U.S. Department of Commerce
bureau of the census
U.S. Department of Housing and Urban Development

H-130-81-0.3
Issued December 1981

Market Absorption of Apartments

Third Quarter 1981 Absorptions (Completions in Second Quarter 1981)

Figure 1. Units in Apartment Buildings Started, Complated, and Absorbad: 1976 to 1981
thousands
thousands

QUARTER OF COMPLETION

Note Limited to buildings with five units or more in permit-issuing places.

1. Source: Construction Report, C20-81 8 laugust $1981 /$ table 2
2. Source: Construction Report, C22-81-8 1August 19811 zable i.

SUMMARY OF FINDINGS

Privately financed, nonsubsidized, unfurnished apartments completed during the April-June 1981 quarter were 81 percent absorbed (seasonally adjusted) 3 months after their completion. This is about the same as both the seasonally adjusted 3-month rate of 78 percent for apartments completed during the first quarter of 1981 and the seasonally adjusted rate of 76 percent for second quarter 1980 completions. Apartments which have been on the market for 9 months, those completed during October-December 1980, were 94 percent absorbed.

The median asking rent for newly constructed units was $\$ 356$ in the second quarter an increase of about 8 percent from the $\$ 330$ median for the first quarter of 1981. Apartments renting for less than $\$ 200$ accounted for 1 percent of the total, while those renting for $\$ 200-\$ 299$ accounted for 26 percent. In comparison, 39 percent rented for $\$ 300-\$ 399$ and 35 percent rented for $\$ 400$ or more.

The data are based on a sample survey and consequently the figures cited above are subject to sampling variability. As shown in table 3, the 81 and 94 percent figures are subject to sampling errors (i.e., standard errors) of 3.0 and 1.8 percentage points, respectively. This means that there are about two chances out of three that a complete count would be in the range of $81(\pm 3.0)$ percentage points and $94(\pm 1.8)$ percentage points. Sampling errors for the figures that follow are indicated in parenthesis. ${ }^{1}$

[^0]A total of $86,700(\pm 3,830)$ apartments were completed during the second quarter of 1981. Of the total, 27,100 ($\pm 1,810$) or 31 percent (± 2.0) were privately financed, unfurnished rental units built without Federal subsidy in buildings with five or more apartments. This is about the same as completions of comparable units in the first quarter of 1981 but 54 percent fewer completions than in the second quarter of 1980.

While the downward trend in completions of unfurnished apartments continues, cooperative and condominium apartment completions remain high at about one third- 36 percent (± 2.0) of all apartments completed during the second quarter. The 3 -month absorption rate for cooperatives and rond miniums during the second quarter was 67 perce.

Units in federally subsidized properties built under programs of the Department of Housing and Urban Development (Low Income Housing Assistance (Section 8), Senior Citizens Housing direct loans (Section 202) and all units in buildings containing apartments in the FHA rent supplement program) accounted for 29 percent (± 1.9) of completons. Historically, this percentage has fluctuated but has not exceeded 22 percent of total completions. The high second quarter figure may reflect a sampling aberration rather than an actual increase in these types of units.

Furnished rental units accounted for 1 percent (± 0.4) of apartment completions. The remaining 3 percent (± 0.7) include turnkey housing (privately built and sold to local public housing authorities subsequent to completion). The data on privately financed units include privately owned housing subsidized by State and local governments.

Table 1. CHARACTERISTICS OF APARTMENTS COMPLETED DURING THE SECOND QUARTER OF 1981 AND RENTED WITHIN 3 MONTHS

(Privately financed, nonsubsidized, unfurnished apartments. Data regarding number of bedrooms and asking rent are collected at the initial interview, i.e., 3 months following completion. Data not seasonally adjusted)

(X) Not applicable.

Figure 2. Median Rent of Apartments Completed in the United States: 1978 to 1981

Note: Limited to buildings with five units or more in permit-issuing places.

SAMPLE DESIGN

The SOMA is designed to provide data concerning the rate at which nonsubsidized and unfurnished privately financed units in buildings with five or more units are rented (or absorbed). In addition, data on characteristics of the units, such as rent and number of bedrooms, are collected.

The buildings selected for SOMA are those included in the Census Bureau's Survey of Construction $(S O C)^{2}$. For this survey, the United States is first divided into primary sampling units (PSU's) which are sampled on the basis of population. Next, a sample of permit-issuing places is selected within each sample PSU. Finally, all buildings within sampled places with five or more units as well as a subsample of buildings with one to four units are selected.

Each quarter, all buildings with five or more housing units in the SOC sample reported as completed during that quarter come into sample for SOMA. Buildings completed in nonpermitissuing areas are excluded from consideration. Information on the proportion of units absorbed 3,6,9, and 12 months after completion is obtained for units in buildings selected in a given quarter in each of the next four quarters.

[^1]Each quarter the absorption data for some buildings are received too late for inclusion in the report. These late data will be included in a revised table in the next quarterly report. (See table 2.)

ESTIMATION

Unbiased quarterly estimates are formed by multiplying the counts for each building by its base weight (the inverse of its probability of selection) and then summing over all buildings. The final estimate is then obtained by muftiplying the unbiased estimate by the following ratio estimate factor:

> total units in $5+$ buildings in permit-issuing areas as estimated by the SOC for that quarter
> total units in $5+$ buildings as estimated by SOMA for that quarter

When all the completed $5+$ buildings in the SOC are designated for SOMA, as is currently the case, this ratio estimate factor will be close to 1 . This procedure produces estimates of the units completed in a given quarter which are consistent with the published figures from the Housing Completions Series, ${ }^{3}$

[^2]
Table 2. CHARACTERISTICS OF APARTMENTS COMPLETED DURING THE FIRST QUARTER OF 1981 AND RENTED WITHIN 3 MONTHS (REVISED)

> (Privately financed, nonsubsidized, unfurnished apartments. Data regarding number of bedrooms and asking rent are collected at the initial interview, i.e., 3 months following completion. Data not seasonally adjusted)

[^3]Table 3. ABSORPTION RATES OF PRIVATELY FINANCED NONSUBSIDIZED UNFURNISHED APARTMENTS: 1978 TO 1981

Quarter of completion	Total units completed		Seasonally adjusted rented within 3 months		Wot seasonally adjusted - rented withim-									
			3 months	6 montha		9 monthes		12 months						
	Number	Samm pling error*			Percent	```Sampling error* (per-- centage points)```	Percent	$\begin{aligned} & \text { Sampling } \\ & \text { errot* } \\ & \text { (per- } \\ & \text { centage } \\ & \text { points) } \end{aligned}$	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	```Sampling error* (per- centage points)```	Percent.	$\begin{gathered} \text { Sampling } \\ \text { arror* } \\ \text { (per-" } \\ \text { centage } \\ \text { poines) } \end{gathered}$	Percernt	$\begin{gathered} \text { Sampling } \\ \text { errort } \\ \text { (per- } \\ \text { centage } \\ \text { poincs) } \end{gathered}$
1978														
January- - Maxch........	47. 200	1,880	82	2.2	79	2.4	94	1.4	98	0.8	98	0.8		
April -June...........	53,600	1,890	80	2.2	84	2.0	95	3.2	98	0.8	99	0.5		
July-September.......	71,500	2,220	80	1.9	83	1.8	92	1.3	97	0.8	99	0.5		
October-December.....	56,400	2,140	85	1.9	81	2.1	93	1.2	97	0.9	98	0.7		
1979														
January-March........	53,900	2,060	86	1.9	83	2.0	95	1.2	99	0.5	99	0.5		
	59,900	2,260	80	2.1	84	1.9	94	1.2	97	0.9	98	0.7		
July -September.	66,700	2,430	81	1.9	82	1.9	92	1.4	97	0.8	99	0.5		
October-December....	60,600	2,360	84	1.9	81.	2.0	93	j. 3	97	0.9	99	0.5		
1980														
Jamuary-Maxch........	51,900	2,220	74	2.4	72	2.5	89	1.7	95	1.2	97	0.9		
April-June...........	58,800	2,340	76	2.2	79	2.1	93	1.3	96	1. 0	98	0.7		
July -September	46,300	2,200	75	2.5	76	2.5	90	1.8	95	1.3	48	0.8		
October-Deceraber.	37,000	1,990	74	2.8	70	3.0	86	2.3	94	1.6	(NA)	(NA)		
1981														
January Marchr.	31,300	1,780	78	2.9	77	3.0	94	1.7	(NA)	(a)	(NA) :			
Apris -June.	27,100	1,810	81	3.0	84	2.8	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)		
July-September....... October--December														

and also reduces, to some extent, the sampling variability of the estimates of totals.
it is assumed that the absorption rates and other characteristics of units not included in the interviewed group or not accounted for are identical to rates for units where data were obtained. The noninterviewed and not-accounted-for cases constitute less than 2 percent of the sample housing units in this survey.

RELIABILITY OF THE ESTIMATES

There are two types of possible errors associated with data from sample surveys: sampling and nonsampling errors. The following is a description of the sampling and nonsampling errors associated with SOMA.

Nonsampling Errors

In general, nonsampling errors can be attributed to many sources: inability to obtain information about all cases, definitional difficulties, differences in the interpretation of questions, inability or unwillingness to provide correct information on the part of respondents, mistakes in recording or coding the data, and other errors of collection, response, processing, coverage, and estimation for missing data.

Sampling Errors

The particular sample used for this survey is one of a large number of possible samples of the same size that could have been selected using the same sample design. Even if the same questionnaires, instructions, and interviewers were used, estimates from each of the different samples would differ from each other. The deviation of a sample estimate from the average of all possible samples is defined as the sampling error. The standard error of a survey estimate attempts to provide a measure of this variation among the estimates from the possible samples and, thus, is a measure of the precision with which an estimate from a sample approximates the average result of all possible samples.

As calculated for this survey, the standard error also partially measures the variation in the estimates due to response and interviewer errors (nonsampling errors), but it does not measure, as such, any systematic biases in the data. Therefore, the accuracy of the estimates depends on both the sampling and nonsampling error measured by the standard error, biases, and some additional nonsampling errors not measured by the standard error.

The sample estimate and its estimated standard error enable the user to construct confidence intervals, ranges that would include the average result of all possible samples with a known
probability. For example, if all possible samples were selected, each of these were surveyed under essentially the same general conditions, and an estimate and its estimated standard error were calculated from each sample, then:

1. Approximately 68 percent of the intervals from one standard error below the estimate to one standard error above the estimate would include the average result of all possible samples.
2. Approximately 90 percent of the intervals from 1.6 standard errors below the estimate to 1.6 standard errors above the estimate would include the average result of all possible samples.
3. Approximately 95 percent of the intervals from two standard errors below the estimate to two standard error above the estimate would include the average result of all possible samples.
For very small estimates, the lower limit of the confidence interval may be negative. In this case, a better approximation to the true interval estimate can be achieved by restricting the interval estimate to positive values, that is, by changing the lower limit of the interval estimate to zero.

The average result of all possible samples either is or is not contained in any particular computed interval. However, for a particular sample, one can say with specified confidence that the average result of all possible samples is included in the constructed interval.

The conclusions stated in this report are considered significant at the 95 percent confidence level.

For example, table 1 of this report shows that there were 14,000 apartments with two bedrooms in the second quarter of 1981. The standard error of this estimate is 1,400 . The 68 percent confidence interval as shown by these data is from 12,600 to 15,400 . Therefore, a conclusion that the average estimate derived from all possible samples lies within a range computed in this way would be correct for roughly 68 percent of all possible samples. Similarly, we could conclude that the average estimate derived from all possible samples lies within the interval from 11,200 to 16,800 (using twice the standard error) with 95 percent confidence.

The data in this report are preliminary and subject to slight changes in the annual report.

Table 4. COOPERATIVE AND CONDOMINIUM APARTMENTS-TOTAL COMPLETED, PERCENT OF ALL $5+$ UNITS, AND ABSORBED WITHIN 3 MONTHS: 1978 TO 1981
(Exivately financed, nonsubsidized apartments in buildings with five units or more. Data not seasonally adjusted)

*Standard error within range of about 2 chances out of 3. $r_{\text {Revised. }}$

Table 5. HOUSING UNITS COMPLETED IN BUILDINGS WITH FIVE UNITS OR MORE: 1979 TO 1981
(Limited to buildings in permit-issuing places)

$\begin{gathered} \text { Quarter } \\ \text { of } \\ \text { completion } \end{gathered}$	Total		Unfurnished apartments		Fuwnished apartments		Cooperatives and condominiums		Federally subsidized		Other ${ }^{2}$	
	Number	Sampling error*	Number	Sampling errox*	Number	Sampling error*	Number	Sampling error*	Numbex	$\begin{gathered} \text { Sanpling } \\ \text { error** } \end{gathered}$	Number	$\begin{gathered} \text { Sampling } \\ \text { exxow } \end{gathered}$
1979												
January-March .	91,100	3,930	53,900	2,060	3,500	730	16,700	1,510	14,800	1,440	2,000	560
Aprix-Tune.	107, 00	4,300	59,900	2,260	1,900	540	23, 200	1,760	21, 700	1,710	900	380
July-September.	123,400	4,630	66,700	2,430	3,700	760	23,300	1,790	27,100	1,900	2,600	640
October-December.	11.7,300	4,510	60,600	2,360	3,000	680	28,600	1,930	23,900	1,800	1, 200	430
1980												
January-March..	105,200	4,250	51,900	2,220	3,200	700	28,400	1,900	20,300	1,660	1,400	470
April-June...	115, 600	4,470	58,800	2,340	2,800	660	32,600	2,020	20,200	1,670	1,200	430
July-September...	107, 700	4,300	46,300	2,200	1,500	480	34, 800	2,040	19,800	1,650	5,300	900
October-December.	90,500	3,920	37,000	1,990	2,300	600	28,100	1,840	20,300	1,640	2,800	660
1981												
January-March ${ }^{\text {r }}$...	70,600	3,430	31,300	17,800	1,400	470	22,600	1,640	10,600	1,220	4,800	850
April--June......	86,700	3,830	27,100	1,810	1,200	430	31,000	1,880	24,800	1,750	2,500	620
October-December.												

*Standard error within range of about 2 chances out of 3 , revised.
${ }^{1}$ Other includes turnkey housing (privately built and sold to local public housing authorities subsequent to completion).

Official Business

[^0]: ${ }^{1}$ See reliability of estimates on page 5 .

[^1]: ${ }^{2}$ See "Housing Starts," Construction Reports, Series C20, for details of this survey.

[^2]: ${ }^{3}$ See "Housing Completions," Construction Reports, Series C22.

[^3]: *Standard error within range of about 2 chances out of 3. (X) Not applicable.

