5 2.4 5.7
1968 18.9 23.7 16.4 9.3 8.1 1.6 4.3 5.7

Figure 3.e.1: The Plotted Series of Table 3.e.l
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X-11 program yields inaccurate estimation of series with zero-value observa-
tions. This finding will be demonstrated for the "export of citrus" example,
later on in Chapter 7. The nonmetric approach decomposes this series using an
additive and a multiplicative model. The period's length p=8. The estimated

seasonality patterns for both models are given in Table 3.e.2.

Table (3.E.2): The seasonality pattern components of the two models.

(The values for the multiplivative model are in percentages
and for the additive model are absolute.)

Model uﬁl)Max uﬁs) M{s) [Jan Feb Mar  Apr May ... Oct Nov  Dec [Mean
| l

I |
Multiplicative 0.18 0.71 0.65/179.6 194.6 183.6 127.6 28.7 ... 7.5 26.3 51.3/100.0

| |
Additive 0.18 0.71 0.65] 6.95 8.52 7.23 2.31 -5.97 ...-8.09 =-6.47 -4.49| 0.0
I l

Both models have the same goodness-of-fit based on our figure of merit M{s).



49
4. FILTERS FOR MOVING SEASONALITY

Seasonality, as a concept, means that systematic fluctuations around an
unobservable "trend and error" exist. It is natural to think about fixed sea-
sonality where the fluctuations are proportional or not according to the model,
either multiplicative or additive, respectively. In order to extend the idea
for moving seasonality, it seems that it should be done in a systematic way;
otherwise there is no distinction between moving seasonality and white noise.

Two ways to extend fixed seasonality are given in this chapter.
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(a) Fixed Seasonality That Changed Over Time

The idea of moving seasonality could be interpreted as a fixed seasonality
that change over time. In other words, various segments of time have different
fixed seasorality. As an example, let us analyze the series UNEMMAN which is
presented in Figure (2.23). This series is the monthly Unemployed Males (in
U.S.) of Age 16 to 19 in the years between January 1965 and August 1979. This
series of 164 observations was analyzed by Hillmer and Tiao (1982), and in
chapter 2. In Figure (2.23)the original data and the trend component (additive
model) are presented. The time axis was divided into the following 5 segments:
1-60, 48-84, 72-108, 97-132 and 121-164. The directions of the trend are -, +,
-, + and -, respectively. For k=5 order of Polytonicity ug = 0.4 and the
goodness-of-fit and seasonal patterns for 3 models: Additive, Multiplicative and
Mixed, are given in Table (4.a.1). Based on goodness-of-fit, it seems that for
fixed seasonality the more appropriate model is the additive one. Let us use
the LPTA Procedure for every 5 whole years (60 observations) in a moving way.
Thus, we do seasonal adjustment for the sub-series 1965-1969, 1966-1970, 1967-
1971 and so on, up to 1974-1978.

Table: (4.a.1): Goodness-of-fit = Mglz) and seasonal Patterns for 3 models.

Mode]lMglz) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
|

l
I
Mu]t.‘0.42 : 9.5 98.2 95.3 87.0 80.4 145.5 130.8 97.4 88.7 89.1 95.7 95.2
Add. 10.54 { .
Mixed10.57 }
L

32.3 -22.2 -36.2 -82.0 -122.3 305.7 193.8 -17.9 -69.5 -61.0 -30.0 -26.1

197.3 114.7 103.2 96.4 88.6 102.8 104.3 100.0 95.0 88.2 104.5 94.9
|-61.8 -88.2 -49.1 -57.8 -54.0 259.0 151.5 -15.2 -39.8 6.6 -50.8 -0.3

The turning points are those that estimated for the whole series. Since
the most interesting part of analyzing is the last part, we analyzed, in addi-

tion, the last 4, 3 and 2 whole years, respectively. As a matter of fact, we
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had 168 observations, namely, from 1.65 to 12.78, and we analyzed these sub-
series accordingly. In Table (4.a.2) the estimated seasonal patterns for the
various sub-series are given (multiplicative model used). One can verify that
over time the seasonal pattern changed gradually and usually the goodness-of-fit
for each segment increased.

Table (4.a.2): The estimated seasonal patterns and goodness-of-fit obtained by
multiplicative model for various ranges of years.

goodness
Years | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec of-fit
I I
{ I

65-69 | 87.46 89.30 88.73 78.95 70.77 169.64 144.40 96.67 87.29 92.71 96.87 97.23 [0.27
66-70 | 90.18 91.30 91.25 80.52 70.71 166.93 143.70 94.29 87.01 91.88 96.32 95.91 }0.30
67-71 | 94.29 94.45 91.85 80.27 71.93 160.71 141.98 94.96 87.09 91.65 95.05 95.76 :0.64
68-72 | 99.92 96.20 94.27 82.01 75.94 145.39 134.85 97.30 89.42 90.80 96.14 97.77 }0.50
60-73 | 99.80 98.13 94.13 85.77 79.60 141.12 128.21 97.42 89.37 89.54 93,00 98.91 }0.64
70-74 |101.70 100.84 93.61 86.47 79.48 139.88 127.45 96.92 89.55 89.13 97.96 97.81 ;0.58

I

I

|

|

|

I

I

|

|

I

I ]

71-75 [102.16 100.38 95.45 87.55 80.22 138.01 127.32 96.56 89.40 87.52 96.88 98.55 |0.63

I
I
I
|1
|
I
I
I
I
I
I
I
I

72-76 1102.33 101.61 95.66 90.78 81.51 137.02 123.76 97.01 90.24 88.01 96.63 95.45 {0.70
73-77 |102.48 102.38 96.98 91.73 84.59 137.48 124.81 99.07 88.53 85.89 93.89 92.17 :0.58
74-78 | 99.99 101.21 97.72 90.63 83.73 135.32 121.60 98.47 90.89 89.77 95.48 94,18 {0.72
75-78 [101.15 101.25 97.38 90.13 82.94 133.13 121.02 98.16 90.88 90.91 97.60 95.45 {0.73
76-78 | 99.01 103.20 98.55 87.08 81.12 120.04 120.00 97.35 91.93 92.98 100.94 97.81 {0.74
77-78 | 98.37 99.82 96.98 84.82 78.50 129.64 123.18 96.52 93.69 93,94 102.47 102.07 =0.60

The entire series

I 1)
65-78 | 96.5 98.2 95.3 87.0 80.4 145.5 130.8 97.4 88.7 89.1 95.7 95.2 |0.47
I |
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(b) Change of the Amplitude

Moving seasonality could be interpreted as a change of the amplitude of the
fixed seasonal pattern over time. As an example, let us deal with the Chatfield-
Prothero case-study exemplified in chapter 3.b. The monotonicity of the origin-
al series is uy = 0.68 and the M{12) = 0.85 (multiplicative model). The final

seasonal factors for fixed seasonality and moving seasonality are given in Table

(4.b.1) below:

Final Fixed Seasonal Factors
sum to (1200.00)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
140.8 94.7 71.9 65.0 54,5 49.7 45.3 84.6 122.3 167.6 173.6 129.9

Final Moving Seasonal Coefficients

144.0 9.9 73.5 66.6 55.7 50.9 46.3 86.6 125.1 171.5 177.6 132.9
127.6 85.8 65.1 59.0 49.4 45,1 41.0 76.7 110.8 151.9 157.3 117.7
142.,5 95.8 72.7 65.9 55,1 50.3 45.8 85.7 123.8 169.6 175.6 131.5
147.4 99.1 75.2 68.1 57.0 52.1 47.4 88.6 128.0 175.4 181.7 136.0
151.5101.8 77.3 70.0 58.6 53.5 48.7 91.0 131.5 180.2 186.7 139.7
142.8 96,0 72.9 66.0 55.2 50.5 45.9 85.9 124.1 170.0 176.0 131.7
131.5 88.4 67.1 60.7 50.9 46.4 42.3 79.0 114.2 156.4 162.0 121.3

The goodness-of-fit for the moving-seasonality (multiplicative) model is M{lz) =
0.89, a slightly less than the mixed (fixed) model. The multipliers for the
seven periods, respectively, are: 1.02, 0.91, 1.01, 1.05, 1.08, 1.01, 0.93.

Their arithmetic mean is about 1.00



53

5. COMPLEX SEASONALITY

The numerical nonmetric approach (LPTA) to data analysis of (single) peri-
odic series is extended here for series that have complex seasonality. Complex
seasonality means that several periodicity components of different periods in-
teract simultaneously. Thus, the main feature is to simultaneously make adjust-
ments for the different periods.

We use the notations and definition of chapter 3 as much as possible. A
generalized formula of (2.1) for multi-seasonal components model either multi-

plicative or additive is

Yo = Ty " Iy " Sgp " Sg2 "77 Sgr * Sl Sttt T Sty

R '
(541) Tt ‘ It ‘ T—I-str + 2 StV
r=1 v=1

R v
Zt ° T_rStr + Z StV ’ t=1,...,N
r=1 v=l

In (5.1) R multiplicative and V additive seasonality components are involved.
For the sake of simplicity, let R=V for the remainder of this article, and thus

our basic model becomes
R R
(5'2) Yt = Z.t ‘ TTStr + z Str. t=1,'-',N .
r=1 r=1

Let us call the model expressed by (5.2): A complex periodicity (seasonality)
model of order R.

As an example, let us think about daily transportation volume over years.
This complex periodicity series of order R=2 has two main periods: The weekly
period of length 7 (days) and monthly period of length 12 (months). Estimating

first the weekly seasonality and then the monthly seasonality yields different
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final seasonal adjusted series than estimating first the monthly seasonality and
then the weekly. Both ways are not attractive. The more accurate way is to ad-
just both seasonal patterns simultaneously, which is the aim of this chapter.

Definitions and Notations

In the complex periodicity model of order R, R different components of per-
iodicity (each one has different period's length) are involved. Thus the t-th
observation Y¢ is within the R different periods. For instance, the 8th obser-
vation in the daily volume transportation example is simultaneously located
first within the weekly period--first day in the week (in the second period,

according to weeks order), and first within the yearly period--first month in

the year.
To express {Y{} simultaneously in R periodic terms, it will be useful
R
to replace the observation index t by a complex index of the form A (i, +peay).
r=1

R is the complex periodicity order of the model, P, is the period's length in
the r-th period (p1<po< ... <py), iy is the location of the observation within
the r-th period (of length p,.), a, is the period index in the sequence of peri-
ods, with the first indexed 0, the second 1, etc. Thus the observation t is
presented in R ways simultaneously:
t =ip +prap  dp =l,.00,pps aF = 1,000, [g}]

for r=1,2,...,R.

[t means that the 4th observation is located in the i, observations within

period number a, that is length is p,. and it holds simultaneously for each of

the R (r=1,...,R) components., It is symbolized as previously said:
R
t=n (ip + ppa.)
r=1

It is easy to see that when R=1 (simple seasonality model) t=i+pa.

Given this notation, a series {Y¢} t=1,,..,N can be written as
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N
{Ya Y, 1=1,...,pr,rr=1,...,[5}], r=1,...,R
nl(ir = pprap)
r:

By a sequence of R linear periodic transformations of {Z} with pq,po,

..+,PR as the period's length we shall mean a series {Zy} whose members are

of the form
R R
IR = (g - 1 siprhymsier)
n (ir+prar) 0 ir*prae  r=l r=1
(5.3) r=1 r=1

ip = 1,000,Pps 3 = 1,...,[%}], r=1,...,R: (py < p2 < ... < pR) where the trans-
formation coefficients Ssgl),...,SQBR) and sggl)...,s&BR) represent multipli-
cative and additive periodic coefficients, respectively, When Sga) #1, r=l,
...,R and sgﬁr) £ 0, r=1,...,R then equation (5.3) represents a pure additive

or a pure multiplicative model, respectively. Equivalently, (5.3) can be writ-

ten as
R R
(5.4) Y A TT s{er) + 7 sler)
nl(1r+prar) nl(ir+pr6r) r=1 r=1
r= r=

which is similar to formula (2.4)

If {Y¢} is not a polytone (monotone) series, it might be possible that
R periods of Tength pj,...,pp and coefficients Sggr), sggr) can be found
for which the transformed series {Z;} can be regarded as an underlying (per-
jodicity-free) polytone trend of {Yt} known as S.A.D, and the 2°p1pp...Pg of
coefficients S&Er), sggr) define the periodic pattern of observations, i.e.,
the complex periodicity components. To assess the extent to which any series,
say {Yt} is polytone (or order m), we shall use the

formula (5.5).
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m Ig

) 2 (Yi'YJ)sk
(5.5) up = k=1l i>j

m Iy

I1 |Y1'YJ!

k=1 i>j

where §, = (-l)k'l within Iy, k=1,...,m. T  is the k subseries (among m). The
inner summation 1is over all (i,j) € Iy, such that i>j. The outer summation is
over all m subseries I.k, such that k=1,...,m. Obviously, -1<u<l, and |up| =1
only if the series is perfectly polytone.

The coefficient of polytonicity for the transformed series {Z},

t=1,...,N, will be designated by uéﬁ) in (5.6) where, as noted earlier,

R
t = n (ip + prae). The lower index m indicates the order of polytonicity,
r=1
while the upper index P = (pl,pg,...,pR) indicates the period length,
NS
Z:-1; s
\ K
(5.6) wlPle k=1 55 7 Y
m Ik
1 1Zi-254l
k=1 i>]

The Procedure

The procedure for achieving seasonally (complex) adjusted data from the
original series 1is very similar to that described earlier in chapter 2 and only
a sketch is given here.

The main idea is to search for a sequence of R linear periodic transforma-
tions of {Y¢} with P = (p1,p2,...,pR) as the period's length and coefficients
ngl),...,sgﬁR) and sgfl) ,...,sggR) (i, = 1,...,pg) converting the original
series {Y¢} into an approximately polytone series Z; in an optimal manner,
That is, bring |ué£)l as close to 1 as possible. The closer Male%E)] is to
1, the closer 1is the series {Y{} to being complex periodically polytone.

The maximization of Iuég)l as a function of .ne 2p1p2 ... Ppg variables

(s(P1) .. sV = SPU, (P, (s{oR),..sPR)) = (PR
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(s{pl),..., séfl)) = §£pl),...,(s§pR),...,séER)) = EﬁpR) in the general
mixed model (or only pips ... pgr variables in the simple pure multiplicative or
pure additive model), may be reached by optimization algorithms such as that of
Zangwill (1967). For an initial approximation for these coefficients we use the
and s{Pr) = 0 for,

model with no complex seasonal effects, e.g. the §§pr)

=1
For the multiplicative model, the constraints s(pr) = 0 are set up,

..,DR. =r

while for the additive model, the constraints §§pr) = 1 are set up.

For the wusual case where Ium[ < 1 a measure M%E) of goodness-of-fit

is defined:

MaxwlP)] - .
(5.7)  mP) = T
1 - [um|

Clearly, 0 < M%E) < 1. Further M%B) = 1 if and only if the series {Y.}
is perfectly complex periodically polytone of order m. That means that model
(5.2) is perfectly adequate with Iy = 1 for all t=1,...,N (an ideal series with-
out irregularities. ﬂ%g) = 0 if and only if there are no periodic components
and the model Yy = T * Iy (t=1,...,N) is adequate.

The described procedure requires knowledge in advance of the R period's
length: p1,p2 ... pr. Thus, wherever these values are not known in advance, the
first step is to estimate them. This is done by selecting as the optimal peri-
od's length the vector P = (p1 ... pp) with smallest coordinates (p1<pp...<pR)
which generates a M&g)-th peak with the smallest P values sufficiently close
to 1.

An Example (artificial)
In Figure (5.1) the graph of original series Y{ t=1,...,60 is given. The

actual series is in appendix B, Table D.
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Figure (5.1): Chart of original series Y¢, t=1,...,60 denoted by ....55.A.D. =
denoted by -.-.- and trend component by .

« wplan ssemerality (periede Larguhid MO 71...

1'

-

As described earlier, the procedure looks for the optimal coefficients that con-
verts the series Yt as close as possible to a polytone series Z; with the mini-
mal order of polytonicity m. By looking at this example it is easy to see that
the order of polytonicity of the trend is m=1, namely monotone trend, and
u] = 0.46. The second step is to estimate the desired period's length P =
(py...pg) by using the multiplicative model: Thus, gﬁpr) =0 r=1,...,R. For
order R=1 of complexity of the periodicity the value Mipl) for pp = 1,...,14

were computed and their graph vs. pj is given in Figure (5.2)
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Figure (5.2): Graph of M{pl) for p; = 1,...,14.
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The sharp peaks at pj=5,10 indicate a periodicity of length p=5, but
Max H{S) = 0.726 and Mis) = 0.489 are not close enough to 1 (not adequate
to model (5.2)), multiplicative type). It might be that a more complex
periodicity model would be more fit to the data. Thus a second period's length
pp is to be estimated. Now Mig) is computed and graphed in Figure (5.3) where

P = (p1,p2) = (5,p2) for pp = 1,2,...,14,
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Figure (5.3): Graph of Mﬁs’pZ) versus po = 1,2,...,14,
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The graph of Figure (5.3) idndicates a sharp peak at Pp = 6,12. Max u{5’12)

= 0.95 and M{%:+12) < 0,91 indicated quite high goodness-of-fit. The estimated

complex period's length are thus: P1 =5 and pp = 12. The computed complex per-

iodicity patterns are in Table (5.1)

Table (5.1): The two multiplicative components of complex periodicity of order

R=2 for the lengths 5 and 12, respectively:

93.2 89.9 95.4 94,6 130.7
89.8 124.4 134.4 102.1 112.4 89.1 80.5 90.9 93.8 95.4 96.7 91.6
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Discussion
The complex seasonally adjusted procedure discussed here generalized the
LPTA approach presented in chapter 2. The classical methods could not adjust
for complex seasonality simultaneously, a property that the proposed procedure
has. Besides this desired property the same advantages over classical methods
given in Raveh (1981) or later in chapter 8 still exist. Some of these advan-
tages are: Idempotency, possible choosing type of model, any lengths of the

periods p1,p2,...,PR, and adjust series with missing observations.



62
6. PERFECTLY MONOTONE SERIES

In the previous chapters we did not deal with series that are perfectly
monotone, namely, their uj=1 even if seasonal as well as irregular components
are hidden. In this chapter we point out two alternative ways to treat such
series. In section (a) usages of series of differences will be discussed to
treat series that have convex (concave) trend component. In (B) the idea of
rotating the time axis is suggested.

(a) Convex (Concave) Series

Up ti11 now, the shape of the trend has been estimated through monotone
concepts. The very same concepts could be related to the series of differences
(of the original series) of order D. Let the difference between two consecutive
observations Y, ;,Y, be Aél) = Yy - Yg_1- Hence, the difference of order
d=0 is the original observation a0) = Yio

A series of differences of order 1 is Aél) t=2,...,N. A series of dif-
ferences of order d is Aéd) t=d+l,...,N where Aéd) = Aéd'l) - Aéd'l).
Later on we will consider only series of differences of order d=1 and call them,
in short, series of differences.

A series Y; t=1,...,,N is convex (concave) if and only if Aél) is posi-
tive (negative) monotone. If Aél) is constant then Y, is a linear series.
In all the definitions and notations that have been used in earlier chapters
Aél) could replace ¥y and convex (concave) should replace the concept mono-
tone. Hence, convexity and concavity of order mcan replace polytonicity of the
same order, and so on.

The concept convex relates to a specific form of a monotone shape. In or-
der to assess the amount of convexjty in an empirical series let us define coef-

ficient of convexity in (6.1), below.
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T (85 - 43)
(6.1) M1,1 = 1>J

L lA - AJT

i>j

- 1
where a; = A$ ) .

0< uy,1< 1. Thus, if w3 =y 1 = 1.0 the original series is convex has pos-
itive monotone shape. When uj =1 and uy 1 = -1 the monotone series has a con-
cave shape. wu3 =1 and uj 1 = 0 pointed out that the series is approximately
a linear one.

As an example, in Figure (6.1) an artificial series is presented. This
series has a convex (and monotone) trend and multiplicative seasonality factor.
For example, series currency component of M-1A money supply presented in Figure

(2.6) has nearly convex trend measured by up = 0.84.

Figure (6.1): An artificial series that has convex trend.
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(b) Rotating Time Axis

It is very rare in empirical economic series, yet it may very well be that
the trends dominate the other components and the original series is perfectly
monotone while seasonality and irregularity still exist. An example is pre-

sented in Figure (6.2), below.

Figure (6.2):

A
t’
e
af] :
b| = 'to,'\ (5] t

For example, the series Yy = a + bt + sint = b(t + sint) + (1-b)sin t. The
series is purely additive model of linear trend and seasonal components only.
For b>1 the series 1is perfectly monotone. By reduction of artificial linear
‘ trend, t'= a'+ b't (where a - a'>0 and 1 > b-b'>0) from the original series, Y¢
is obtained

Yt =a+bt -a'+b't+sint =(a-a')+(b-b')t +sint
and Y{ is not perfect monotone any more for appropriate choice of b', so that

b'<b and (b-b') is much smaller than 1 and positive.
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7. X-11: SHORT DESCRIPTION AND SOME NOTES

Auerbach and Rutner (1978) presented a case of the U.S. Consumer Price In-
dex (CPI) in which the X-11 Variant program of the Census “seasonally adjusted"
out of existence a nonseasonal cycle and apparently mistook this nonseasonal
cycle for a seasonal cycle. Similarly, the above property of X-11 is not a quirk
peculiar only to the U.S. CPI, but of the procedure itself. To support their
conclusion, Auerbach and Rutner demonstrated (an artificial series) a distortion
in seasonal adjustment procedure by X=-11 where the resulting series contains
a seasonal!

The goal of this note is to support Auerbach and Rutner findings and to shed
1ight on some other properties and assumptions of the Census X-11 program. The
properties mentioned here are mainly from the application point of view. In
Pierce (1980, p.125) we found that, "The Census Bureau's X-11 seasonal adustment
procedure (Shiskin, Young and Musgrave 1967) represented the culmination of a
major phase of continuing research in the area of seasonal adjustment." Today,
the X-11 program is widely used on economic time-series. Thousands of series
are adjusted by it each year and most of them are decomposed by the multiplica-
tive version. Many basic and important properties of X-11 have already been dis-
cussed in the literature, see Pierce (1980) and Auerbach and Rutner and their re-
ferences and Zellner (1978) and Zellner (1982). Studies of the X-11 filters, in
the abstract have been done by Wallis (1974, 1981) and Young (1968).

In the next section, a list of some seven properties are given. In the
second section, a formula which is based on Tinear shapes of a series is sug-
gested for prediction purposes. It has been clarified that the built-in-formula
used by X-11 for predicting the seasonal factors one year ahead is a special case
of the formula we derived. In addition to Auerbach and Rutner (1978) some case

studies are demonstrated here as well as abstract properties.
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order to give a common basis for discussion of the X-1l, let me cite

Plewes (1978, p. 178) on his quick review of the main steps in the program, using

as an example the standard multiplicative option. The program: ...

1.

10.

11.

12.
13.

Computes the ratios between the original series and a centered 12 term
moving average.

. Estimates seasonal factors by applying a weighted 5-term moving average

to the SI ratios.

Adjusts to sum 12.

. Estimates the irregular component by dividing the factors into the SI

ratios.

Identifies and removes "extreme" irregulars.

. Obtains preliminary seasonal factors by applying a weighted 5-term mov-

ing average to the SI ratios with extremes replaced.

. Adjusts to sum 12.

Obtains preliminary seasonally adjusted series by dividing these values
into the original observations.

Obtains estimates of the trend-cycle by applying a 13-term Henderson
moving average to the preliminary adjusted series.

Estimates new SI ratios, dividing the trend-cycle into the original ob-
servations.

Estimates seasonal factors by applying a weighted 7-term moving average
to the SI ratios.

Adjusts to sum 12.

Divides seasonal factors into the original series to obtain a seasonal
adjusted series.

The X-11 is an iterative procedure. It repeats some of these steps more than

once, and in the process, obtains a smoother result. The method gains a good

deal of flexibility from the foresighted inclusion of various options which serve

to enable the user to more closely approximate the generating mechanisms of the

series to be adjusted. Among these that should be singled out for mention are

options

which:
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1. Provide for either multiplicative of additive adjustment.

2. Allow selective (or wholesale) prior adjustments to the input data
series.

3. Provide for trading day regressions, to test for the influence of chang-
ing days-of-the-week, which are most important in trade series.

4, Enable establishment of various sigma limits for identifying extreme
irregular fluctuations.

5. Allow selection of various lengths of terms for the moving averages.”

A List of Properties and Assumptions.

1. Non-Idempotency

A procedure has the desirable property of idempotency when applying it to
the seasonally adjusted data (S.A.D.), the estimated seasonal factors are all
equal to 100% or O for multiplicative and additive models, respectively, Fase
et al. (1973) have showed that X-11 as well as other classical methods based
on moving average filters that were in use at that time, do not have this prop-
erty. In contrast, other methods like regression, BAYSEA, see Akaike (1981)
or LPTA see Raveh (1981), are idempotent procedures. Non-idempotency means that
overestimation or underestimation of the seasonal pattern may very well occur.
This is one reason as well as the Slutzky-Yule effect, that significant autocor-
relations at seasonal lags (e.g., lag 12) are sometimes revealed. The findings
of Auerbach and Rutner (1978) of existence of seasonality in the seasonally ad-
Justed result of X-1l1 are in part due to the non-Idempotency property of X-11.
It might be worthwhile to study the amount of non-idempotency of various proce-
dures. This can be done by applying procedure on S.A.D. and measuring the
amount of discrepancy, namely, the amount of deviations of the seasonal factors

from 100% or O for the appropriate model.

2. Non-Robustness Against an Abrupt Change in the Trend

No moving average method can be expected to produce sensible answers when
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abrupt change occurs in the trend. An assumption of continuous trend underlies
the X-11 program which used moving-average filters. Thus, an abrupt change in
the trend yields ‘strange' estimation results for the other components. As an
example, let us deal with a 'nice' series that has monotone trend (to be more
specific, this monotone trend is approximately linear), a fixed seasonal pattern
and resaonable irregularity. Let us do the following experiment: Multiply the
last half of the series by a constant k>1 (or add a constant k>0). This series
and the original one are presented in Figure (7.1), below.

Figure 1: A 'nice' series that has monotone trend, a fixed seasonal pattern and
reasonable irregularity.--original series,-.-The last half of the

series multiplied by K>1.

' A
Y, ";'\_

° t
Applying the Multiplicative (Additive) model of X-11 yields different estimation
results for the seasonal and the irregular components than is obtained for the
original series. This means that although seasonality and irregularities have
not been changed and only the shape of the trend has been changed, different
estimations are obtained! In other words, X-11 adjusts or removes differently
the very same seasonal patterns when they are combined with different shapes of
trends! The amount of distortion in the estimated seasonality (as well as ir-
regularities) is a monotone function of the abrupt change and/or discontinuity
of the trend and the location of the abrupt change as well. An empirical ex-
ample was given in Raveh (1978). This series is the consumption of electricity
in U.S.A. in the years 1951-1958. The original series is given in table A.1 and

its graph in Figure A.1. The S.A.D. and trend estimation is presented in Figure
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A.l as well. The last half of the original series was multiplied by K=10. Season-
al factors estimated by X-11 for both series and the arithmetic mean of the sea-
sonal factors, separately, for each month is given in Table (7.1). The LPA meth-
od, see Raveh (1981) which is based on nonmetric filters, was applied to these
two series. Their fixed seasonal patterns are given in Table (7.1) as well.
Table (7.1): The estimated seasonal (in percentage form) patterns for both the
— original and the transformed series as obtained by X-11 and the

LPA method. (multiplicative model).

METHOD SERIES JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC.

l

jOriginal 119.7 106.5 103.5 93.3 87.0 81.3 83.4 89.8 96.3 106.3 112.8 119.6
X-11 |

| Transform 124.6 113.6 111.8 99.6 91.1 82.0 79.2 82.1 88.4 99.2 109.2 119.2

|

l

|Original 119.8 106.8 103.7 93.3 86.6 81.3 83.5 90.1 96.6 105.9 112.6 119.8
LPA |

| Transform 119.5 107.6 103.3 93.2 87.4 81.9 83.9 90.4 96.5 105.4 112.1 119.0

l

The seasonal patterns estimated by the LPA method for the series before and after
the multiplication by K=10 are very similar. In contrast, the seasonal patterns
estimated by X-11 to these two series are very dissimilar although the series

have the same seasonal pattern and irregular component by definition.

3. Variant under shifts,

An underlying but not plausible assumption of X-11 is the constraint that
seasonal factors for a calendar year add up to 12 (or 1200%) when applying the
multiplicative model. The motivation for these constraints is that the annual
total for calendar year for the original and the seasonally adjusted data series
would be as close as possible. Thus, different shifts of the series backward or
forward yield different estimation results for the main components: trend, sea-
sonal and irregular. For example, let a given series cover m whole years from

January through December. Then, shift the series six months ahead, or in other
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words, January is called July, February is called August, etc. Now the series
includes (m-1) whole years plus 2 half years. Let us apply X-11 to the shifted
series as well as to the original one. It yields different results, namely the
original seasonal factors for Januarys are not the same as those for Julys of
the shifted series.

The traditional multiplicative model is given in (7.1):
(7.1) Yt = Tt * St * It t=1,...,N
where Tt’ St It are the trend, seasonal and irregular of the tth observation,
respectively. Y¢ denotes the observation at time t. To keep the S.A.D. in the
scale of original series, Yt, for a series that covers only whole years, the
following constraints are set by X-11:
1 1
(7.2) z [S'H'k]- = 12
K=0
that is, the arithmetic mean of the reciprocals equals 1, where the index i is
only for Januarys, e.g. i=1, 13, 25,.... . These constraints are adjusted
for incomplete years. Other constraints that might be used are:
11
(7.3) I Sie =12
K=0
that is, their arithmetic mean equals 1; or much more natural constraints are:
1
(7.4) m S1+K =1
K=0
that is, their geometric mean equals 1. The natural constraint (7.5) which means
that every 12 consecutive seasonal values would add up to the same constant, say
12, implies an assumption of fixed seasonal. This is not the case in X-11.
11 1
(7.5) z [Si+K]‘ =12 i=1,...,N-12+1
K=0
[t seems that any constraint other than (7.5) is somewhat arbitrary and relates

to the vague concept of moving-seasonality which seems a plausible assumption,
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but is not yet defined clearly in literature. Satisfying the constraints approx-
imately only makes sense if they can be placed in the context of a model.
Schlicht (1981), Akaike (1981) and Kitagawa (1981) proposed decomposition meth-
ods using additive models so that constraints like (7.6) would be satisfied
approximately. Those methods tradeoff between the smoothness of the trend and
the varying seasonal patterns with satisfying constraints like (7.6).

11
(7.6) £ sk =0 i=1,...,N-12+1
k=0

4, Inaccurate estimation of series with zero-value observations.

The multiplicative model of X-11 cannot be used for data which includes
zero or negative value observations. For this case the only available option is
the additive model. However, applying the additive version of X-11 yields dif-
ferent seasonal factors for the same zero-value observations within the same
calendar year! For a series with zero-value observations (not missing data) ob-
servations, and a trend other than constant, the additive model is inappropriate
by definition. This inappropriateness is caused by the fact that the deviations
of the zero-value observations are proportional to the level of the trend, and
multiplicative (or mixed) model might be adequate. .

The series "Export of citrus in mil. of $" from Israel in the years 1961-68
would be an example. This series has only eight active months each year. In
June, July, and August there is no marketing; in September the marketing is
almost zero; hence these four months are omitted.

Table (3.E.1) and Figure (3.E.1) present the original data and the graph of
this series, respectively. The seasonal factors for each month in each year are

given in Table (7.2).
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Table (7.2): Seasonal Factors Obtained by the Additive Version of X-11

Jan., | Feb. |Mar. [Apr. | May |[Jun. | Jul.| Aug.|Sep. |Oct. [Nov. |Dec.

Year| |
1961 } 7.58 10.00 8.77 5.14 -2.97 -4,32 -4.81 -4.99 -5.07 -4.69 -3.15 -].6]}
1962 1 7.65 10.14 8.71 5.26 -2.92 -4.35 -4.89 -5.09 -5.19 -4.79 -3.27 -].56;
1963 = 7.76 10.50 8.70 5.54 -2.88 -4.50 -5.10 -5.30 -5.43 -4.93 -3.45 -].48:
1964 % 7.99 11.10 8.70 6.04 -2.81 -4.84 -5.45 -5.60 5.74 -5.12 -3.62 -1.36{
1965 } 8.37 11.80 8.73 6.49 -2.73 -5.18 -5.83 -5.95 -6.09 -5.27 -3.77 -1.31;
1966 E 8.80 12.43 8.81 6.93 -2.65 -5.56 -6.19 -6.25 -6.38 -5.39 -3.81 -].32:
1967 % 9.13 12.84 8.95 7.17 -2.60 -5.80 -6.41 -6.44 -6.57 -5.41 -3.97 —].42;
1968 % 9.27 13.09 9.07 7.35 -2.59 -5.98 -6.54 -5.63 -6.64 -5,40 -3.72 -1.47}
Arithmetic| 8.29 11.46 8.77 6.21 -2.74 -5.03 -5.62 -5.74 -5.86 -5.09 -3.54 -].41{

Mean

l

These results are incorrect because all four months have no marketing activity.
Within the months of June, July, August, and September there is a gradual de-
crease of the seasonal values caused by the monotone trend of the series.

Series with particular observations that always have zero values should be
modeled differently from other series. The nonmetric approach, LPA in Raveh
(1981) can decompose any series that has periods of length p:2<P<N/4 by choosing
the appropriate model: additive, multiplicative or mixed. Thus, series which are
not monthly, quarterly or weekly, e.g., their length of periods is different
from the usual 12, 4 or 7, respectively may be decomposed by this procedure.
For this example, period's length of eight P=8 and multiplicative model is

required.

5. Uver sensitivity to outliers.

The sensitivity to outliers of a procedure in estimating the seasonal pat-
tern can be studied from an infinite number of aspects and ways. For more de-

tails see Hillmer, Bell and Tiao (1982). The number and amount of the outliers
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as well as their location can be varied. Here, only one aspect is discussed,
that of one outlier Tocated in the middie of an intermediate size of a 'nice'
series. Let us deal with a 'nice' series, such as that given in Table A (in
Appendix) and plotted in Figure (3.1) and multiply one of its observations, say
July, by (or add to) a constant k>1 (or k>0). By using the multiplicative (addi-
tive) model on such a series a 'good' procedure is expected to yield slightly
higher seasonal values for July's and lower values for the rest of the 11 months
in order to agree with the constraints given in (7.2), (7.3) or (7.4). If this
is not the case the procedure is defined to be over sensitive to outliers.

As an example the series "U.S. Retail Sales in Millions of Dollars" in the
years 1960-1964 has been studied. This is a sub-series of the example given in
Shiskin et.al. (1967) and chapter 3, earlier. This sub-series of N=60 observa-
tions has nearly fixed seasonality and the monotone trend is nearly linear. The
observation in July 1962 was multiplied by K=2.0. As a result, the seasonal val-
ues for June, July, August and September were increased, which indicates the un-
desirable property of over sensitivity to outlier. In Table (7.3) the arithme-
tic mean of seasonal factors that were computed by X-11 (multiplicative version)
are given for the original series and the series with the outlier in July 1962.
Table 3: Arithmetic Mean of Seasonal Factors (Presented in Percent) for the
T Series "U.S. Retail Sales in Mil. §, in the Years 1960-64" and the

Series with July 1962 as an Qutlier,

SERIES Jan. Feb. Mar. Apr., May | Jun. Jul. Aug. Sep.| Oct. Nov. Dec.

l
T [ I
Original| 89.5 84,4 97.5 99.0 103.3{103.0 99.0 100.4 97.0/102.7 103.2 120.8]
| I | I
With one| l I l
Outlier | 87.1 82.9 95.3 97.6 101.6/104.6 112.0 102.3 97.4]100.6 99.9 118.3|
| | | |

Two alternative methods suggested by Burman (196%) and Raveh (1981) do not have
this drawback of over-sensitivity to outliers, at least for the aspect discussed

here. The SABL technique suggested by Cleveland, Dunn and Terpenning (1978) is
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also insensitive to outliers. The reason is that the smoothers in SABL are
based on moving medians as well as moving median-regressions, moving robust-

regressions and weighted moving averages.

6. Distinction Between Fixed and Moving Seasonality

Since X-11 has no precise definitions for the various components, there is
no distinction between the case of fixed and moving seasonality. For N=36 obser-
vations, X-11 automatically produces estimates for fixed seasonality. For other
cases, moving seasonality is assumed. There is no clear criterion to decide whe-
ther the seasonality is fixed or moving. The F-test is invalid and not usually

used.

7. Choosing the Appropriate Type of Models

The lack of definitions and clear critera does not enable the user of X-11
to choose the appropriate model of seasonality: Additive or Multiplicative,
Thus, in order to do so, the user needs to use some other techniques such as
Durbin & Kenny (1978) or Raveh (198la). For the case where Mixed (Additive-
Multiplicative) model is appropriate, the user is advised to use either Durbin
and Murply (1975), or Raveh (1981). In Raveh (1981) the appropriate type of

model is chosen based on goodness-of-fit measure and parsimony principle.

8. Absence of Constraints on the Irregular Component

[t is desirable that the arithmetic mean of the irregular components should
be 1 and 0 for the multiplicative and additive models, respectively. X-11 does

not have such above constraints.

Forecasting Seasonal Factors 1 Unit Ahead

Let Si j denote the estimated seasonal factor for the jth month (j=Jan,...,

A

Dec.) in the ith year. In order to forecast the 1 year ahead factors Sn+1’j

based on the previous n year, X-11 apply eq.(7.7) below.
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A
(7.7) Sn+1,j = Sn,j + 1/2[Sq,j - Sn-1,j] =
= 1.5 Sp 5 - 0.5 Sy,

(3=1,...,12)

We w111‘show, in chapter 12, that the formula (7.7) is a special case of our Per-
sistent Structure Principle for prediction with assumption of linear trend.
It is interesting to verify that the classical version of X-11 uses formula
(7.7) in order to estimate seasonal factors one year ahead where a=1.5 is chosen
as a compromise and not as a function of all the previous seasonal factors.
Hence, formula (7.7) is a special case of formula (10.10) with a=1.5. Equation
(10.10) is the formula used for prediction purposes when the identified model
is an ARIMA(1,1,0) as in eq.(7.8), below:
(7.8) (1 - eB)ASt = ag
B is the backshift operator such that BSy = S¢_; and ay is a white noise process.
The parameter 8 in (7.8) is equivalent to (a-1) in eq.(10.10). In other words,
in order to predict seasonal factors one unit ahead, X-11 uses an ARIMA(1,1,0)
model with 8 = 0.5 (or a=1.5) as a constant and not as an optimal parameter
estimation process. Recently, we found that many economic series from the
Bureau of the Census data base have an optimal coefficient very close to 1.5.
The optimality is in terms of the above Persistent Structure Principle. The
formula (10) might be too dependent on the last two observations. Other condi-
tions for Tlinearity could be used in order to overcome this dependence. Thus,
conditions for every four values as in (7.9) could be used instead of (10.6).

Sk = ST Sy - Sy

(7.9) for all k>1 and wv

k-1 u-v
The product-moment coefficient of correlation (Pearson's p) could be used as a

figure of merit as well.
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Conclusion
In addition to Auerbach and Rutner (1978) conclusions, we point out here a
list of eight properties and assumptions of X-11. These properties are sometimes
drawbacks of the Census X-11 program, and users (usually agencies) should be
aware of them. Properties 2 and 3 are, as a matter of fact, invisible assump-
tions of X-11. Some of these properties, like 1,2,3 and 5 are due to the mov-
ing-average filters. As Kendall (1973, p.38) pointed out, there is no optimal
way to choose the weights as well as the number of elements for the moving-
average filters. This makes unclear the trade-off between over and under
smoothness of a given empirical series. It was shown that in order to predict
Seasonal Factors one unit ahead, X-11 uses a built-in formula based on ARIMA
(1,1,0) model with a constant (not function of the data) parameter. It seems
that there is not a best seasonal adjustment method which is always the best for
any sort of data. The user should be aware of the drawbacks as well as the ad-
vantages of the various methods and use the appropriate one according to the

data.
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8. SOME COMPARISONS BETWEEN LPTA AND X-11

In this chapter a list of some 15 issues are discussed briefly in order to
compare the suggested LPTA method with X-11 and Burman's method which is in use
in the Bank of England. The discussion as well as some assumptions are summar-
jzed in a concise way in Table (8.1). some of the issues were presented in more
detail in Chapter 7.

1. Idempotency

LPTA technique has the property of idempotency by definition. This means
that applying it to the series from which periodic effects have been removed
(i.e., to the seasonally adjusted series) results in the same (adjusted) series
again. [t is obvious that repeated application of the technique to a series
would produce the same result as a single application. Fase et al. (1973) have
shown that the two methods, X-11 and Burman (1975) as well as other classical
methods based on moving average filters in use at that time do not have the
idempotency property.

2. Robustness Against Abrupt Change in the Trend

LPTA technique has the property of robustness against abrupt change in the
trend. Some examples are given in chapter 3(D) and the Census series "U.S. Re-
tail Sales in Variety of Stores" exhibits in figure 8, X-11 is lacking this
property, see chapter 3(D) and chapter 7.2.

3. Variant Under Shifts

X-11 is variant under shifts. In other words, shifting the series several
units (months) backward or forward yields different estimations from the main
components. More details are found in chapter 7.3. The LPTA is by definition
invariant under shift.

4, Estimation of Series with Zero-Value Observations

The multiplicative model of X-1l1 cannot be used for data which includes

zero or negative value observations. Incorrect estimation is obtained using the
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additive version, see chapter 7.4. LPTA method deals with zero-value observa-
tions the same way as with non-zero observations, see chapter 3(e).

5. Sensitivity to Outliers

A very limited study of sensitivity has been done in this report. In 7.5
it is indicted that X-11 1is over-sensitive to outliers, compared to LPTA.

6. Distinction Between Fixed and Moving Seasonality

Since X-11 has no precise definitions for the various components there is
no distinction between the case of fixed and moving seasonality. LPTA is based
on prespecified definitions., The coefficients of goodness-of-fit enables us to
decide the appropriate version between fixed and moving seasonality. See
chapter 4,

7. Possible Types of Model

X-11 and Burman methods can use only multiplicative or additive models.
The nonmetric approach can use the mixed model too.

8. Choosing the Appropriate Type of Models

No clear criterion is supplied by X-11 to choose between multiplicative and
additive models. Some suggestions with examples for choosing the appropriate
model are given in chapter 3(b).

9. Constraints on the Irreqular Component

X-11 in contrast to LPTA has no constraint on the irregularities. Thus
their arithmetic mean may be different from 100% or 0O to multiplicative and
additive models, respectively.

10. Minimum Number of Whole Periods Required

Two (possibly less) whole periods are required for either the multiplica-
tive or the additive model, see chapter 3(c). Four periods are required for
the mixed model. X-11 and Burman methods require 3 and 5 whole periods, respec-

tively. The B.L.S. (1965) require a minimum of 8 whole periods.
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11. Length of the Period - p

Any period length p, agpgf%] can be used by LPTA., There is a possibility
of estimating the period's length if not known in advance, like the periodogram,
see 2.(a). The two classical methods X-11 and Burman can analyze only series of
periods length p=12. There is a version of X-11, called X-11-Q which is con-
structed for p=4 as the Tength of the period. There is no option to choose any
desired period's length,

12, Data With Missing Observations

By giving zero weights within the coefficient (2.5), the LPTA approach ac-
cepts series with missing observations and there is also a possibility to cen-
sor outliers, see chapter 2(c). X-11 and Burman methods lack this property
and for missing data the user should substitute appropriate value.

13. Complex Seasonality

LPTA can very easily handle series that have complex seasonality, namely,
some seasonal pattern of different period's length are involved simultaneously.
X-11 as well as other moving-average methods lack this property. More details
are given in chapter 5.

14, Perfect Monotone Series

Series that have dominant trend such that their u =1, namely, they are per-
fect monotone series, can not be directly handled by LPTA. Some transformation
of the axis as in chapter 6(b), or using series of differences are needed as in
chapter 6(a). X-11 can analyze such series directly.

15, Taking Turning Points into Consideration

While using LPTA, turning points should be checked in advance and the pro-
cedure takes into consideration the coefficient of goodness-of-fit. The defini-
tion of piece-wise monotone as well as polytonicity is based on this valuable

information, see for example the series in Figure (2.4). X-11 as well as Baysea
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procedure will smooth turning points and their over and under estimation will be

obtained near the turning points.

On the other hand, X-1ll1 and Baysea do not

need any assumption about turning points in advance.

In Table (8.1) these issues and some other distinction between X-11 and

LPTA are given.

Table (8.1): Some Comparisons Between the Nonmetric Approach, Least Polytone
Trend Analysis (LPTA), and the Known Techniques X-11 and Burman,
Respectively.
Issue LPTA approach X-11 and Burman,

respectively

Types of filters
Idempotency

Minimum number of
periods required

Possible types
of model

Period's length

Data with missing
observations

Robustness against
an abrupt change
in the trend.

Nonmetric
Yes

2 (possibly less) for similar
model, either pure multipli-

cative or pure additive, see

chapter 3(c). 4 periods are

needed for the mixed model.

Multiplicative or Additive
or Mixed

Any perijod length p
2<p [_g]. The "best

period length may b? Sound
from the graph of MA\P/,
In chapter 3(e) the example

was analyzed with p=8.

Could be handied, see
chapter 3(c).

Yes, see chapter 3(D).

Linear (for additive model X-11)
No (Fase et al. (1973)).

3 and 5 respectively.

Multiplicative or Additive only

12 only, must be assumed in ad-
vance. There is a version of
X-11, called X-11Q which is con-
structed for p=4 as the length
of the period. Anyhow, there

is no option to choose desired
period's length.

Cannot be handled.

No, see chapter 3(D). Continu-
ity of the trend is invisible
assumption of X-11 as well as
other moving average methods.
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Issue

LPTA approach

X-11 and Burman,

Choice of
appropriate
model of
seasonality

Possibility of
estimating the
period's length
if not known

in advance

Observations sign

Use of data

Prior assumptions'
and arbitrary
specifications

Shift series back-
ward or forward

Constraint on
the irregular
component

Defintion of
Seasonality

Analyzing Per-
fect Monotone
Series

Choice among models can be

made on the basis of the best
th j.e., maximum value for
MP). “See chapter 3(b).

Yes, see chapter 3(a)

Observations may assume
any value in all three
models.

Use is made of all observa-
tions in an equal manner.

Polytonicity of the trend.
Initial values of the coef-
ficients (S, = 1; sp=0) in
the numerical aTgorithm.
(However, extensive experi-
ence shows that results are
not sensitive to these).

invariant - by definition

exist

Yes, chapter 5.

Not possible directly, see
chapter 6(a,b). Turning points
should be checked in advance,
then taken into consideration.

There is no clear criterion for
choosing between the multiplica-
tive and the additive model.

No.

In multiplicative model only
positive observations can be
considered.

By moving-averages technique
filters only partial use of in-
formation contained by observa-
tions near the ends.

Period length. Span and weights
in the computation of the moving-
averages (Kendall (1973), p.38).
There are arbitrary limits used
to eliminate extreme values.

Variant - see chapter 7.3

Does not exist

No.

No need to assume turning points
in advance and thus do not take
them into consideration,
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9. DEMOGRAPHIC EXAMPLE: MEASUREMENT AND CORRECTION OF THE TENDENCY
10 ROUND-OFF AGE RETURNS.

This chapter presents a usage of the LPTA Procedure for a demographic ex-
ample. The series are returned age of men and women in various countries ob-
tained in censuses. The purpose of our approach is to measure and correct the
tendency to round-off age returns when the 'true' age distribution is unknown.

Our technique has been applied to selected populations and compared to two
alternative classical methods, those of Myers and Bachi. The indices of prefer-
ence or dislike for each of the ten digit units obtained by the proposed tech-
nique and the other two classical methods are very similar in results, despite
the fact that they involve different methodological strategies.

In addition, our proposed method enables the estimation of the "true" num-
ber of persons of age t, Ty, that is, the trend component. Thus, indices for the
preference or dislike of each age can be computed, an attractive property that
the classical methods do not address.

It is well known that age measurements are often affected by the tendency
to rounding: measures with unit digit 0 and 5 and, to a certain extent, those
with unit digits 2 and 8 appear with a high frequency, while the number of those
ending with other unit digits is understandable. Two main problems arise Qhere
data are subject to the tendency to age rounding: how to measure this tendency
and how to correct for it. Several decades ago this problem was treated by sev-
eral researchers. Myers (1940) and Bachi (1951, 1953) developed techniques for
measuring such net'misstatements only for all age groups ending in the same unit
digit i, 1 = 0,1,...,9 when "true" age is unknown. These two authors suggested
a general index for age-accuracy, based on the above measures. Another index
was offered earlier by Marten (1924) called Whipple's Index and by U.S. (1951).
Its main drawback, apart from measuring digit-preference only, is that it meas-

ures the preferences for only two digits, 0 and 5. Carrier & Farrag (1959)
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attacked the problem by adapting an optimal polynomial for the case in which
only five year age groups are given.

The purpose of this chapter is to deal with the problem of measuring and
correcting for the tendency to round-off age returns at single age t=0,1,2...,
120. In order to solve this problem, the LPTA technique is applied. The method
estimates the "true" age distribution by means of trend estimation and provides
indices of preference for each single age or age group.

We shall consider the set Y¢, the number of persons enumerated at age t as
time-series with a periodicity of length 10 (the ten digits). The trend compo-
nent Ty is an estimate of the "true" number of persons at age t. It is further
assumed that T; decreases as t increases (e.g., a monotone decreasing) which is
the case for many populations. While the other two methods cannot be applied
from age O (in the examples cited above--Myers (1940) and Bachi (1951, 1953)--
which are restricted to the age range 23-72), no such restriction is needed in
the method proposed here.

As we pointed out earlier, our data are the number of persons, Y{, enumer-
ated as of age t. A series Yy is monotone decreasing if Y; < Yj for every i>j.
To express Yt in periodic terms, it will be useful to replace the observation
index t by an index of the form 10a+i, where 10 is the proposed period length
(of the ten various digits), i is the position (digit) in the sequence of per-
iods, with the first indices 0, the second 1, etc. We denote the number of com-
plete periods by n, so that a=0, 1,...,n-1, Given this notation, a sequence Y¢
t=0,...,N can be written as Yjpa+i (i=0,...,9; a=0,...,n-1).

By a series of periodic transformations of Y; (with period length 10) we
shall generate a series Zy whose members are of the form
(9.1) Z10+a+i = Y10a+i/Sy (i=0,1,...,9; a=0,1,...,n-1)

where the 10 transformation coefficients S; represent multiplicative periodic
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factors. The series Zt can be regarded as the preference digits adjusted data
in analogous to the known seasonally adjusted data.

It is convenient to keep Zy in the scale of Yg byvsetting the constraints

(9.2) 9
L [s;1°% =10
i=0

That is, their arithmetic mean of the reciprocals equals 1. Let us denote by

u(Y) the coefficient of Monotonicity of a given series Yi,...,YN.

z (Yi'Y-) T Wy
(9.3)  wu(Y) = @Jl Jl J

Yi=Yil * Wi
i>j '+ Y H

1< <j <i <N where wij > 0

For simplicity, u(Y) will be denoted by u only. The coefficient of monoton-
icity when computed for the transformed series Zy, t=0,...,N will be designated

by u(Z), where, as noted above, t=10a+i.

THE LPTA TECHNIQUE FOR ASSESSING PREFERENCE (DISLIKE) AT EACH UNIT DIGITS EFFECTS
(when the "true" age distribution is unknown).

We first assess the monotonicity of the original series Y¢ (of the number
of persons returned as of age t) by computing u. The preference and dislike
for the ten digits are the periodic fluctuations. In such cases estimation of
the ten S4,i=0,1,...,9 of eq. (9.1) are required. This is done by minimizing
u(Z) toward -1.

The closer Min u(Z) is to -1, the closer is the series Y{ to being peri-
odically-monotone. The ten coefficients Si describe the pattern of variations
within periods and will be considered as representing "seasonal" effects -- pre-
ference/dislike -- for each digit. We have used as an initial guess the values
S3=1, i=0,1,...,9. That is, we start with the assumption of no preference/dis-
like effects.

For the usual case were u > -1, the measure M of goodness-of-fit is:

(9.4) M= Minu(z)-u
T
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THE LPTA TECHNIQUE FOR ASSESSING PREFERENCE (DISLIKE) AT EACH AGE:

The LPTA technique, in contrast to those of Myers and Bachi, enables the
assessmént of ratios of net misstatement at each age. To do so we have esti-
mated the trend Ty, of the "true" number of persons of age t. This series has
to be “smoother", that is, it is more negative monotone than the series z{ which
takes into account only fixed effects for each digit unit (an effect which is
proportional to the trend).

Our starting point is the series Z, which is preference (dislike) adjusted
data. We shall search for a perfect monotone series Ty which is as close as
possible to Zy. Thus the loss function to be minimized multiplicative model is

N
L |Te/Zi-1] =
t=1

(Ry-1) subject to the constraint T1<To<...<Ty.

(n
n etz
—

The Rj are N residuals fit to each age. An additional constraint is that the
arithmetic mean of the reciprocals of R; equals 1 is adopted.
EXAMPLE

Let us consider some results that are obtained by the LPTA and by that of
Myers and Bachi, For purposes of demonstration, consider the series of "Males
in Madras (1911) in the 23-72 age range.* The original series is given in
Table (9.1) and graphed in Figure (9.1). The preference adjusted data as the
trend component are presented in Figure (9.1) as well.

Coefficient of monotonicity of the original series Yy is u = - 0.546, and
Min u(Z) = -0.982 and coefficient of goodness-of-fit is very high, M = 0.959.
The ten values of S; obtained at the minimum of u(Z) are given in table (9.2).

Thus the series Z; which is preference (dislike)-free is approximately
monotone. The measure of preference or dislike of each digit is defined such
that its mean is equal to zero (see for example, Bachi (1953)), and thus is

achieved by subtracting 1 from each coefficient. In Table (9.3) the ten measures
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Table (9.1): Returned Age of Men in Madras, India 1911. (Age Range 20-79).

Unit Digits
Ten
Digits 0 1 2 3 4 5 6 7 8 9

20 3,912 58 1,735 713 1,228 4,118 1,272 675 1,394 468
30 4,964 408 1,176 314 592 3,197 990 446 856 401
40 4,525 395 749 362 395 2,382 549 275 588 302
50 3,302 302 417 235 282 1,186 411 153 306 119
60 2,276 148 237 127 160 518 127 87 129 78
70 496 23 64 20 61 146 72 17 67 120

(indices) of each digit are given for the four populations (men), taken from
Bachi (1953, p.6) under the heading Rj. The net percentages of each population
returning ages with inaccurate unit digits may be defined as the sum of the
positive (or negative) preference indices.

Let us now use our procedure for assessing preference (or dislike) at each
age 5, that is, the estimate of the series T; of the "true" age. This trend com-
ponent is computed for the same age range 23-71 for men at Madras, 1911.

Now, having on the one hand Y; and on the other hand Ty, we can compute an
index for preference of each age by:

X (i) = (Y¢-T¢)/T¢ and an index for preference of each digit i, i=0,...,9,
" (11) = =Yi0a+i - ZIT10a+i/ZT10a+i
a a a

Let us compute the preference (dislike) of each age by ratio (i) and, in
addition, other indices for the preference of each digit by ratio (ii). These
indices are presented in Table (9.3) under the heading Rp. In Table (9.4),
these values are presented for the previous example;--that is, Men in Madras

1911 at age range 23-72.
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Table (9.2): The Ten Coefficients Sj, i=0,...,9 for the Ten Digits

Digit O 1 2 3 4 5 6 7 8 9 Average

Value 3.86 .33 .71 .29 .45 2.25 .69 .35 .72 .33 1.0

Some patterns which were unknown just by locking at the data in Table (9.3)
now emerge in Table (9.5). Among the ages ending with digit O the most preferred
age is that of 60 with index of +4,653 which is also the most preferred of all
ages. The age with the least index at this range of 23-72 is 30 with index of
only 2.237. Among the ages terminating in 5 the index is above 1, except 25 with
index of only + 0.946. The most preferred age is'45 (index = 1.784) among the
ages terminating with 5. The most disliked age of this population is the age 33
with index of -0.765. Demographers can generate other substantive conclusions
by analyzing the results presented in Table (9.4).

Let us now apply our technique to other data that are based on five years
age groups: 0-4,5-9,... For purposes of comparisons the Madras example was ana-
lyzed at about the same range as the actual series in Table (9.5).

Figure 9.1: Returned Age of Men in Madras; India 1911, --.-- Original Data,

~+~+~. Preference (dislike) adjusted data, "true" age assumed
to be the trend component.
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Table (9.3): A) Measurement of the Preference (+) or Dislike (-) for each unit digit

These indices are computed for four populations by the three methods of Bachi (B),
Myers (M), and LPTA in two ways (R1,Rp).

B) An Index for measuring the inaccurate unit digit in each population.

in age returns and

38

An explanation for Ry is given later,

A)
Indices of Madras, 1911 Eqypt, 1927 Spain, 1930 Australia, 1933
Each Unit
digit B M Ri Ro B M Ri Ro B M R1 Ry B M Ri Ry
0 2.80 2.72 2.86 2.90 3.29 3.14 3,76 3.35 .43 .42 .44 ,43 .04 .04 .06 .05
1 -,67 -.65 -,67 -.67 -.88 -.85 -.85 -.87 22 -.21 -.20 -.20 -.12 -,11 -.11 -.11
2 -.30 -.26 -,29 -,26 -,58 -.51 -.48 -,50 .01 .01 .04 .03 .07 .06 .08 .08
3 -.69 -.69 -.71 -.71 -.71 -.73 -.81 -.83 -.08 -.08 -.08 -.08 .05 .06 .04 .04
4 -,53 -.52 -.55 -,55 -,79 -.78 -.83 -.86 .04 -,03 ~.04 -.04 -.02 -,02 -,02 -.03
5 1.27 1.30 1.25 1.24 2.40 2.38 2.06 1.66 .06 .06 .04 .03 .00 .01 .00 .00
6 -.29 -,30 -.31 -.31 -.74 -,73 -.78 -.75 .01 .01 -,01 -,01 -.03 -.03 -.04 -.02
7 -.65 -.65 -.65 -.65 -.67 -.64 -.71 -.64 -,01 -,09 -.10 -.10 -.04 -,04 -.05 -.05
8 -.27 -.26 -,28 -.26 -.41 -.42 -,49 -.35 .05 .05 .04 .06 .03 .03 .02 .02
9 -.69 -.68 -.67 -.67 -.86 -.86 -.85 -.85 A2 -.12 -,12 -.13 -.00 -.00 .02 .01
B)
Inaccurate
rate
unit
digit 40.8 40.2 41.4 41.4 56.6 55.2 58.1 50.0 5.6 5.4 5.6 5.5 2.0 2.0 2.3 2.0
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Table (9.4): Ratio (i) and (ii) for measuring the preference (+) or the dislike (-)for
each age and unit digit, respectively, and an index for inaccurate unit
digit (which is the sum of positive preference indices in percentages) in

age return for the Madras Example.

Tens

digits 0 1 2 3 4 5 6 7 8 9
Ratios (i)

0

10

20 -.734 -.535 .946 -.356 -.642 -.198 -.702
30 2,237 -.728 -.,127 -.765 -.550 1.439 -.245 -.645 -.272 -.653
40 3.038 -.645 -.320 -.656 -.608 1.784 -.360 -.676 -.310 -.631
50 3.099 -.624 -.378 -.653 -.536 1.040 -.228 -.675 -.317 -.713
60 4,653 -.635 -.399 -.658 -.519 1.221 -.332 -.616 -.292 -.645
70 2.866 -.676 -.259

80

90

Ratios (i) 2.900 -.672 -.258 -.714 -,550 1.237 -.312 -.651 -.256 -.673
Index of inaccurate unit digit = 41.37 %

Table (9.5): Group ages: (five years each) 20-24, 25-29,...,70-74 for Men

in Madras, 1911

Age

Group 20-24 25-59 34-34 35-39 40-44 45-49 50-54 55-59 60-64 65

-60 70-74

Actual

series 8174 7927 7454 5890 6426 4096 4538 2175 2948

“True"

series 9044 7263 7241 6239 6212 4640 4046 2534 2464

Index of
Preference(+)
or

dislike(-) -.10 .09 .03 -.,06 .03 -.12 .12 -.14 .20

939

989

'005

664

640

.04
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In the first step we use formula (9.1) with only two coefficients Sy, i=1,2
for the two different groups, that is,

1. The group of digits ending with 0,1,2,3 or 4 and
2. The group of digits ending with 5,6,7,8 or 9.

We obtain the follwing results: p = -0.981, Min u(Z) = -0.988 and coeffi-
cient of goodness-fit M = 0.377. The two measures of preference (+) or dislike
(-) for the two groups terminating in 0-4 or 5-9 are: 0.05, -0.05, respectively.

The estimated "true" series T; for the appropriate groups and the indices

of preference (or dislike) for each group is given in Table (9.5)

CONCLUSIONS

The use of the proposed nonmetric technique (using concepts that were taken
from the fields of Time Series Analysis) enables the development of a simple and
understandable technique for both measuring the tendency to round-off each age,
and estimating the "true" distribution of ages. Some substantive information
emerges fom the application of this technique, and others may be discovered by
the application of the proposed method to other empirical data. The proposed
method requires weaker assumptions than the classical methods. [t has the advan-
tage of not being limited to a specific age range, thus allowing for the estima-
tion of a very short series (even of 2 whole periods, e.g., 20 observations) of
series with missing data (by giving a zero weight). A computer program has been

developed and is available to anyone who is interested.
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Part 2

FORECASTING QUANTITATIVE SERIES

In the first part of this report we discuss approaches, mainly the LPTA, in

order to reveal the structure of a given empirical series by means of decomposi-

- e 2 PR
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tions methods. In this part we present two different approaches for prediction

W

of quantitative series which are based, in part, on the nonmetric methods dis-
cussed in the previous part. Likewise, both approaches are based on the (known)
idea of combining seasonal adjustment procedure with a method for prediction of
the trend component. In Figure 10 a flowchart of the approaches is presented.

In chapter 10 the Persistent Structure Principle is presented. This prin-
ciple means that forecast values are estimated in such a way that the values of
appropriate coefficients of goodness-of-fit are equal for both the augmented
series and the original series. The basic assumption is that the 'structure' of
the series remains the same in the forecasting domain as in the past and thus
the same goodness-of-fit is obtained. Missing data are treated in a very simi-
Tar way. Our point of view is that future observations are in some way missing
data out of the range of the series.

In chapter 11 The Box-Jenkins approach is combined with our LPTA method
for prediction purposes. For both chapters 10 and 11 some well-known examples
from the literature and some other examples are demonstrated.

In chapter 12 the Persistent Structure Principle (P.S.P.) is combined with
X-11 for forecasting seasonal factors one year ahead. These forecasted factors
used for seasonally adjusting current data as is done in the Bureau of the

Census Washington D.C., and other agencies as well.
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S.A.D.xunits ahead
based on S.,A.D.
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10: PERSISTENT STRUCTURE PRINCIPLE (P.S.P.) FOR PREDICTION OF QUANTITATIVE SERIES

"The thing that hath been, it is that which shall be; and that which is done
is that which shall be done, and there is no new thing under the sun."

(Ecclesiastes, 1:9)

The Persistent Structure Principle is suggested for the purposes of fore-
casting quantitative time series and exemplified by means of economic series.
As we already mentioned, the basic assumption is that the ‘'structure' of the
series remains the same in the forecasting domain as in the past, and thus the
same goodness-of-fit is obtained.

1: Persistent Structure Principle

Denote by C(Y) a coefficient of goodness-of-fit for a given series Y t=1,
..,N. This coefficient is supposed to reflect the structure of the series with
relation to some specific definitions for trend and seasonal pattern. Let
c(y, ?N+l) be the same coefficient for the augmented series Y1,...YN,?N+1 where
?N+1 is the estimated forecast value one unit ahead. If we believe or assume
that the 'structure' of the given series in the past is consistent, namely that
it remains the same in the very near future, say 1 unit ahead, then their coef-
ficients for goodness-of-fit would be the same, namely
(10.a.1) C(Y) = C(Y,Vye1)

?N+1 is the only unknown in equation (10.1). Hence, by solving the equa-
tion, the estimated forecast value ?N+1 is obtained. The reseacher has to choose
the coefficient with relation to its prior loss function.

Forecasting the rth unit ahead could be obtained by using the same princi-
ple based on data and (r-1) values already have been obtained. Hence, in a re-
cursive way, prediction is achieved for the short-term. Some examples will be
given later on.

For a series with missing data, say the i observation, let Ci(Yo5)=C(Yy,...,
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Yi-1s Yi+]s-..,Yp) be the coefficient of goodness-of-fit. The Persistent Struc-
ture Principle (P.S.P.) suggests that the estimated value Y; could be obtained
by so]viﬁg equation (10.1) below:
(10.1) C(Yoi) = C(YisevenYioysYiels-oe¥n) = C(Y7.ou,Y.00,Y) = C(Y)

Let's assume that Y¢ t=1,...,N is a time series which can be decomposed into
its main three components. Hence Yy = f(Tt,St,It) where Tty is the trend, St the
seasonal component, and It is the irregular component. The first two components
are systematic, namely, they could be predicted in principle. The latter part
is the unsystematic part, called irregularity. Three main models are usually
used for decomposition purposes: Purely Additive, Purely Multiplicative, and

Mixed model. These models are given below in eq. (10.2), (10.3), and (10.3),

respectively,

(10.2) Yo = T¢ + It + s¢

(10.3) Yo = T @ I * &

(10.4) Yp = Ty "Iy ¢ Sy + sy
= Iy " Sp sy

where [ is the seasonally adjusted data. For a periodic series whose period's
length equals p (e.g., p=12 for monthly time series), convert the index t into
i+pa where i is the position of the tth observation within the period. p is the
period's length and a is the period's index. Thus, for monthly series a=0 for
the first year, a=1 for the second year, etc. For the sake of simplicity, let
Y¢ t=1,...,N be a monthly time series, thus N=12L + K, K=0 where the series nas
precisely L whole years.

By using the multiplicative model (10.3) for a given series Yj...Yy the
forecast value 1 unit ahead would be:

A A A

(10.5) Y1ot+ke1 = Trouek+1” StaLeksl
with the assumption that E Iy = 1 (multiplicative model). If we believe that

the series is consistent in the sense that the same model (multiplicative in the
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discussed case) is appropriate, Tip 4k+1 and S1oL+Kk+]1 are required.

Here, the persistent structure principle is used to predict the trend com-
ponent. Presumably since the seasonality is fixed, it is combined with the pre-
dicted trend in order to obtain prediction for the series. A prior assumption
is needed for the ‘'structure' of trend and seasonality. Even for the linear
case, an infinite number of coefficients of goodness-of-fit could be defined.
In the next section the simplest family of coefficients based on the linear
assumption will be discussed briefly. In the third section, a monotone shape

for a trend of the series will be presented. Three economic examples will be

given in the fourth section.

2. The Simplest Linear Case

Let Z = Zy... Z be a series. Z is linear series if and only if
(10.6) i = Zj.1 = Zi1 = Zj-p for all i=3,...,N.
or AZy = AZj_y for all i=3,...,N where AZ; = Z; - Zj_3
N N
(10.7)  or a%Z; = 0 for all i=3,...,N. or I A2 22,0 or I|a2Z,|V = 0 v=1,2
i=3 i=3
or any even v. In other words, z is perfectly linear series when its slope is

constant over time. The series Z is the most dissimilar to a linear curve when

AZj = -AZj.1 or A%Z; =2AZj. In other words, z is the most dissimilar to a lin-
ear one when its slope changes its sign every two consecutive observations. The
quantity (10.8) could be used as a basis for a coefficient of goodness-of-fit
for linearity.

1(a%2;)1Y

(10.8) C = i=3

T |2az;1Y
i=2

(L -4

Let us deal with v=2
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N
z (a224)2
(10.9)  LIN(Z) =C(Z) =1 -K=1 - 1=g
4+ £(az;)2
i=2

This coefficient of linearity varies between 0 and 1.
LIN( c(z) =1 (k=0) if and only if Z is a perfectly linear series.

2) =
LIN(Z) =

C(Z) =0 (k=1) if and only if Z is of [a,b,a,b,...,b] type series.
Thus the series [a,b,a,b,...,b] where a#b is the most dissimilar to a linear
series in our definition. LIN(Z)=l (K=0) if the series Z is locally linear,
namely, there are few turning points and in between the series is linear. Since
both of these extremes are cases where C=0 or C=1, the series can be predicted
without any error.

By using the coefficient (10.9) and the persistent structure principle, EN+]
can be computed. Let's equate C(Z) = C(szN+1)- By a simple manipulation the
required 2N+1 is obtained:

(10.10) Zyep =2 Zy + (1 - a) Iy,

where a can be either a(1) = (2/K-2)/(2/K-1) or a(2) = (2/K+2)/(2Y K+1) which
are functions of the data values Zj,...,Zy . For the perfect extreme cases the
following results are obtained:

A
when C(Z) = 1 then a=2 and Zp+j

2Zy - IN.1 = IN * (IN - IN-1),

when C(Z) = 0 then a=0 and £N+1 IN-1

[t is interesting to verify that the classical version of X-11 uses the
formula (10.10) in order to estimate seasonal facors 1 year ahead, and chooses
a=1.5 as a compromise and not as a function of the previous seasonal factors.
The formula (10.10) might be very sensitive to variations of the last two obser-

vations, Other conditions for linearity could be used in order to overcome this

sensitivity. Hence, conditions for every four values as in (10.11) could be used.
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Zj - Zj Ly - Iy

(10.11) - for all i>j and k>1
(i-3) (k-1)
or (10.11) for pairs of observations (Zj, Yj) i=l,...,N.
(10.12) Li - I, . constant for all i< j<icN,
Yi - Y5

The product-moment coefficent of correlation could be used as a coefficient of
goodness-of-fit as well. Thus, for example, we can choose the covariance or a
proportional measure to covariance as a coefficient C(X1,...,X5) = cov(x,i)
1z (Xi-Xj)(i-j). In other words, covariance of series Xi,...,X, and time t=1,
n..,n. Let us equate C(X1,...,X) = C(Xl,...,Xn,£n+1). After some simple alge-
bra the required X,+1 is obtained in formula (10.13). |

A n
(10.13) Xp+1 = 1 12 I (Z3-X3)(i-3) + I Xj(n+l-i) }

n{n+l) n i>j i=1 .

Equation (10.13) is of course a special case of the formula (10.14) below for

(X5,Y3) i=1,...,n pairs of observations.

(10.14) Xnsp = 1 ={ 2
n{n+I) n

3. The Monotone Case

A series Z71,...,Zy is (positive) monotone if and only if
Z; > Z3 for all i>j.
Thus, one coefficient for goodness-of fit to assess monotone association of
series and its order is the following:
L (Z; -zj)wij
(10.15) MON(Z) = ¥ = i>j

T fLy - Zjlwij
i>J

where weights wij 20. For sake of simplicity let wij = 1. By using the Persist-

ent Structure Principle (P.S.P.), presuming that the trend for the given series
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A
is monotone, we equate MON(Z) to MON(Z,Zn+1). After some algebra the required

forecast value is obtained.

(1- w)ZZy + (1+ u)LZy
Ny N2

INL 10N, + (1 N,

(10.16)

where u is the Monotonicity coefficient for the series Z1,,...Z4, namely a func-

tion of the data. I Zj, ¥ Zj are the summation over Ni and Ny values Zj such
Nl N2 A
that they are less than ?N+1 (yet, unknown) or greater than Zys+y, respectively,

The unique solution of (10.16) is obtained by a finite iterative algorithm when
-1<u<i. When u = 0, 2N+1 = N'ligkitlname1y, the arithmetic mean. When p =1
the solution is not unique any more;“and any 2N+1 2_M§x {Z;} could be obtained.
For such a case of perfect monotone shape of the seri;s, additional constraints
should be used. Thus, the same formula could be used for the series of first

differences, etc. Hence, the condition for a monotone convex (concave) series

is that w =1 (u = -1) for the first differences of the original series.
The coefficient u could be generalized to any polytone series with m turn-

ing points and to a coefficient of local monotonicity as well.

4. The Quadratic Case

A series 11,...,Iln is quadratic if and only if the series of first differ-
ences is linear. In other words, 4p,...,A; is a linear series where A j =
Zj-Z3.1 i=2,...,n. Based on the solution obtained in section 2 for the monotone
casé the prediction formula based on the assumption of a quadratic shape is
given in (10.17):

(10.17)  Xpep = (1+a)Xy + (1-22)%,_1 + (a-1)Xy_»
where the coefficient a is a function of the data and is computed the same way
as for eq.(10.10). A good compromise as is done in X-11 could be for a=l.5.

For a=1.5, eq.(10.17) is reduced to the following formula:
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A

(10.18)  Xpyp = 2.5 X, - 2%, + 0.5 * X, o
Similar formulas could be derived to higher order of polynoms. For example, the
prediction equation for the Qubic case is given in (10.19) and the reader can
very easily derive formula to higher order of polynom.

(10.19)  Xns1 = (2+2)Xp - 32 xp-1 + (3a-2)Xn-z *+ (1-a)Xp-3 -

The author suggests plugging eq. (19.17) or (10.18) into X-11 program for more

complicated case.

5. Prediction by Examples

The persistent structure principle could be used for purposes of prediction
of trend and seasonal components. For the examples below, fixed seasonality was
assumed, or in other words, Sps+12L = Sp+12(L-M) for r=1,..., 12 and M=1,...,L.
The prediction for the trend was obtained by using the Persistant Structure
Principle (P.S.P.) for the seasonally adjusted series Zy t=1,...,,N. These ex-
amples have been decomposed by the nonmetric method LPTA discussed earlier.

a. Consumption of Electricity in the U.S.A. in the years 1951-58

This series of 96 observations is given in the chapter 3.D. From the plot-
ted graph in Figure (3.D1) below it is easy to verify that the series has approx-
imately a fixed seasonal pattern combined with a monotone trend. As a matter
of fact, the trend is very close to being linear.

The estimated seasonal pattern for the first 84 observations is given in

Table (10.1) for multiplicative and additive models.

Table (10.1): The estimated seasonal patterns for electricity in the U.S.A. using

Models

the multiplicative model (presented in percentages) and Additive
Model (presented in their absolute values).

Jan, Feb. Mar. Apr. ~May Jun. Jul., Aug. Sep. Oct. Nov. Dec.

Mul.

Add.

|
119.8 107.6 103.6 92.9 86.3 80.9 83.2 90.0 96.8 106.2 113.0 120.1|

67.1 25.1 12.1 -23.9 -45.9 -63.9 -56.9 -34.9 -10.9 22.1 43.1 67.1}
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Forecasts for 12 units ahead were computed for the year 1958 with the
assumptions of linear and monotone trend for both Multiplicative and additive
models. The prediction is based on the previous 7 whole years and are given in
Table 2. The coefficient of goodness-of-fit C=0.996. This coefficient is the
coefficient of monotonicity (10.15) for the seasonally adjusted series, namely
seasonality has been removed. The arithmetic mean of the absolute percent error
js lower for the additive model than the multiplicative one. With the monotone
and linear assumptions for trend, almost the same results were obtained. Equa-
tions (10.16)and (10.10) have been applied recursively for the seasonally ad-
justed data Z],...,284,284+1,...,,284+12. The predicted values are produced by
multiplying (adding) the forecasted value for the Trend %84+1,...,£é4+12, with
their appropriate fixed seasonal coefficients: $y,52...,512 (S;,...,512)

respectively.
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Table (10.2): Actual data, forecasted values and percent error for the year 1958 ob-

|
I
|
l
l
|
|
|
l
|
I
|
l
I
I
|
l
|
|
i
l
l
|
|
|
I

tained by the Persistent Structure Principle (P.S.P.) method. Prediction in
(a) and (b) 1is obtained by monotone and linear assumpticn, respectively,
using multiplicative model. In (c) and (d) an additive model was adopted.

Jan. Feb. Mar. Apr. May Jun Jul. Aug. Sep. Oct. Nov. Dec.

I
Actual |
Data |

l
Multiplicative
Model |

|
(a) Mon |518 463 448 402 373 350 360 390 419 460 489 520

l
% |-2.1 -2.9 -3.2 -5.0 -6.3 -7.9 -7.5 -6.9 -6.5 -6.7 -7.0 -7.1

529 477 463 423 398 380 389 419 448 493 526 560

l
(b) LIN |512 456 441 396 367 344 354 383 412 452 481 511

% }-3.2 -4.4 -4.8 -6.4 -7.8 -9.5-9.0 -8.6 -8.0 -8.3 -8.6 -8.7
Additive ;
Model |
(c) Mon }512 470 457 421 399 381 388 410 434 467 488 512
% }-3.2 -1.5 -1.3 -0.5 0.2 3-3 2.1 -3.1 -5.3-7.2 -8.6

|
(d) LIN |517 475 462 426 404 386 393 415 439 472 493 517

l
% |-2.3 40 -2 .7 1.5 1.6 1.0 -1.0 -2.0 -4.3 -6.3 -7.7

The arithmetic means for the 12 absolute percent errors for the 4 variants are:

(a) 5.8 (b) 7.3 (c) 2.8 (d) 2.4

(b) The Chatfield-Prothero Case-Study: Sales of Company X

This example of 77 observations was discussed earlier in chapter (3.b.1).
As we have already mentioned, this series, was analyzed as a case-study by
Chatfield and Prothero (1973) and some other 10 discussants in the Journal of
the Royal Statistical Society (1973) part A. The criginal series is given in
Table B in Appendix B and its graph is plotted earlier in Figure 3.b.2.

The estimated seasonal pattern based on the 77 observations is given in
Table (10.3). The coefficient of goodness-of-fit (10.16) equal to C=.954 is ob-

tained by using multiplicative model. The actual data and forecasts for 6.units
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ahead obtained by our P.S.P. method are present in Table (10.4). The predicted
values obtained by Chatfield & Prothero and Box-Jenkins (1973) are presented as
well for ccmparison purposes. Chatfield & Prothero identified an ARMA(1,0)
x(0,1)12 model on Wt = V7y2logygYt where Yy is the original series. On the
other hand, Box and and Jenkins suggested a different transformation on data

and hence they identify the same ARMA model on W, = VV]ZY'25.

Table (10.3): Estimated Seasonal Patterns Using Multiplicative and Mixed Models

for the 'Sales of Company X'.

Mode1 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

I

I

}

Mult. |[130.0 82.8 64.7 56.5 43.2 51.0 68.0 86.4 134.5171.4178.9 132.6|
I

ed S¢ |131.7 108.3 75.4 77.1 43.4 55.4 63.0 75.6 117.6 150.4 152.2 142.7|
I

st+ | -5.1-71.3 -39.8 -71.3 -19.7 -17.5 31.9 52.0 52.3 48.5 56.3 -16
|

————— x ————— e —— e

|
I
I
I

|
.34

I

Table (10.4): Actual data and forecasts value for 6 units ahead starts from June 1971

for the various methods. The values in parentheses are perpercent erro
50% confidence interval for the mixed model is (92.5, 106.2) percent and
for the multiplicative model (93.6, 107.4) percent approximatel

rs.

|

| The Method Jun. Jul. Aug. Sep. Oct. Nov. M.A.P E.
|Actual Data 260 304 390 614 783 872
|Chatfield-Prothero 305 482 673 990 1297 1387

[Multiplicative Model

l
|

|P.S.P.
50% confidence interval**
(Mixed Model,Monotone Trend

(17.3)  (58.5) (72.6) (61.2) (65.6) (59.1) 55.7

(-5.0) (8.2) (6.9) (5.7) (5.7) (0.9)
(monotone trend)

253 319 398 619 786 823
223,269)(295,339)(368,423)(572,658)(727,835)(761,875)
(-2.7) (4.9) (2.0) (0.8) (0.4) (-5.6)

I
I
|
|
|
I
I
I
I
I
50% confidence interval™(231,265)(308,353)(391,448)(608,698)(775,889)(809,928)
|
|
I
|
|
(
)
I

|

l

]B -Jenkins (Using 286 409 511 761 966 1091

[ Y Transformation) (10.0) (34.5) (31.0) (23.9) (23.4) (25.1) 24.6
|

|P.S.P. 247 329 417 649 828 864

5.4

2.7

I
I
I
|
l
|
I
I
I
|
I
I
|
I
I
|
I
[
I

Mean of absolute percent error.
* The confidence interval is based on multiplicative irregularities.
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(c) International Airline Passenger: Monthly Totals

This very well known series was analyzed by Box and Jenkins (1970, p.305)
and has been discussed in chapter 3 as in example 3.b.2. The trend is clearly
monotone and for a periods of length p=12 a quite fixed seasonal pattern seems
to be a good approximation. Box and Jenkins assumed that the underlying model
of seasonality is a multiplicative one and thus they transformed the raw data by
natural logarithms. For the transformed series an ARIMA (0,1,1)x(0,1,1)12 model
was identified (known as the Airline Model). Forecasts for 12 months ahead were
made from an arbitrarily selected origin, July 1957. That means that the para-
meters for the model VVqi,InY, = (1-8B) (1-¢812)at were computed on the first 102
observations. By using the TYMPAC* program the following values were estimated:
8 = 0.3897, ¢ = 0.6257 and R2 = 0.983. The predicted values are given in Table
(10.6). Forecasts obtained by the P.S.P. method with the assumption of monotone
trend were computed as well as for a short subseries of 30 observations, starts
from Jan. 1955. The estimated seasonal patterns are given in Table (10.5).
Table (10.5): Estimated Seasonal Pattern that were computed using Multiplica-

tive Model (a) for the first 102 observations, (b) for the 30 obser-
vations prior to July 1957, and (c) as in (b), using additive model.

Series| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

91.1 89.0 104.0 100.6 98.7 110.0 121.3 119.7 104.7 91.5 79.5 89.8
90.8 87.8 99.3 98.9 98.2 115.5 126.8 120.5 104.3 90.2 78.3 89.4

l
s|
I
l
|
I
!
I|-26.1 -39.4 -1.9 -7.2 -6.2 38.8 85.6 68.5 18.5 -30.5 -67.5 -32.5

* TYMPAX Program (Estimation of parameters in Linear Time Series Models) are owned
by the Queen's Statistics Council of Canada and approved by Donald G. Watts.
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The estimated Seasonal Patterns given in table 5 for (a) and (b) seem very
similar. It indicates that the mulitiplicative seasonal component is nearly
fixed and that the nonmetric approach can estimate seasonal component with as
low as 30 observations. The prediction obtained by the P.S.P. method based on
the first 102 observations is about the same accuracy as that obtained by Box-
Jenkins. However, using P.S.P. on the most recent past (only 30 observation)
yields much better forecasts with monotone trend assumption with both multipli-

cative and additive models.

Table (10.6): The Airlines data: Forecasts for 12 months ahead (starting from July 1957

obtained by (a) Box-Jenkins Approach, (b) P.S.P. method using multiplicative mod-
els. In (b.1) and (b.2) monotone and linear assumptions have been assumed. For
the same forecasting range the P.S.P. method has been used based on the 30 obser-
vations starting from January 1955. In (c.l) and (c.2) the forecasts values are
given presumably monotone and linear trend, respectively, using multiplicative
model. D.1l and D.2 are similar to (c.l) and (c.2) except that additive model has
been used. (The values in parentheses are the percent errors).

The Method| Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun M.A.P.

Data | 465 467 404 347 305 336 340 318 362 348 363 435 |

B | 465 457 405 354 307 355 365 353 413 405 410 477 |
Jenkins(a)] (1.0) (-2.1)(0.2) (2.0) (.7) (5.7) (7.4)(11.0)(14.1)(16.4)(12.9) (9.7)] 6.

b.i)Monl 432 426 373 326 283 320 324 317 371 358 352 392 {
[(-7.0)(-8.7)(-7.7)(-6.0)(-7.1) (4.8)(-4.5) (-.3) (2.4) (3.0)(-3.1)(-9 ){

477 476 418 366 318 359 365 356 417 403 395 440 | 7.
(2.7) (1.9) (3.5) (5.5) (4.4) (7.0) (7.3)(12.1)(15.1)(15.7) (8.9) (1.3)]

|
I
l

e e e e e e e e e e e e e

(c.l)Mon| 460 437 378 327 284 324 329 319 360 359 356 419
(-1.0)(-6.4)(-6.4)(5.8) (-6.9)(-3.6)(-3.2) (0.3)(-0.5) (3.2)(-1.9)(-3.7)] 3.
I
(c.2)Lin| 465 443 383 332 288 329 334 323 365 364 361 425 |
(0) (-5.1)(-5.2)(-4.3)(-5.6)(-2.1)(-1.8) (1.6) (0.8) (4.6)(-0.5)(-2. )} 2.
|
D.1 Mon 467 450 400 351 314 349 355 342 379 374 375 420

|
(0.4)(-3.6)(-1.0) (1.1) (2.9) (3.9) (4.4) (7.5) (4.7) (7.5) (3.3)(-3 ): 3.

478 466 418 369 333 368 374 361 399 393 394 439 |
(2.8)(-0.2) (3.5) (6.3)(-4.0) (9.5)(10.0)(13.5)(10.2)(12.9) (8.5) (0. 9)} 6.

e e e e e e e ———— e e
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The following are two out of 13 series prepared at the Bureau of the Census

for the ASA-Census-NBER (October 1981). These are Bureau of Labor Statistics
series. Their original observations are given in Tables E and F in Appendix B.

(d) Agricultural Employment, Men, 20 years and older

This monthly series from Jan. 1967 till October 1980 has 166 observations.
It seems that the trend has mainly three turning points: The first 5 years and
the next 5 years have(hiine trend each. In other words, this part of the ser-
ies is a piece-wise monotone of order 2. The last part of the series has a posi-
tive slope trend. By applying multiplicative model the folliwng coefficients of
Polytonicity were obtained for monotone assumption: u{lZ) = -0.64,Max| “1' =
0.86,M§12) = 0,63. When Poiytonicity of order k=3 was assumed H3 = 0.38
Maxlu3l(12) = 0.90 Mglz) = 0.84. The estimated seasonal pattern is:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

91.6 92.5 94.2 99.2 102.5 107.2 107.1 105.6 104.4 103.6 98.4 93.7

In Figure (2.2), the original series and trend estimation is given.

A Tong range prediction has been done to the last 24 observations based on
only 24 observations prior to the forecasting range. Each predicted value was
based on the previous forecasted value in a recursive way. Assumption of fixed
seasonality has been used. In table 10.7 the original observations and fore-
casted values are presented. We tried our P.S.P. approach, multiplicative model
with both linear and montone assumptions. For purposes of comparison and for
the same range, prediction results obtained by Gersch and Kitagawa (1982) are
presented as well. the innovative step in Gersch and Kitagawa report is the
maximization of the expected entropy of the predictive distribution interpreta-
tion of the minimum AIC procedure. The Modeling and smoothing of series is

done using a Kalman prediction/smoother Akaike AIC criterion methodology.
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Table 10.7: Original data and forecasts values obtained by Gersch and Kitagawa and
the P.S.P. method (multiplicative model) with assumptions of linear
and montone trend. 95% confidence interval (multiplicative irregular-
jties are 95.6 and 106.1 percent of each point estimation.

Year

1978
1979

1980

Average of absolute percent

(e

Month Original

—
2

2277
2250
2084
2117
2176
2237
2342
2509
2520
2554
2498
2472
2403
2292
2160
2213
2217
2255
2422
2470
2475
2455
2525
0 2459

H R OO0 NDOT S WN =
N = O no

W0 N O oW N

) A1l Employees in Food Industries

I
|
|
|
l
I
|
|
l
|
|
|
|
l
l
!
l
l
|
|
|
l
|
|
|
l

Gersch & Kitagawal

2333
2201
2148
2167
2222
2363
2444
2569
2561
2511
2465
2465
2348
2250
2186
2208
2262
2401
2479
2602
2592
2540
2495
2494

error:

Prediction
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%Error|

|
|
I
|
l
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|
I
|
|
l
l
|
I
|
|
I
|
I
l
I
|
|
l

P.S.P.
Multiplicative

MON %Error LIN

2344  (2.9) 2294
2248 -(0.0) 2189
2229 (6.9) 2166
2157  (1.9) 2095
2197  (0.9) 2133
2331 (4.2) 2263
2481 (5.9) 2409
2629 (4.8) 2552
2553 (1.3) 2478
2559 (0.2) 2484
2469 -(1.2) 2396
2488 (0.6) 2415
2344 -(2.5) 2276
2248 -(1.9) 2182
2229 (3.2) 2164
2157 -(2.5) 2094
2197 -(0.9) 2132
2331  (3.4) 2263
2481 (2.4) 2409
2629 (6.4) 2552
2553  (3.1) 2479
2559 (4.2) 2484
2469 -(2.2) 2396
2488 (1.2) 2415

)
.
~

%Error
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This series from January 1967 till December 1979 includes 156 observations.

The series has 3 main turning points,

More specifically, the trend for the first

3 years, the next 5 years, and the last 5 years has increase, decrease and in-

¢crease tone,

Max|u§12){ = 0.90 and Mglz) = 0.84,

Jan Feb Mar

Apr

respectively.

May

Some of the

Jun

The

Jul

9.7 95.9 96.0 95.8 96.7 99.9 101.9

computed values are:

estimated seasonal

Aug  Sep

Oct

w3 = 0.38,

pattern is:

Nov Dec

106.6 106.9

103.5

101.0 99.0
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In Figure (2.4), the original series the trend estimation 1is exhibited.
A long range prediction has been done to the last 24 observations namely

for the years 1978 and 1979 based on only 24 observations prior to the predic-
tion range, namely, the years 1976 and 1977. In table 10.8 the actual data and
the forecasts results obtained by our P.S.P. approach (multiplicative model and

Gersch-Kitagawa approach are presented.

Table (10.8): Original data and forecast values obtained by Gersch-Kitagawa approach

and P.S.P. methods (multiplicative model) with assumption of monotone
and linear trend. 95% confidence interval (based on multiplicative ir-
regularities) are approximately 98% and 101.4%, respectively.

Year Month | Original | Gersch-Kitagawa | Raveh (P.S.P.)}(Multiplicative)]|
| data | % Error | MON % Error LIN % Error |
| | | |

1978 1 | 1665 | 1650 -(0.9) | 1660 -(0.3) 1669 (0.2) |

2 | 1656 | 1641 -(0.9) | 1654 -(0.1) 1665 (0.5) |
3 I 1668 | 1645 -(1.4) | 1647 -(1.2) 1658 -(0.6) |
4 | 1664 l 1645 (1.1) | 1653 -(0.7) 1665 (0.0) I
5 | 1669 | 1663 (0.4) | 1666 -(0.2) 1678 (0.5) |
6 | 1722 | 1722 (0.0) | 1726 (0.2) 1738 (0.9)
" 7 | 1749 | 1760 (0.6) | 1755 (0.3) 1768 (1.0) l
8 | 1823 | 1849 (1.4) | 1838 (0.8) 1852 (1.6) |
9 | 1830 | 1855 (1.4) | 1845 (0.8) 1859 (1.6) !
10 | 1774 | 1799 (1.4) | 1774 (0.0) 1787 (0.7) |
11 | 1746 | 1753 (0.4) | 1731 -(0.9) 1744 (0.0) |
12 | 1724 | 1717  -(0.4) | 1693 -(1.8) 1705 -(1.1) |
1979 1 | 1685 | 1671 (0.8) | 1659 -(1.5) 1672 -(0.8) I
2 { 1666 | 1660 -(0.4) | 1654 -(0.7) 1666 (0.0) l
3 | 1676 | 1663 -(0.8) | 1646 -(1.8) 1658 -(1.0) |
4 | 1666 | 1663 (0.2) | 1653 -(0.8) 1665 (0.0) |
" 5 | 1679 | 1682 -(0.2) | 1666 -(0.8) 1678 (0.0) |
6 | 1728 | 1741 (0.8