Research Reports

You are here: Census.govSubjects A to ZResearch Reports Sorted by Year › Abstract of RRS2008/11
Skip top of page navigation

Seasonal Heteroskedasticity in Time Series Data: Modeling, Estimation, and Testing

Thomas M. Trimbur and William R. Bell

KEY WORDS: seasonal adjustment, trend, unobserved component


Seasonal heteroskedasticity refers to regular changes in variability over the calendar year. Models for two different forms of seasonal heteroskedasticity were recently proposed by Proietti and by Bell. We examine use of likelihood ratio tests with the models to test for the presence of seasonal heteroskedasticity, and use of model comparison statistics (AIC) to compare the models and to search among alternative patterns of seasonal heteroskedasticity. We apply the models and tests to U.S. Census Bureau monthly time series of housing starts and building permits.

CITATION: Trimbur, Thomas M. and William R. Bell. Seasonal Heteroskedasticity in Time Series Data: Modeling, Estimation, and Testing. Statistical Research Division Research Report Series OR Study Series (SECTION #2008-NU). U.S. Census Bureau.

Source: U.S. Census Bureau, Statistical Research Division

Last revised: November 13, 2008

[PDF] or PDF denotes a file in Adobe’s Portable Document Format. To view the file, you will need the Adobe® Reader® Off Site available free from Adobe.

This symbol Off Site indicates a link to a non-government web site. Our linking to these sites does not constitute an endorsement of any products, services or the information found on them. Once you link to another site you are subject to the policies of the new site.

Source: U.S. Census Bureau | Statistical Research Division | (301) 763-3215 (or |   Last Revised: October 08, 2010