
Approximate String Comparison and its Effect
on an Advanced Record Linkage System

Edward H. Porter, Bureau of the Census
William E. Winkler, Bureau of the Census

KEY WORDS: string comparator, bigram, assignment algorithm, EM algorithm, latent class.

 Record linkage, sometimes referred to as information retrieval (Frakes and Baeza-Yates 1992),
is needed for the creation, unduplication, and maintenance of name and address lists. This paper
describes string comparators and their effect in a production matching system. Because many lists
have typographical errors in more than 20% of first names and also in last names, effective
methods for dealing with typographical error can greatly improve matching efficacy. The
enhanced methods of approximate string comparison deals with typographical variations and
scanning errors. The values returned by the string comparator are used in a statistical model for
adjusting parameters that are automatically estimated by an expectation-maximization algorithm
for latent class, log linear models of the type arising in the Fellegi-Sunter model of record linkage
(1969). Overall matching efficacy is further improved by linear assignment algorithm that forces
1-1 matching.
 Modern record linkage represents a collection of methods from three different disciplines:
computer science, statistics, and operations research. While the foundations are from statistics,
beginning with the seminal work of Newcombe (Newcombe et al. 1959, also Newcombe 1988)
and Fellegi and Sunter (1969), the means of implementing the methods have primarily involved
computer science. Record linkage begins with highly evolved software for parsing and
standardizing names and addresses that are used in the matching. Name standardization identifies
components such as first names, last names (surnames), titles, and middle initials. Address
standardization locates components such as house numbers, street names, PO Boxes, apartment
numbers, and rural routes. With good standardization, effective comparison of corresponding
components of information and the advanced methods described in this paper become possible.
 Because pairs of strings often exhibit typographical variation (e.g., Smith versus Smoth), the
record linkage needs effective string comparator functions that deal with typographical variations.
While approximate string comparison has been a subject of research in computer science for many
years (see survey article by Hall and Dowling 1980), some of the most effective ideas in the record
linkage context were introduced by Jaro (1989; see also Winkler 1985, 1990). Budzinsky (1991),
in an extensive review of twenty string comparison methods, concluded that the original Jaro
method, the extended method due to Winkler (1990), and a widely used computer science method
called bigrams worked well. This paper describes two new enhancements to the string
comparators used at the Census Bureau. The first, due to McLaughlin (1993), adds logic for
dealing with scanning errors (e.g., "I" versus "1") and certain common keypunch errors (e.g., "V"
versus "B"). The second due to Lynch and Winkler (1994) makes adjustments for pairs of long
strings having a high proportion of characters in common. We also describe the method of
computing bigrams and present results comparing them with the other string comparators of this
paper.
 Our record linkage system uses the Expectation-Maximization (EM) algorithm (Dempster,
Laird, and Rubin) to estimate optimal matching parameters. We use a linear sum assignment

procedure (lsap) to force 1-1 matching. Jaro (1989) introduced the lsap as a highly effective
means of eliminating many pairs that ordinarily might be clerically reviewed. With a household
data source containing multiple individuals in a household, it effectively keeps the four pairs
associated with father-father, mother-mother, son-son, and daughter-daughter pairs while
eliminating the remaining twelve pairs associated with the household.
 The next section describes the string comparator. In the third section, we provide a summary
of the parameters that are obtained via the EM algorithm. The results of section four provide
empirical examples of how matching efficacy is improved for three, small pairs of high quality lists.
The final section consists of a summary and conclusion.

Approximate String Comparison

 Dealing with typographical error can be vitally important in a record linkage context. If
comparisons of pairs of strings are only done in an exact character-by-character manner, then
many matches may be lost. An extreme example is the Post Enumeration Survey (PES) (Winkler
and Thibaudeau 1991, also Jaro 1989) in which, among true matches, almost 20 percent of last
names and 25 percent of first names disagreed character-by-character. If matching had been
performed on a character-by-character basis, then more than 30 percent of matches would have
been missed by computer algorithms that were intended to delineate matches automatically. In
such a situation, required manual review and (possibly) matching error would have greatly
increased.
 Jaro (1989) introduced a string comparator that accounts for insertions, deletions, and
transpositions. In a small study, Winkler (1985) showed that the Jaro comparator worked better
than some others from computer science. In a large study, Budzinsky (1991) concluded that the
comparators due to Jaro and Winkler (1990) were the best among twenty in the computer science
literature. The basic Jaro algorithm is: (1) compute the string lengths, (2) find the number of
common characters in the two strings, and (3) find the number of transpositions. The definition
of common is that the agreeing character must be within ½ the length of the shorter string. The
definition of transposition is that the character from one string is out of order with the
corresponding common character from the other string. The string comparator value (rescaled
for consistency with the practice in computer science) is:

jaro(s1,s2) = 1/3(#common/str_len1 + #common/str_len2 +
0.5 #transpositions/#common), (2.1)

where s1 and s2 are the strings with lengths str_len1 and str_len2, respectively.
 The new string comparator algorithm begins with the basic Jaro algorithm and then proceeds
to three additional loops corresponding to the enhancements. Each enhancement makes use of
information that is obtained from the loops prior to it.
 The first enhancement due to McLaughlin (1993) assigns value 0.3 to each disagreeing but
similar character. Each exact agreement gets value 1.0 and all exact agreements are located prior
to searching for similar characters. Similar characters might occur because of scanning errors ("1"
versus "l") or keypunch ("V" versus "B"). The number of common characters (#common) in
equation (2.1) gets increased by 0.3 for each similar character, is denoted by #similar, and #similar

is substituted for #common in the first two components of equation (2.1).
 The second enhancement due to Winkler (1990) gives increased value to agreement on the
beginning characters of a string. It was based on ideas from a very large empirical study by Pollock
and Zamora (1984) for the Chemical Abstracts Service. The study showed that the fewest errors
typically occur at the beginning of a string and the error rates by character position increase
monotonically as the position moves to the right. The enhancement basically consisted of adjusting
the string comparator value upward by a fixed amount if the first four characters agreed; by lesser
amounts if the first three, two, or one characters agreed. The string comparator examined by
Budzinsky (1991) consisted of the Jaro comparator with only the Winkler enhancement.

Table 2.1 Comparison of String Comparators Using Last Names,
 First Names, and Street Names

 Two strings String comparator values
 Jaro Wink McLa Lynch Bigram

 SHACKLEFORD SHACKELFORD 0.970 0.982 0.982 0.989 0.925
 DUNNINGHAM CUNNIGHAM 0.896 0.896 0.896 0.931 0.917
 NICHLESON NICHULSON 0.926 0.956 0.969 0.977 0.906
 JONES JOHNSON 0.790 0.832 0.860 0.874 0.000
 MASSEY MASSIE 0.889 0.933 0.953 0.953 0.845
 ABROMS ABRAMS 0.889 0.922 0.946 0.952 0.906
 HARDIN MARTINEZ 0.000 0.000 0.000 0.000 0.000
 ITMAN SMITH 0.000 0.000 0.000 0.000 0.000

 JERALDINE GERALDINE 0.926 0.926 0.948 0.966 0.972
 MARHTA MARTHA 0.944 0.961 0.961 0.971 0.845
 MICHELLE MICHAEL 0.869 0.921 0.938 0.944 0.845
 JULIES JULIUS 0.889 0.933 0.953 0.953 0.906
 TANYA TONYA 0.867 0.880 0.916 0.933 0.883
 DWAYNE DUANE 0.822 0.840 0.873 0.896 0.000
 SEAN SUSAN 0.783 0.805 0.845 0.845 0.800
 JON JOHN 0.917 0.933 0.933 0.933 0.847
 JON JAN 0.000 0.000 0.860 0.860 0.000

 BROOKHAVEN BRROKHAVEN 0.933 0.947 0.947 0.964 0.975
 BROOK HALLOW BROOK HLLW 0.944 0.967 0.967 0.977 0.906
 DECATUR DECATIR 0.905 0.943 0.960 0.965 0.921
 FITZRUREITER FITZENREITER 0.856 0.913 0.923 0.945 0.932
 HIGBEE HIGHEE 0.889 0.922 0.922 0.932 0.906
 HIGBEE HIGVEE 0.889 0.922 0.946 0.952 0.906
 LACURA LOCURA 0.889 0.900 0.930 0.947 0.845
 IOWA IONA 0.833 0.867 0.867 0.867 0.906
 1ST IST 0.000 0.000 0.844 0.844 0.947

 The final enhancement due to Lynch and Winkler (1994) adjusts the string comparator value if
the strings are longer than six characters and more than half the characters beyond the first four

agree. The final enhancement was based on detailed comparisons between versions of the
comparator. The comparisons involved tens of thousands of pairs of last names, first names, and
street names that did not agree on a character-by-character basis but were associated with truly
matching records.
 A common string comparison methodology is comparing the bigrams that two strings have in
common. A bigram is two consecutive letters with a string. Hence the word “bigram” contains
the bigrams “bi” “ig” “gr” “ra”, and “am”. The bigram function also returns a value between 0 and
1. The return value is the total number of bigrams that are in common divided by the average
number of bigrams in the two strings. Bigrams are known to be a very effective, simply
programmed means of dealing with minor typographical errors. They are widely used by computer
scientists working in information retrieval (Frakes and Baeza-Yates 1992).
 Table 2.1 illustrates the effect of the new enhanced comparators on last names, first names, and
street names, respectively. To make the value returned by bigram weighting function more
comparable to the other string comparators, we make a functional adjustment. If x is the value
returned by the bigram weighting function, we use f(x) = x if x is greater than 0.8 and 0.00.2435

otherwise. If each string in a pair is less than four characters, then the Jaro and Winkler
comparators return the value zero. The Jaro and Winkler comparator values are produced by the
loop from the main production software (e.g., Winkler and Thibaudeau 1991) which is only entered
if the two strings do not agree character-by-character. The return value of zero is justified because
if each of the strings has three or less characters, then they necessarily disagree on at least one.
 In record linkage situations, the string comparator value is used in adjusting the matching weight
associated with the comparison downward from the agreement weight toward the disagreement
weight. Using crude statistical modeling techniques, Winkler (1990) developed downweighting
functions for last names, first names, street names, and some numerical comparisons that
generalized the original downweighting function introduced by Jaro.

Data and Matching Weights - Parameters

 In this section, we describe the fields and the associated matching weights that are used in the
record linkage decision rule. We do not give details of the EM algorithm or the assignment
algorithm because they have been given elsewhere (Winkler 1994).
 The fields used in the creation of mailing list during the 1995 test census are first name, last name
(surname), sex, month of birth, day of birth, year of birth, race, and Hispanic origin. The census
file is linked with an update file. These update files have been either I.R.S., driver’s license, or
school records. Only fields whose housing unit identifier agreed are compared in the first pass.
The housing unit identifiers were calculated by the Census Bureau’s geography division’s address
standardization software. It consists of a State Code, County Code, TIGER Line Id (e.g. a city
block), Side Id (right or left), house number, and apartment number. In the 1995 test census of
Oakland, California, 95.0% of the records file were geocoded with housing unit identifier. Also,
94.7% of the I.R.S. file records for the corresponding area were geocoded with housing unit
identifier. The names were standardized at a 95.2% rate in the test census file and 99.0% rate in
the I.R.S. file.
 Each parameter was assigned an agreement and disagreement weight. Certain parameters such
as first name are assigned a higher agreement weight. Since matching was done within a
household, surname carried had less distinguishing power than first name. After initial trial runs

and research of the output, the expectation-maximization software (EM) was run to produce the
parameters for the test.

Table 3.1 Parameters used in matching for the 1995
 test census of Oakland, California.

Parameter Agreement Disagreement
 weight weight

first 4.3385 -2.7119

last(surname) 2.4189 -2.5915
sex 0.7365 -3.1163
month 2.6252 -3.8535
day 3.5206 -2.9652
year 1.7715 -4.1745

Hispanic 0.2291 -0.3029
race 0.5499 -0.5996

String comparators were only used with first names and surnames. For example if the first names
were Martha and Marhta. The matching weight would be computed as follows.

 Jaro Wink McLa Lynch
 Comparator Value 0.944 0.961 0.961 0.971
 Matching Weight 3.943 4.063 4.063 4.134

The piecewise linear function that uses the value returned by the different string comparators to
adjust the matching agreement weight downward is detailed in Winkler (1990).

Results

 Results are presented in two parts. In each part, the different string comparators are substituted
in the string comparison subroutine of an overall matching system. The matching weights returned
by the EM algorithm are held constant. Two different versions of a linear sum assignment
procedure are used. For the description of the lsap, see Winkler 1994. The main empirical data
consists of three pairs of files having known matching status. In the first part, we show how much
the string comparators can improve the matching results. The second part provides an overall
comparison of matching methods that utilize various combinations of the new and old string
comparators and the new and old assignment algorithms.

Exact Matching Versus String Comparator Enhanced Matching

 In Figure 4.1, we illustrate how much string comparators improve matching in comparison
with exact matching. After ordering pairs by decreasing matching weight in the first and third
of the empirical data files, we plot the proportion of false matches against the total number of
pairs. We see that, if matching is adjusted for bigrams and the string comparators, then error

rates are much lower than those obtained when exact matching is used. Since exact matching is
not competitive, remaining results are only presented when string comparators are used.

Table 4.1 Matching Results At Different Error Rates
 1 Pair of Files with 4539 and 4859 recordsst

 38795 Pairs Agreeing on Block and First Char Last

 Link
 Error Link Clerical
 Rate match/nonm match/nonm

 0.002
 base 3172/ 6 242/64
 s_c 3176/ 6 236/64
 as 3176/ 6 234/64
 os_l 3174/ 6 242/64
 bigram 3224/ 7 174/63
 0.005
 base 3363/17 51/53
 s_c 3357/17 55/53
 as 3357/17 53/53
 os_l 3364/17 52/53
 bigram 3327/17 71/53
 0.010
 base 3401/34 13/36
 s_c 3396/34 16/36
 as 3396/34 14/36
 os_l 3402/34 14/36
 bigram 3376/34 22/36
 0.020
 base 3414/70 0/ 0
 s_c 3411/70 0/ 0
 as 3410/70 0/ 0
 os_l 3416/70 0/ 0
 bigram 3398/70 0/ 0

Overall Comparison of Matching Methods

 The baseline matching is done under 3-class, latent class models under the conditional
independence assumption. The 3-class models are essentially the same ones used in Winkler
(1994). Results are reported for error rates of 0.002, 0.005, 0.01, and 0.02, respectively. Link,
Nonlink, and Clerical (or Possible Link) are the computer designations, respectively. Match and
Nonmatch are the true statuses, respectively. The baseline results (designated by base) are

Table 4.2 Matching Results At Different Error Rates
2nd Pair of Files with 5022 and 5212 records
37327 Pairs Agreeing on Block and First Char
Last

 Link
 Error Link Clerical
 Rate match/nonm match/nonm

 0.002
 base 3475/ 7 63/65
 s_c 3414/ 7 127/65
 as 3414/ 7 127/65
 os_l 3477/ 7 63/65
 bigram 3090/ 7 461/66
 0.005
 base 3503/18 35/54
 s_c 3493/18 48/54
 as 3493/18 48/54
 os_l 3505/18 36/54
 bigram 3509/18 42/55
 0.010
 base 3525/36 13/36
 s_c 3526/36 15/36
 as 3526/36 15/36
 os_l 3527/36 14/36
 bigram 3543/36 8/73
 0.020
 base 3538/72 0/ 0
 s_c 3541/72 0/ 0
 as 3541/72 0/ 0
 os_l 3541/72 0/ 0
 bigram 3551/73 0/ 0

produced using the existing lsap algorithm and the previous string comparator (see e.g.,
Winkler 1990) but use the newer, 3-class EM procedures for parameter estimation (Winkler
1994). The results with the new string comparator (designated s_c) are produced with the
existing string comparator replaced by the new one. The results with the new assignment
algorithm (designated as) use both the new string comparator and the new assignment
algorithm. For comparison, results produced using the previous string comparator but with the
new assignment algorithm (designated by os_l) are also given. Finally, results using the bigram
adjustments are denoted by bigram.
 Matching efficacy improves if more pairs can be designated as links and nonlinks at fixed
error rate levels. In Tables 4.1-3, computer-designated links and clerical pairs are subdivided
into (true) matches and nonmatches. Only the subset of pairs produced via 1–1 assignments

Table 4.3 Matching Results At Different Error Rates
3rd Pair of Files with 15048 and 12072 Records
116305 Pairs Agreeing on Block and First
Character of Last Name

 Link
 Error Link Clerical
 Rate match/nonm match/nonm

 0.002
 base 9696/19 155/182
 s_c 9434/19 407/182
 as 9436/19 406/182
 os_l 9692/19 157/182
 bigram 9515/19 335/182
 0.005
 base 9792/49 59/152
 s_c 9781/49 60/152
 as 9783/49 57/152
 os_l 9791/49 58/152
 bigram 9784/49 66/152
 0.010
 base 9833/99 18/102
 s_c 9822/99 19/102
 as 9823/99 17/102
 os_l 9831/99 18/102
 bigram 9823/99 27/102
 0.020
 base 9851/201 0/ 0
 s_c 9841/201 0/ 0
 as 9842/201 0/ 0
 os_l 9849/201 0/ 0
 bigram 9850/201 0/ 0

are considered. In producing the tables, pairs are sorted by decreasing weights. The weights vary
according to the different model assumptions and string comparators used. The number of pairs
above different thresholds at different link error rates (0.002, 0.005, 0.01, and 0.02) are presented.
False match error rates above 2 percent are not considered because the sets of pairs above the
cutoff threshold contain virtually all of the true matches from the entire set of pairs when error
rates rise to slightly less than 2 percent. In each line, the proportion of nonmatches (among the
sum of all pairs in the Link and Clerical columns) is 2 percent.
 The results generally show that the different string comparators improve matching efficacy. In
all of the best situations, error levels are very low. The new string comparator produces worse
results than the previous one (see e.g., Winkler 1990) and the new assignment algorithm (when
combined with the new string comparator) performs slightly worse (between 0.1 and 0.01 percent)
than the existing string comparator and lsap algorithm. In all situations (new or old string

comparator), the new assignment algorithm slightly improves matching efficacy.
 To test the effect of the Winkler variant of the Jaro string comparator and bigrams on more
recent files, we use 1995 test census files from Oakland, California. The match rates were as
follows. In the first matching pass, we only used pairs of records that agreed on housing unit ID.
Those that were not matched were processed in a second pass. Blocking during the second pass
was on house number and first character of the first name. The results generally show that either
string comparator produces good results. The variant of the Jaro string comparator yields a
slightly smaller clerical review region.

Table 4.4 First Pass--Housing Unit Identifier match.
 Matching results of a pair files with
 226,713 and 153,644 records, respectively

 Jaro String Comparator Bigram
 Links Clerical Links Clerical
 78814 5091 78652 5888
Estimated
False Match 0.1% 30% 0.1% 35%
Rate

 Second Pass--House Number and First Character of
 first name. Matching results of a pair of files
 with 132,100 and 64,121 records, respectively

 Links Clerical
 16893 7207
Estimated
False Match 0.3% 40%
Rate

Summary and Conclusion

 Application of new string comparator functions can improve matching efficacy in the files having
large amounts of typographical error. Since many of the files typically have high typographical
error rates, the string comparators can yield increased accuracy and reduced costs in matching of
administrative lists and census.

References

Budzinsky, C. D. (1991), "Automated Spelling Correction," Statistics Canada.
Fellegi, I. P., and Sunter, A. B. (1969), "A Theory for Record Linkage," Journal of the American
 Statistical Association, 64, 1183-1210.
Frakes, W. B., and Baeza-Yates, R. (ed.) (1992), Information Retrieval: Data Structures &
 Algorithms, Upper Saddle River, NJ: Prentice-Hall PTR.

Hall, P. A. V., and Dowling, G. R. (1980), "Approximate String Comparison," Computing
 Surveys, 12, 381-402.
Jaro, M. A. (1989), "Advances in Record-Linkage Methodology as Applied to Matching the 1985
 Census of Tampa, Florida," Journal of the American Statistical Association, 89, 414-420.
Lynch, M. P., and Winkler, W. E. (1994), "Improved String Comparator," technical report,
 Statistical Research Division, Washington, DC: U.S. Bureau of the Census.
McLaughlin, G. (1993), Private communication of C-string-comparison routine.
Newcombe, H. B. (1988), Handbook of Record Linkage: Methods for Health and Statistical
 Studies, Administration, and Business, Oxford: Oxford University Press.
Newcombe, H. B., Kennedy, J. M., Axford, S. J., and James, A. P. (1959), "Automatic Linkage
 of Vital Records," Science, 130, 954-959.
Pollock, J. and Zamora, A. (1984), "Automatic Spelling Correction in Scientific and Scholarly
 Text," Communications of the ACM, 27, 358-368.
Winkler, W. E. (1985), "Preprocessing of Lists and String Comparison," in W. Alvey and B.
 Kilss, (eds.) Record Linkage Techniques- 1985, U.S. Internal Revenue Service, Publication
 1299 (2-86), 181-187.
Winkler, W. E. (1990), "String Comparator Metrics and Enhanced Decision Rules in the
 Fellegi-Sunter Model of Record Linkage," Proceedings of the Section on Survey Research
 Methods, American Statistical Association, 354-359.
Winkler, W. E. (1994), "Advanced Methods for Record Linkage," technical report, Statistical
 Research Division, Washington, DC: U.S. Bureau of the Census.
Winkler, W. E. (1995), "Matching and Record Linkage," in B. G. Cox (ed.) Survey Methods for
 Businesses, Farms, and Institutions, New York: J. Wiley.
Winkler, W. E., and Thibaudeau, Y. (1991), "An Application of the Fellegi-Sunter Model of
 Record Linkage to the 1990 U.S. Decennial Census," Statistical Research Division Report
 91/09, Washington, DC: U.S. Bureau of the Census.

