
    

West South-Central Division Single-Family Housing Starts Using Satellite 

Imagery Technical Documentation 

1. Introduction  
The U.S. Census Bureau has been exploring the feasibility of using satellite imagery to measure new 

residential construction activity for the Survey of Construction (SOC). Estimates for the West South-

Central (WSC) Division single-family housing starts utilizing satellite data are being published as an 

experimental data product1 to serve as proof of concept for satellite imagery as a data collection 

method for SOC.  

For permit issuing places in the SOC sample, samples of new residential building permits are 

selected monthly and data collection is accomplished by field representative interviews or site visits.  

With the new data collection method, satellite images for a subset of places in the SOC sample for 

the WSC division are collected monthly, allowing for the observation of all new residential 

construction in the selected places rather than a sample of new residential construction projects. 

The starts data obtained from the satellite image are then combined with the SOC survey data for 

sampled places not collected by satellite in the WSC division to compute a division level estimate of 

monthly housing starts.    

2. SOC background 

2.1 Sample Design   
The Survey of Construction sample design consists of three stages: (1) a subsample of the 2004 

Current Population Survey (CPS) primary sampling units (PSUs), which are land areas (groups of 

counties, towns or townships within a state) that represent the entire United States; (2) selection of 

permit/non-permit areas; and (3) a monthly selection of permits. The permit areas correspond to a 

building permit office (BPO). Currently, no changes to the sample design are planned to 

accommodate the introduction of satellite data collection.  See the SOC methodology page for 

additional details on the SOC sample design.  

2.2 Data Collection  
The major innovation for the experimental data product is the use of satellite imagery as a data 

collection method for the entire area covered by a BPO for a subset of BPOs in the current SOC 

sample. By observing the entire area covered by the BPO, the final stage of sample selection, the 

permit sampling stage, is eliminated, expanding the sample to include all permits from the selected 

BPO. For the initial satellite implementation, the selected BPOs are self-representing places from 

self-representing PSUs so their combined first and second stage sampling weights are equal to one.   

 

 
1 The Census Bureau has reviewed this product to ensure appropriate access, use, and disclosure avoidance protection of the confidential 

source data (Disclosure Review Board (DRB) approval number: CBDRB-FY25-0086). 

https://www.census.gov/construction/soc/methodology.html


3. Scope 

3.1 Geographic 
The current set of BPOs that are collected by satellite are self-representing BPOs from self-

representing PSUs in the current SOC sample for the West South-Central Division (Division 7). Given 

the limited use of satellite data collection at this time, the estimate is at the division level for this 

division only. This provides a more geographically granular tabulation than the current production 

estimate which goes down only to the region level.  

3.2 Type of Construction 
The estimate is limited to housing starts. Although there are many data items that are collected for 

SOC the focus for this product is housing starts because they are easily observable from satellite 

imagery and match the SOC definition of a housing start. Estimates for other construction stages will 

require further development and is an area of future research.    

3.3 Residential building type 
This product is limited to single-family homes because each observation corresponds to one housing 

unit and the estimate can be obtained by simply counting the number of observed starts.  

Furthermore, single-family homes are typically built in areas with other single-family homes. These 

single-family residential neighborhoods are easily identified on satellite imagery and are used in the 

building type model described in section 5.1 to limit the counting of starts to areas that are likely to 

contain single-family homes. However, multifamily buildings may be hard to distinguish from an 

office building or hospital at the start of construction. Estimating multifamily housing starts from 

satellite imagery is another area for future research.  

4. Image Collection  
Areas of interest (AOIs) for satellite data collection are selected from the existing SOC sample of 
permit issuing places, focusing on areas with significant single-family home construction activity. 
These AOIs include incorporated places (cities, towns, and villages), census-designated places 
(CDPs), counties, and unincorporated areas. Places refer to specific, bounded areas that are either 
incorporated under state law with their own local government or, in the case of CDPs, 
unincorporated but identified for statistical purposes. Counties, on the other hand, are larger 
administrative units that encompass multiple places as well as unincorporated areas. To define the 
exact boundaries of these AOIs, Census Tiger/Line Shapefiles are used. County geometries are 
derived from the U.S. County file, while geometries for places come from state-specific place 
files. Unincorporated areas of a county are determined by combining county geometries with 
incorporated places, identified through a spatial join using BPS data and place Tiger/Line Shapefiles, 
leaving the unincorporated portion as the new AOI for that county’s unincorporated area. 
  
Once the geometries are established, they are sent to an image vendor for augmentation to meet 
satellite tasking requirements. The vendor simplifies the AOIs by reducing the number of vertices to 
ensure the total for the project remains below a defined limit. Additionally, if an AOI is too small to 
meet tasking requirements, it may be combined with a larger nearby AOI. In some cases, the vendor 
may remove areas such as airports, state and federal parks, military bases, and bodies of water, 
where residential construction is not possible. We review the modified AOIs with the vendor to 
confirm that any changes are appropriate. These augmentations do not affect the original AOIs used 



for data reporting. Finally, the vendor and image provider assess whether the areas can be captured 
during the required timeframe before tasking begins. 
 
Ideally, satellite imagery would be captured on the first day of the month following the reference 

month. However, weather conditions can render an AOI or portions of an AOI unobservable by 

satellite on that exact day. A longer image collection window allows for a greater chance of obtaining 

usable satellite imagery. The current satellite tasking window has been set at the 25th of the 

reference month to the 5th of the following month.   

5. Measuring housing starts from satellite images 
Single-family housing starts are identified from satellite images using a series of Convolutional 
Neural Network (CNN) models and post-processing steps. To identify construction stages present in 
an image, we use a U-Net Attention model that integrates an attention mechanism in its encoder-
decoder structure.  This enhances the model’s focus on relevant spatial futures and is especially 
beneficial for distinguishing construction stages within cluttered satellite images.  The model’s 
prediction mask output is a grayscale Geo-TIF image file which consists of different grayscale colors 
for each pixel representing different categories of interest. Next a blob search process extracts 
clustered or connected pixels of the same classification, referred to as blobs. This provides a clear 
outcome of the property’s stage of construction without the need for third party parcel data.  Each 
blob represents one of the following: a pool, a roof, a particular stage of construction of a building, 
land, or vegetation.  Figure 1 provides an example of a satellite image and the corresponding 
construction stage prediction mask.  
 

 

Figure 1. Satellite image and construction stage prediction mask 

 



5.1 Exclusions  
To reduce noise in the blob search output, several filtering processes are applied to remove start 

blobs that are likely to be false positives. This includes overlaying start blobs with building footprint 

polygons available from Bing Maps and excluding start blobs that overlap with existing buildings.  

Additionally, start blobs are overlayed with known roads using the 2023 Tiger/Line Road Data to 

exclude starts that overlap with roads.  

A second CNN model is applied to the satellite images to classify areas by building type (single-family 

detached, single-family attached, multi-family, and non-residential). When identifying building type 

among a large area, images usually contain too many features so a DeepLabV3+ with ResNet50 

model architecture is employed.  This combination proved effective at handling complex urban 

features by grouping different small features.  Starts that fall into areas that are classified as multi-

family or non-residential are excluded from the satellite estimates for single-family starts.   

5.2 Business classification and additional exclusions 
Specific business rules are applied to interpret construction progress by analyzing transitions 
between predictions from the previous and current months. These rules help determine the 
construction status for each property site based on the logic defined in Table 1. 
 
For example, if a site was predicted to be in the LAND phase in the previous month and the current 
month shows EXCAVATION, the business class START is assigned, indicating that construction has 
progressed from land preparation to active development. Similarly, a transition from EXCAVATION 
to FOUNDATION would indicate further progress, thus the business class IN PROGRESS would be 
assigned.  
 
The previous month's blobs are matched with the current month's blobs using geo-metadata and 
matching algorithms, accounting for any size differences between the blobs across months. Once 
the business rules are applied, predictions are aggregated across the defined place. This aggregation 
provides an estimate of the number of construction starts, within a specific area.  
 
The model may predict some noise because of cloud cover, poor visibility, or limited sunlight during 
winter months. These cases can produce discrepancies in what should be observed. A post process 
step is taken to adjust these mis-matched areas accordingly. For example, if an area has been 
predicted to have a roof for 3 months, the likelihood of it becoming vegetation is highly unlikely. 
Therefore, we modify the result to be roof to roof which takes the MISSCLASSIFIED BACKWARDS to 
an EXIST category.  
 
Changing seasons are an additional source of noise in the model predictions. Houses with trees 
nearby may be classified as VEGETATION when leaves are present but classified as ROOF after the 
leaves fall. This results in START COMPLETION categorization, so named because the project moves 
from a preconstruction stage to a completed roof in a single month. The vast majority of blobs 
identified as START COMPLETION are noise. However, while the progression from a preconstruction 
stage (BACKGROUND, LAND, or VEGETATION) to a roof within a month is uncommon, it does occur, 
most often in areas with many construction projects occurring close together, such as a new 
neighborhood, and so cannot be completely ignored. Consequently, START COMPLETION blobs that 
lie within the same Geohash (see Section 5.3 below for more details on Geohashes) as a blob 
categorized as START are included in the starts estimate while all others are excluded.  



  
 

Table 1. Business classification rules based on construction stage predictions. 

 Current Month Prediction 

Previous 
Prediction  

Background   Land  Vegetation  Excavation  Foundation  Framing  Unfinished 
Roof  

 Roof  

Background  Unknown  Land  Land  Start  Start  Start  Start  Start 
Completion  

Land  Land  Land  Land  Start  Start  Start  Start  Start 
Completion  

Vegetation  Land  Land  Land  Start  Start  Start  Start  Start 
Completion  

Excavation  Image Error  Land  Land  In Progress  In Progress  In Progress  In Progress  Completion  

Foundation  Image Error  Misclassified 
Backwards  

Misclassified 
Backwards  

In Progress  In Progress  In Progress  In Progress  Completion  

Framing  Image Error  Misclassified 
Backwards  

Misclassified 
Backwards  

In Progress  In Progress  In Progress  In Progress  Completion  

Unfinished 
Roof  

Image Error  Misclassified 
Backwards  

Misclassified 
Backwards  

In Progress  In Progress  In Progress  In Progress  Completion  

Roof  Image Error  Misclassified 
Backwards  

Misclassified 
Backwards  

Start 
Reconstruction  

Start 
Reconstruction  

Start 
Reconstruction  

Rehab  Exist  

  



      5.3 Imputation  
As with other data collection methods, there can be missing data in the satellite imagery, most often 

due to cloud cover. The entire AOI could be missing, or more frequently, only part of an AOI is 

missing. Furthermore, there could be consecutive months of missing data for a given area. 

New residential construction is not typically evenly distributed across an AOI, which could be as 
large as an entire city or county. It is typically localized to a small number of areas with many new 
homes being built close together. When a partial AOI is observed, rather than applying a missing 
data mechanism at the AOI level, we take a localized approach using Geohashes. Geohash is a public 
domain geocoding system to define geographic areas in a hierarchical spatial structure. The number 
of characters in the hash represents the size, a 6-character Geohash is larger in area compared to 7-
character Geohash. For imputation, we divide an AOI into its component 7-character Geohashes 
(153m x 153m). At this more granular geographic level, both the assumption of evenly distribution 
construction activity in the current month and an assumed correlation in activity in consecutive 
months are more plausible than at the AOI level.  
 
When we encounter missing data for an entire Geohash or part of a Geohash, we draw from the 
most recent observed data for that Geohash to develop an imputed value for the missing data.  
When less than 50% of a Geohash is observed in the current month, the Geohash’s starts value is set 
to the maximum of the Geohash starts observed in the current month and the Geohash’s starts from 
the prior (or last observed) month.  When at least 50% of the Geohash is observed in the current 
month, the current month’s starts are adjusted by dividing the observed start by the proportion of 
the Geohash that is observed. For example, if 75% of the Geohash was observed and 3 starts were 
identified in the observed area, the final starts value for the Geohash would be calculated as 3/0.75 

= 4 starts.  

5.4 Capture window adjustment 
Capture window adjustment is used to adjust the post-imputed counts for the difference in days 
between image dates. Due to the long image capture window, the number of days between 
observations could vary between 20 days to 42 days. We adjust the estimated starts for a given area 
by the ratio of the number of days in the target month to the number of days between observations. 
  
For example, if the image for May was taken on June 1st and the image for June was taken on July 
4th, there would be 33 days between images when the June estimates were calculated and there are 
only 30 days in June. Therefore, the June estimate would be multiplied by 30/33 to correct for the 
length of time between observations.  

6. Estimation 
Currently, the SOC housing starts estimates are computed as the sum of the Survey of Use Permits 

(SUP) portion calculated from permit level data with a separate ratio estimator and the Non-Permit 

(NP) portion calculated as the weighted sum of observed new construction from sampled non-

permit areas. See the “Compilation of Data” section of the SOC technical documentation.  

However, the estimates obtained from the satellite imagery are at a BPO level and cannot be used 

with our current estimator which aggregates data at the permit level. Therefore, the WSC single-

family starts estimate for month t (𝑆̂𝑆𝑂𝐶,𝑡) is a hybrid estimate combining the place level estimates 

obtained from the satellite imagery (𝑆𝑆𝐴𝑇,𝑡) with a modified version of the currently used separate 

https://www.census.gov/construction/soc/methodology.html


ratio estimator for the non-satellite SUP places (𝑆̂𝑆𝑈𝑃_𝑁𝑆,𝑡) and the NP portion of the estimate (𝑆̂𝑁𝑃,𝑡) 

which remains unchanged. 

𝑆̂𝑆𝑂𝐶,𝑡 = 𝑆𝑆𝐴𝑇,𝑡 + 𝑆̂𝑆𝑈𝑃_𝑁𝑆,𝑡  𝑆̂𝑁𝑃,𝑡  

The 𝑆̂𝑆𝑈𝑃_𝑁𝑆,𝑡  is the sum of 14 ratio estimates consisting of monthly estimates for the most recent 

twelve months and two additional ratio estimates that collapse months 13-18 into a single estimate 

and months 19-60 into the final estimate. Each ratio estimate is of the form 𝐺𝑚̃,𝑡
𝑌𝑚̃

𝐻̂𝑚̃
, where 𝐺𝑚̃,𝑡is 

the SUP division estimate of units authorized in period 𝑚̃ and started in month 𝑡,  𝐻𝑚̃is the SUP 

division estimate of units authorized in period 𝑚̃, and  𝑌𝑚̃ is the Building Permits Survey (BPS) value 

of units authorized in the division in period 𝑚̃ and 𝑚̃ can be a single month or a collection of 

months.  

The modification introduced to the current SUP estimator for this WSC division estimate is the 

addition of a PSU calibration factor so that the weighted value of sampled permits for a given month 

from the non-satellite places in each sampled PSU equals the total number of permits for that month 

from non-satellite places in that PSU from the BPS. See  Appendix A for additional details about the 

estimation process.  

7. Reliability of data 

7.1 Sampling Error 
Sampling error for the non-satellite component is estimated using the modified half-sample method 

currently used for SOC. The satellite portion of the estimate has no sampling error because all the 

selected satellite places are self-representing and satellite data collection is attempted for all in-

scope areas for the selected places.  

7.2 Nonsampling Error 
Nonsampling error includes all sources of error, other than sampling error, that contribute to the 

total error of an estimate. Both the satellite and non-satellite portion of the WSC single-family 

housing starts estimate are subject to nonsampling errors. These include coverage errors, collection 

errors, measurement errors, imputation errors, errors due to nonresponse, and other processing 

errors. Although nonsampling error is not directly measured, quality control procedures are applied 

throughout the satellite and non-satellite data processes to minimize nonsampling errors.  

7.3 Nonresponse  
The current nonresponse adjustment method for SOC housing starts accounts for late reported 

starts that are expected to be received up to twelve months late by multiplying the SUP housing 

starts estimate by a nonresponse undercoverage adjustment factor (NUAF) computed at the region 

level. The WSC single-family housing starts estimate uses the same methodology but applied at the 

division level for the non-satellite component of the estimate, using only non-satellite sampled 

places in the computation of the NUAFs.  

 



8. Disclosure Avoidance 
The current SOC disclosure avoidance method of cell suppression will continue to be used, if necessary, 

for the WSC single-family starts estimates. The Census Bureau has reviewed this product to ensure 

appropriate access, use, and disclosure avoidance protection of the confidential source data 

(Disclosure Review Board (DRB) approval number: CBDRB-FY25-0086). 

 

 

Appendices 

A. Computer vision models  

A.1 General structure 
The encoder-decoder architecture is highly beneficial for tasks like semantic segmentation because it 
effectively balances feature extraction and spatial resolution restoration. In this architecture, the encoder 
focuses on extracting high-level, abstract features from the input image, such as shapes, patterns, and 
semantic information, by progressively downsampling the spatial dimensions and applying deep 
convolutional layers. Then the decoder restores the spatial details, ensuring fine-grained predictions by 
upsampling the features back to the original resolution. This combination allows the model to capture global 
context and preserve local details simultaneously. 

 
One of the key advantages of this architecture is its ability to learn features at multiple scales. The encoder 
compresses the image, enabling the model to capture large receptive fields and extract global information, 
while the decoder combines this with local features to produce detailed segmentation outputs. This multi-
scale learning is particularly useful for handling objects of varying sizes within an image. Additionally, skip 
connections or feature concatenation between the encoder and decoder facilitate the retention of fine-
grained spatial details, resulting in sharper boundaries and more accurate predictions. 

 
The encoder-decoder structure is also computationally efficient. By reducing the spatial dimensions in the 
encoder stage, the model can focus on learning complex semantic patterns while requiring less 
computational power. The decoder then uses this compact representation to reconstruct meaningful spatial 
information. Moreover, the flexibility of this architecture allows for easy adaptation to different tasks, such 
as semantic segmentation, medical image analysis, or instance segmentation, by integrating various 
backbone networks (e.g., ResNet or MobileNet) as encoders, depending on the task requirements and 
computational constraints. 

 
Another significant benefit is its robustness to noise and small datasets. The bottleneck structure in the 
encoder forces the model to learn essential features, which helps reduce overfitting on noisy data. 
Furthermore, pretrained encoders can be leveraged to transfer knowledge from large datasets, enabling 
efficient training even with limited labeled data. This architecture can also incorporate attention 
mechanisms, enhancing its ability to focus on the most important regions of the image, thus improving 
segmentation quality. 

 
Overall, the encoder-decoder architecture provides an elegant and effective solution for semantic 
segmentation by combining global context, local detail preservation, computational efficiency, and flexibility, 
making it a popular choice for dense prediction tasks. 



 

A.2 Construction Stage Model 

 
Figure 2. Construction stage model using Attention U-Net architecture. 

This model diagram represents an Attention U-Net architecture designed for semantic segmentation tasks. 
The architecture takes an input image of dimensions 256x256x3 and processes it through an encoder-
decoder structure, enhanced by attention gates to focus on relevant regions. The encoder consists of 
convolutional layers (3x3 convolutions with ReLU activation) and max-pooling layers (2x2) to progressively 
downsample the input and extract hierarchical features. Skip connections between the encoder and decoder 
preserve spatial details by directly transferring features from the encoder to corresponding layers in the 
decoder. 

 
The decoder upsamples the feature maps using transpose convolution (2x2) and refines them with 
convolutional layers, progressively reconstructing the segmentation map to match the input resolution. 
Attention gates (AG) are introduced along the skip connections to emphasize the most relevant features 
while suppressing background noise. These gates dynamically learn to focus on key regions by multiplying 
incoming feature maps with attention weights computed based on contextual importance. 
At the output, a 1x1 convolution layer maps the refined features into a segmentation mask of 256x256x7, 
where each pixel corresponds to one of the seven output classes. The use of attention gates ensures precise 
segmentation by enhancing the model’s focus on critical regions while reducing interference from irrelevant 
parts of the image, making this architecture particularly effective for tasks requiring fine-grained and 
accurate pixel-wise predictions. For additional details on Attention U-Net see Jing (2019).  

 

 

 



 

A.3 Building Type Model 

 
Figure 3. Building type model using a semantic segmentation architecture. 

The model diagram represents a semantic segmentation architecture designed to process an input image, a 
satellite image in our case, through an encoder-decoder framework. The process begins with the input image 
being fed into the encoder, which uses a ResNet50 backbone for feature extraction. The encoder captures 
hierarchical feature representations, progressing from low-level details like edges and textures to high-level 
semantic features. To enhance multi-scale feature learning, the architecture incorporates an Atrous Spatial 
Pyramid Pooling (ASPP) module within the encoder. This module consists of 1x1 convolutions for point-wise 
feature extraction, 3x3 convolutions with varying dilation rates (6, 12, and 18) to capture features at different 
spatial scales, and global image pooling to encode context across the entire image. The outputs of these 
operations are concatenated and passed through a 1x1 convolution to ensure compact and meaningful 
feature representations. 

 
The decoder complements the encoder by restoring spatial resolution and refining predictions. Low-level 
features from earlier layers of the encoder are integrated into the decoder through skip connections, 
ensuring that fine-grained spatial details are preserved. These low-level features are first processed using a 
1x1 convolution to reduce their channel dimensions, making them compatible with the high-level features 
from the ASPP module. The decoder upsamples the high-level features by a factor of four, combining them 
with the low-level features through concatenation. Additional refinement is achieved through a series of 3x3 
convolutions and further upsampling, which ensures that the output segmentation mask matches the 
resolution of the original input image. 

 
Finally, the model outputs a pixel-wise segmentation mask, which predicts the class of each pixel in the input 
image, such as building, road, or vegetation. This architecture combines global and local context, enabling 
accurate and high-resolution predictions. Its design leverages the strengths of both the encoder for abstract 
feature extraction and the decoder for spatial reconstruction, making it well-suited for complex semantic 
segmentation tasks. For additional details on semantic segmentation see Kou et al. (2022).  
 
 



 

B. Estimation details  

PSU calibration factor  
Divide the SUP sample of places (BPOs) into those selected to be collected by satellite (𝑄𝑆) and 

those that will not (𝑄𝑁). All calculations using SOC survey data detailed below only use records 
coming from places in 𝑄𝑁 .  

Let 𝑤𝑗be the final weight for permit 𝑗 (product of CPS sampling, SOC PSU sampling, place sampling, 

and permit sampling weights) and 𝑤𝑘
𝑃𝑆𝑈be the sampling weight for PSU 𝑘 (product of CPS sampling, 

SOC PSU sampling). Thus, the permit-place sampling weight for permit 𝑗  from place 𝑝 in PSU 𝑘 is 

𝑤𝑗
𝑝𝑒𝑟𝑚𝑖𝑡−𝑝𝑙𝑎𝑐𝑒

=
𝑤𝑗

𝑤𝑘
𝑃𝑆𝑈⁄ .  

Define the number of building permits authorized in month 𝑚 from place 𝑝 recorded in BPS as 𝑦𝑝,𝑚 

and let 𝐹𝑝=0 if place 𝑝 is a satellite collected place and 1 otherwise. Also, let 𝐴𝑗,𝑚 = 1 if permit 𝑗 was 

authorized in month 𝑚 and 0 otherwise. The PSU calibration factor for 𝑃𝑆𝑈𝑘 in month 𝑚 

(𝑤𝑃𝑆𝑈𝑘,𝑚

𝑐𝑎𝑙 ) is the ratio of the BPS value of permits authorized in month 𝑚 for non-satellite places in 

𝑃𝑆𝑈𝑘  (𝑌𝑃𝑆𝑈𝑘,𝑚
= ∑ 𝐹𝑝𝑦𝑝,𝑚𝑝∈𝑃𝑆𝑈𝑘

 ) to the SOC estimate of permits authorized in month 𝑚 for non-

satellite places in 𝑃𝑆𝑈𝑘  (𝐻𝑃𝑆𝑈𝑘,𝑚
= ∑ 𝐴𝑗,𝑚𝑤𝑗

𝑝𝑒𝑟𝑚𝑖𝑡−𝑝𝑙𝑎𝑐𝑒
𝑗∈𝑄𝑁∩𝑃𝑆𝑈𝑘

) 

𝑤𝑃𝑆𝑈𝑘,𝑚

𝑐𝑎𝑙 =
𝑌𝑃𝑆𝑈𝑘,𝑚

𝐻𝑃𝑆𝑈𝑘,𝑚

 

 

The final weight, 𝑤𝑗, for permit 𝑗 belonging to PSU 𝑘, authorized in month 𝑚 is multiplied by the 

corresponding PSU calibration factor to define the calibrated final weight (𝑤𝑗
∗) that will be used for 

the non-satellite portion of the estimate.   

𝑤𝑗
∗ = 𝑤𝑗𝑤𝑃𝑆𝑈𝑘,𝑚

𝑐𝑎𝑙  

Estimator  
The non-satellite estimate of housing starts uses the separate ratio estimator currently used for SUP 

estimation. It is the sum of 14 ratio estimates consisting of monthly estimates for the most recent 

twelve months and two additional ratio estimates that collapse months 13-18 into a single estimate 

and months 19-60 into the final estimate. Each ratio estimate is of the form 𝐺𝑚̃,𝑡
𝑌𝑚̃

𝐻̂𝑚̃
, where 𝐺𝑚̃,𝑡is 

the SUP division estimate of units authorized in period 𝑚̃ and started in month 𝑡,  𝐻𝑚̃is the SUP 

division estimate of units authorized in period 𝑚̃, and  𝑌𝑚̃ is the BPS value of units authorized in the 

division in period 𝑚̃ and 𝑚̃ can be a single month or a collection of months.  

Define  𝐼𝑗,𝑡 = 1 if permit j was a start in month 𝑡, and 0 otherwise. Then the non-satellite SUP 

estimate of units authorized in month 𝑚 and started in month 𝑡 is 



𝐺𝑚,𝑡 = ∑ 𝑤𝑗
∗𝐴𝑗,𝑚𝐼𝑗,𝑡

𝑗∈𝑄𝑁

 

 

 The non-satellite SUP estimate of the total number of permits authorized in month 𝑚 is 

𝐻𝑚=∑ 𝑤𝑗
∗𝐴𝑗,𝑚𝑗∈𝑄𝑁

 

Since all satellite collected places are in the BPS, we can remove their data from the BPS total. 

Currently, all satellite collected places are self-representing places from self-representing PSUs, so 

their SOC place level sampling weights are one. Therefore, we can subtract their unweighted 

building permits for each month, 𝑚, from the BPS total number of permits for that month (𝑌𝑚). 

Define the adjusted BPS total as 

𝑌̃𝑚 = 𝑌𝑚 − ∑(1 −

𝑝

𝐹𝑝)𝑦𝑝,𝑚 

The total starts estimate for the satellite collected places (all with sampling weight=1) is simply the 

sum of the place level estimates obtained from the satellite imagery for month 𝑡.  

𝑆𝑆𝐴𝑇,𝑡 = ∑ 𝑠𝑆𝐴𝑇,𝑝,𝑡

𝑝∈𝑄𝑆

 

The estimator for total single family starts for the division is given below.  

𝑆̂𝑆𝑂𝐶,𝑡 = 𝑆̂𝑆𝑈𝑃,𝑡 + 𝑆̂𝑁𝑃,𝑡 + 𝑆𝑆𝐴𝑇,𝑡  

𝑆̂𝑆𝑈𝑃,𝑡 = [ ∑ 𝐺𝑚,𝑡

𝑌̃𝑚

𝐻𝑚

12

𝑚=1

] + [ ∑ 𝐺𝑚,𝑡 [
∑ 𝑌̃𝑚

18
𝑚=13

∑ 𝐻𝑚
18
𝑚=13

]

18

𝑚=13

] + [ ∑ 𝐺𝑚,𝑡 [
∑ 𝑌̃𝑚

60
𝑚=19

∑ 𝐻𝑚
60
𝑚=19

]

60

𝑚=19

] 

where 𝑆̂𝑁𝑃,𝑡 = ∑ 𝑤𝑗𝐼𝑗,𝑡𝑗  
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