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INTRODUCTION

The intention of this paper is to define and estimate
several classes of models of seasonal behavior. A stochas-
tic model will be formulated for each of several unob-
served components that then add to give an observed
series. The statistical problem is first to choose the
appropriate model from the class, then to estimate the
unknown parameters of the model, and finally to estimate
the values of the unobserved components. When one of
the components is a seasonal, the end result is a seasonally
adjusted data series.

There are at least three advantages of this approach to
seasonal adjustment. First, with an explicit statistical
model of the seasonal process, it is possible to calculate
the properties of different methods and the variances of
individual component estimates. Second, the method of
seasonal adjustment will be tailored to the characteristics
of the series, and third, it is possible to incorporate
additional information about economic trends and cycles,
weather, strikes, and holidays which will help distinguish
seasonal from nonseasonal behavior and will provide
means for automatically correcting for phenomena that
are normally treated as outliers.

This approach to seasonal adjustment was introduced
by Grether and Nerlove [14], following the similar discus-
sions in Nerlove [23] [24]. The Grether-Nerlove study
assumed that not only the true model but even the
parameter values were known. Based on these data, the
optimum seasonal adjustment filter was calculated as a
signal extraction problem.

Four problems make implementation of this procedure
formidable. First is the assumption that the .model and
parameters are all known or that they are valid for every
series. Second, the calculations involved in deriving the
filter are quite difficult and are different for each model.
Third, the technique is limited to stationary processes and
will not easily incorporate causal series or nonstationary
means. Finally, the filters are generally infinite in length
so there is a truncation problem and a difficulty with the
initial values.

Pagan [26; 28; 29], in extending this approach, has
estimated the parameters of the Grether-Nerlove model
and has suggested the desirability of using Kalman filtering
techniques to estimate the unobserved components. How-
ever, he did not compare these procedures with alterna-
tives and did not adapt his methods to problems with
causal variables.

In the second section of this paper, a class of seasonal
unobserved component models without causal variables is
defined. The third section describes the Kalman filter and
its application to extraction of seasonals. The fourth
section suggests several estimation procedures which are
tried on a simulated series in the fifth section. Here the
data are filtered and compared with the X-~11 method and
with the true nonseasonal component. The sixth section
introduces the class of seasonal, unobserved component
models with exogenous variables. The estimation and.
filtering problems are discussed, and, in the seventh
section, several unobserved component models are esti-
mated- and compared for seasonally unadjusted monthly
retail sales.

A CLASS OF UNOBSERVED COMPONENT
SEASONAL MODELS WITHOUT CAUSAL
VARIABLES

As the class of integrated autoregressive moving average
models (ARIMA) have proved very fruitful for modeling
univariate time series (see [41), they form ideal models for
unobserved components. A wide class of models can be
derived by assuming that a seasonal variable and a
nonseasonal variable each follow an ARIMA model of
some form with independent innovations, and that their
sum plus, perhaps, a white-noise term, is an observable
data series. This additive decomposition applies, without.
loss of generality, to a purely multiplicative model by
letting the components be logarithms of the multiplicative
factors. Thus far, the distributional properties of the
disturbances have not been specified. However, mixed
additive-multiplicative models or models that change over
the sample period are more difficult. (See Durbin [7] for
an example.) If a data series y is assumed to be additively
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composed of a seasonal component s, a nonseasonal
component x and an irregular component ¢, then in terms
of the lag operator L, the model can be written

y=s+x+e€, )
(1-LY*s A AL)x=B AL)e, (V)

(1LY AL )s=BAL")e, €)

Here, the x process is ARIMA (p,,d;, q.), where pr and
q. are the orders of the lag polynomials 4, and B,,
respectively. The seasonal s also follows an ARIMA
process but in terms of r-period lags where r is the period
of the seasonal. A particular member of this class can be
characterized by the parameters of each of the processes
and the relative variances of the epsilons. The defining
characteristic of the seasonal is that it depends only upon
the r** lags. This turns out not to be the assumption used
in the work of Grether and Nerlove, although there is no
reason why one could not expand the specification of the
. seasonal to include a first-order moving average if there
were reasonable a priori reasons to expect that the
seasonal would have such a term.

This class of unobserved components autoregressive-
moving average models: (UCARIMA) will be considered
the class of structural models. Corresponding to each
structural model (which has unobserved endogenous vari-
ables) is a reduced form model that includes only observ-
able variables. This reduced form model will also be an
ARIMA model, which can be easily estimated using
familiar techniques. However, the statistical problem is to
identify the form of the structural relations and to identify
and estimate the parameters of these relations. These
parameters are required for the construction of the filter
that will ultimately estimate the values and distribution of
the unobserved components. Unlike the forecasting prob-
lem, where only the reduced form parameters are required,
the seasonal adjustment process depends upon estimation
of the structure.

The reduced form corresponding to the structural rela-
tions (1)~(3) is derived by premultiplying the first equation
by the operators on the left of equations (2) and (3) and
substituting to obtain

(1-L)z(1-L"); A L)AL )y=(1-L)z A, L)BL")e,
+(-LfAMLIBAL)er
+(1-L); (A-LN34.L)ALe, @)

The error term of this model is a very complicated
function of unknown parameters, which has been called
by Pagan [25] a composite error term. However, it has
the property that after a certain number, gy, all the
autocorrelations will be identically zero. Anderson [3] has
proven that any process with this characteristic has an
invertible moving average representation of order gp.y.
For the UCARIMA class described here, g,y is given by

SECTION V
Qmax=max(d.r+pz+qsr: dyr+p,r+q.,
dz+dsr+patpsr) ®

as long as all of the variances are nonzero. If one of the
variances is zero, then its term is merely eliminated from
the maximum in obvious fashion.

Equation (4) is, therefore, a seasonal ARIMA model
with differencing of orders d, and d,, of the nonseasonal
and seasonal, respectively, multiplicative autoregressive
errors of order p, and p,, and a moving average of order
gmax- In Box and Jenkins’ notation, this is p=p,. P=p,
d=d,, D=d, q=qua;, Q=0. It is important to notice that,
although the autoregressive part is a multiplicative model,
the moving average part is not a multiplicative model of
seasonal and nonseasonal parts. The normal multiplicative
constraint is not true.

How general is the class of UCARIMA models, or, n
other words, is there at least one UCARIMA model
corresponding to any observable ARIMA process? If the
variances of the innovations are allowed to be zero, then
there always exists trivially a member of UCARIMA
corresponding to an ARIMA model. If, however, the
variances are restricted to be nonzero, there are many
ARIMA models without a structural counterpart. In partic-
ular, any model with moving average order less than the
auto-regressive order would not have an UCARIMA
counterpart. The appearance of such models in empirical
work suggests that either, through the séarch for parsimon-
ious models, some nonzero moving average coefficients
are set to zero or that the variances of some components
may be zero. Alternatively, perhaps other models, such
as the causal models (to be discussed later in this paper)
are the true generating equations to which the ARIMA
model is merely a good approximation.

A second question is whether there may be more than
one structural relation corresponding to a particular re-
duced form model, or, in other words, is the structural
model always identified if the reduced form is known?
There are many cases where the structural model is
underidentified, either through the parameters not being
uniquely derivable from the reduced form parameters or
that even the form of the structural model is not identified.

Underidentified models are considered by both Pierce
[27] and Box, Hillmer, and Tiao [5]. In each case, only
one structural formulation would give the observed re-
duced form, however, several possible parameter values
were consistent with this model. Each employed the
principle of minimum variance for the seasonal component
to identify this parameter.

When ARIMA models of order greater than one or
models with three components are used, it is quite
common that the reduced form is overidentified. In this
case, there are parameter restrictions among the reduced.
form parameters that could be imposed. If these overiden-
tifying restrictions are imposed, generally improved esti-
mates of the reduced form will be achieved, and a unique
structural model can be obtained from the reduced form
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parameters. If the restrictions are not imposed, the esti-
mation is less efficient, and the equations relating the
reduced form coefficients to the structural parameters
will, in general, be inconsistent, leading to no solution.
By ignoring some of these equations, of course, an
estimate, or several estimates, can be obtained.

In this paper, two overidentified models will be consid-
ered. In each case, the estimation problems imposing the
restrictions are far greater than those without these
restrictions. Furthermore, some of the equations relating
the reduced form coefficients to the structural coefficients
are far more complicated than the others. Thus, it is
natural to ask what loss in efficiency results from not
imposing these restrictions and ignoring the complicated
transformation equations.

KALMAN FILTERING

Although the primary purpose of this paper is the
estimation of the structural parameters, it is useful first to
consider the problem of estimating the values of the

unobserved components, given the true structural model |

and values of its parameters. The solution to this problem
was initially given by Wiener [34] and Whittle {33] and
applied by Grether and Nerlove [14]. Based upon the
parameters of the model, the weights of the optimum
linear time invariant signal extraction filter can be algebra-
ically calculated. The calculation requires factoring the
covariance-generating function that is, in general, a diffi-
cult numerical procedure. In addition, the weights,
whether one sided or two sided, will, in general, extend
to infinity, and, therefore, there are both truncation and
initial-value problems.

Pagan [26] has suggested that a computationally simpler
way to obtain the Wiener filter is through the use of the
Kalman filter. The Kalman filter, originally introduced
into engineering by Kalman [16] and Kalman and Bucy
[17], is now becoming familiar in economics through work
by Taylor [32], Chow [6], and many others. It provides a
set of recursive formulas which calculate the mean and
variance of the unobserved components at each time
- conditional on a particular information set. If the informa-
tion set includes all past and current data on the observa-
ble variables, then this is the filtering problem. If current
data are not included, it is a forecasting problem, and if
future data are included, the problem is called a smoothing
problem. Additional information, which is generally as-
sumed to be available, is the mean and variance of the
initial conditions. Commonly, an informative or a diffuse
prior distribution is used when such data are not available.

The filtering equations are written recursively to give
the best linear unbiased estimate of the unobserved
component, one period ahead, based on the similar
estimate of the component this period. In a time invariant
problem, the filter weights are not time invariant, because
the initial condition introduces transients. These eventually
damp out leaving the time invariant Wiener filter. The
Kalman equations, however, are more general than the
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Wiener formulation of the problem, since the known
parameters of the problem are permitted to change over,
time. leading to a nonstationary output time series and, of
course, a time-varying filter. This formulation is especially
useful when exogenous variables are included in the
model.

A brief statement of the Kalman result may be helpful.
Without loss of generality, the models in equations (1)-(3)
can be rewritten in the state-space formulation. This
formulation increases the dimension of the vector of
unobserved components, while reducing the problem to a
first-order Markov representation plus noise. Letting w;
be a k-dimensional column vector of unobserved states, ¢
a matrix of transition coefficients, and € a vector of
disturbances with covariance matrix Q, the state equation
is written

w=¢dw,1+€ ©)
and the observation equation is written

ye=Hw+mn, N

where y, is a vector (although, in most of these applica-
tions, it is a scalar) of observables, H is a matrix of
known constants, and m, is a vector of disturbances with
covariance matrix R. The disturbances are assumed to be
Gaussian white-noise processes, and € and » are uncorre-
lated. If the errors are not white noise, then the dynamics
of the system can be expanded to include this process as
well.
As an example, consider the system

y=s+x+e€,
S=Qs_4+€
x=B1x_1+Bx o t€r ®

For this system, the state vector w must be augmented to
convert the transition equation into a first-order system.
The matrices have the form

x B, B, 0 0 00
Xy ' 0 0000
s oo 000«
w=l s, J®= 1o o 1000
52 0 0 0100
Soa 0 0 0010
ot
o 0
ot
Q= '0
o 0
0
R=0%, H=(101000) ©)

Notice that although there are only two unobserved
components, the state vector is six dimensional to adjust
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for the higher order dynamics. If the x equation were
generalized to include a first-order moving-average term

x=P1x_1+Box o t€rtyes,

then the first three rows and columns of the w, ¢, and Q
matrices would become

x B B v o, 0 of
w=(x,,),¢=(l 0 0),Q=(0 0 O)

€ 0 0 0 oz 0 o

In both these examples, the Q matrix is singular, and, in
the last, the ¢ matrix is also singular.

The Kalman filter calculates the conditional expectation
and variance of w, given the Gaussian data y, ... y
initial conditions w, and V, and the parameters of (6) and
(7). This is the optimum estimate in terms of minimizing
mean-squared error and will be linear in the data. Denoting
the conditional mean and variance by wy, and V., the
essential simplification of the Kalman filtering equations is
to recognize that the optimal estimate at time ¢ depends
only on the optimal estimate at time ¢-1, (W) and the
new data y,. The equations have been derived in many
sources;! thus, only an intuitive explanation for the
procedure will be given here. '

The proof, however, can be easily motivated by consid-
eration of the joint density of w, and y,, conditional on y,,

. .» ¥t-;. From normality, the expectation of w,, condi-
tional on y, (and y,, . . ., y.1); is a linear function of the
means of w, and the deviation of y, from its mean.

That is

Weue=Wy—1+H K (Vi=Ytie-1)

where K, is a matrix called the Kalman gain, which
depends upon the variances and covariances of the ran-
dom variables. As all variance matrices are known at the
beginning, K, does not depend upon the data; however, it
. is dependent upon ¢, and, therefore, the Kalman filter is a
time-varying linear filter.
The equations that determine K, as well as w,, and V',
are—

1. wye—1=dWgj—y

2. wy=wy+ Ky ~Hwyy_y)

3. V1=V 119" +Q

4. Vy=Vir—VipsH' HV oy H'+R)HV yyyy

5. K=V H'HV )i H' +R)™? 10)

For many applications in seasonal adjustment, two-
sided filters are desired, since historical data must also be
seasonally adjusted and it might be sensible.to use
subsequent information. It is easy to include a fixed
number of future observations in each state estimate. In

t See, e.g., [6].

SECTION V

-the example of equation (9), if one wished to calculate

Wy SO that one future observation would be used in
calculating the current estimate, the H matrix could
merely be redefined as H=(0, 1, 0, 1, 0, 0). Here, there is
not even an increase in dimension of the state vector;
however, in general, there would be, and, for long fixed
leads, this could be very substantial.

The best estimate, based on all the data, is the condi-
tional expectation of the state, given y,, ..., y,. This
optimal smoothing problem has well-known solutions (see
[8] for a list of different solutions), but Fraser and Potter
[11] and Mehra [18] were the first to note a clever
formulation of this result, which is implemented in Cooley
and Wall [21]. The estimate w,, could be combined with
the estimate of a reverse Kalman filter that uses only
future data. The two estimates are Gaussian, and, because
the innovations are white noise, they are independent.
These estimates can be optimally combined, based on the
variances to yield w,,. This estimator is demonstrated to
be numerically equal to the optimal smoother. Because
the variances are large at the beginning of the sample
period, the reverse filter will initially receive most impor-
tance, while at the end of the period, the forward
estimates will be chosen. This set of smoothed estimates
is a two-sided filter, which optimally wraps itself up at
each end of the sample period.

A second extension of the Kalman filter, beyond the
formulation in (10), is its application to time-varying
systems. The recursive formulas can be used equally if ¢
and H, and even Q and R, have time subscripts. In each
place, the current matrix is used. This feature fully sets
the Kalman filter apart from the signal extraction problem,
which cannot deal easily with any type of nonstationarity.
In particular, when exogenous variables are introduced in
the sixth section, a time-varying ¢ matrix will be needed,
since some of its elements will be the data on the
exogenous variables.

ESTIMATION OF UCARIMA MODELS

The estimation of unobserved component autoregressive
moving average models is a very complicated process.
Several approaches have been suggested that might be
separated into full and limited information methods. The
most direct approach, following Schweppe [31] and Sarris
[20],-is to maximize the likelihood under Gaussian assump-
tions. A direct way to evaluate the likelihood for any set
of parameters is available from the Kalman filter output.
The log likelihood L is given by Schweppe [31]

T
L=const+ Y (log det P;ii-u P,
t=1
=y ~Hwy,
P¢=HV”‘_1H'+R (l 1)

where w, is the innovation at time ¢t and P, is its
covariance matrix.



ENGLE

The log likelihood can be maximized, using a variety of
algorithms. Pagan [28] has applied this technique with a
variety of nonlinear optimization methods and finds mixed
results, with some preference for a modified Gauss-New-
ton method but also with satisfactory convergence with
the Davidon-Fletcher-Powell algorithm. When the maxi-
mum is reached, the estimate is full-information-maximum
likelihood, FIML.

An alternative approach, also suggested by Pagan [251,
is to begin with the reduced form ARIMA version of the
model in equation (4). If all the constraints implicit in the
formulation were imposed, the likelihood function would
be identical to that in (11), except, perhaps, for the
treatment of starting values that could introduce a Jaco-
bian, depending on the particular assumptions used. It
‘might be that some constraints should sensibly be ignored
for computational convenience, since only efficiency and
not consistency would be impaired. As mentioned previ-
ously, the constraints on the moving average parameters
are very complicated, and there would be substantial
savings on computation from ignoring them. Zero restric-
tions in the moving averages can, however, easily be
imposed, although, generally, these would not be sufficient
to identify a unique structure. The suggestion made here
is to estimate the moving average terms without con-
straints but draw the parameter estimates from the auto-
regressive coefficients. The estimates are, therefore, lim-
ited information estimates, since some prior restrictions
are not imposed. Pagan’s results from the relaxation of
the constraints differed little from his full maximum
likelihood estimates. Although this could be a result of his
particular problems, one would expect, with a large
sample, that the estimates would differ little. After all, if
they differed substantially, one might reject the specifica-
tion. -

AN EXAMPLE

In an effort to compare various methods on the same
data with a known-true decomposition, a quarterly unob-
served-components time series was artificially generated,
using the following modei:

y=x+s+€, a =0950%=08 0}=29.3

s=as_4 € B:1=0.75 0% =0.31 o2=437

X=BX 1 +Bax o€ Br=02 0%=2.450%=234 (12)

where each of the random variables is independent nor-
mal? with observations from 1950 to 1974. An initial

2 The random numbers were computed by the SNORM subroutine
of the TROLL system, which essentially uses a polar transformation
of uniform variates to obtain normal random variables. The uniform
numbers are obtained from a linear bicongruential generator that
truncates a set of large numbers and then uses a second set to
randomly shuffle the first, thereby eliminating all possibilities of
serial dependence.

285

seasonal pattern, with a fourth quarter peak, was used for
start values. All calculations were performed on the Troll
computer system.

The Kalman filter was used to estimate the parameter
values of the transition matrix. The parameter estimates
were found in five iterations to be

a=0.99, B,=0.69, 8,=0.28

corresponding to 0.95, 0.75 and 0.2, respectively. These
estimates, however, used the true values to start the
nonlinear optimization and used true relative variances.
Both of these will be unavailable for real data. On the
other hand, the initial state, w,, in this application, was
estimated as a parameter vector, assuming a diffuse prior.
In an actual application, one could presumably do better.

Two other estimation procedures were used. The Kal-
man filter maximum likelihood procedure was used to
estimate the two relative variances, as well as the three
parameters. For this set of data, the maximization algo-
rithm did not converge, since it drove the seasonal
variance to zero as the seasonal autoregressive coefficient
went to one. The difficulty in estimating the relative
variance in a mixture of normal distributions is well
known, since the likelihood function has a singularity
where the relative variance goes to zero; this appears

" particularly in economics in the switching regression

problem. Here, the solution usually proposed is to assume

‘that the relative variance is known or, at least, to bound

it away from zero. Thus, the assumptions in the estimates
of the previous paragraphs seem appropriate.

An alternative solution to this divergence would be to
bound the autoregressive parameter away from one. This
is sometimes done by including a Jacobian term in the
likelihood function, which picks up various assumptions
concerning the behavior of the initial values. (See, e.g., [8].)

A second set of estimates were calculated using the
ARIMA formulation of equation (4). The model in this
example has a multiplicative seasonal autoregressive com-
ponent with the nonseasonal of order 2 and the seasonal
of order 1. The moving average portion has coefficients to
order 6.3 This process was estimated using the ESP
version of Charles Nelson’s time series package. The
results and the associated standard errors are shown in
table 1.

Notice that the seasonal ar parameter is very close to
the true value and the nonseasonal ar terms, although not
very close, are within two standard deviations of the true
values. The fitted model has both autoregressive roots
positive, while the true model has a large positive root
and a small negative one. In both cases, the spectrum has
a sharp peak at low frequencies, but, in the true model, it
also has a small rise at the high frequency .end of the
spectrum. The moving average parameters are generally
significant with the first and fourth as the largest, as
would be expected. The chi-squared statistic for the test

3 Ken Wallis has pointed out that the third-order term is not zero,
as I assumed in an earlier draft.
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of whiteness of residuals is abnormally low, suggesting
overfitting of the model. Because there are several con-
straints overlooked in this estimation, such a result is to
be expected.

~The means of the unobserved component series were
estimated for each of three sets of parameter values,
using each of two estimation assumptions. Filtered esti-
mates, which use only past and current data* and
smoothed estimates that optimally use the entire data set,
were used with the true coefficients (true ®) with the ®
matrix estimated by the Kalman filter that provides full
information estimates (FIML ®) and with the coefficients
estimated by Box-Jenkins methods that are limited infor-
mation estimates, since some parameter restrictions are
ignored (BJ ®). In each of these six cases, the estimated
seasonal component was subtracted from the original data
to obtain a seasonally adjusted series. These series were
compared with the known seasonally adjusted series and
with the adjusted series produced by the Census X-11
program in an additive mode with no provision for. the
exclusion of outliers.

For each of the Kalman filter estimates, the initial
values were estimated using Rosenberg’s [30] algorithm.
This basically estimates the initial state by assuming a
diffuse prior on the mean and then using all the data to
form a posterior. The mean and variance of the posterior
are then used to initiate the recursive Kalman equations.

A casual inspection of the output suggested that the
X-11 method outperformed all alternatives. However,
more specific comparisons do not invariably uphold this
result. In table 2, the X—11 output has nearly the highest
correlation with the true adjusted series when the whole
sample period is considered; however, when the first
decade is eliminated, all are about the same. This points
out a second characteristic of the output. The Kalman
filtered estimates performed very poorly at the beginning
of the sample period. This result is traceable directly to
the estimation of the initial state. These estimates were
invariably far from the true values and were very sensitive
to parameter changes. Furthermore, they have a substan-
tial effect on the estimates for many periods. A clear
recommendation of this research will be that more inform-
ative priors be used for the initial state.

When the deviations from the true adjusted series are
decomposed into bias, standard deviation and root mean-
squared error, more substantial differences between the
estimators appear. The FIML estimates have very sub-
stantial biases that, in turn, dominate the rms error
figures. Presumably, these are due to the seasonal ar
coefficient which is so close to unity that a bias in the
initial state estimate never disappears. In almost all cases,
the biases are significantly different from zero, which is
rather surprising in that, at least, the true ® cases should
be unbiased.

In practice, one would probably be less concerned with

4 As will be mentioned, the entire data set is used to estimate the
initial state, but, thereafter, only current and past data are used.

SECTION V

bias than with variance. In seasonal adjustment, it would

" be reasonable to impose the mean of the unadjusted

series on the adjusted series and, therefore, the bias
would be corrected. In terms of the standard deviations,
several features are prominent. In each case, the smoothed
estimate is superior to the filtered, and, in each case, the
results, excluding the first decade, are somewhat better
than those of the whole sample period. The ranking of the
estimators is, however, rather surprising. The Box-Jenkins
estimator is generally better than either the true @ or the
FIML @, and, between the latter two, the results are
ambiguous. In the standard forecasting problem, where
the data being forecast are not used in the estimation, one
would expect to do better with the true parameters. This
is presumably the expectation here, although a case can
be made by analogy with forecasting inside the sample
period to expect the fitted model to do better.

In terms of standard deviation around the true value,
the X~11 performs quite well in this competition. Although
it is never the best, it is superior to all the filtered
estimates and, at least across the whole sample period,
superior to two of the three smoothed estimates, including
the one based upon the true parameters. In terms of rms
error, it is the second best in both sample periods and far
superior to several of the other candidates. This suggests
that, even though the X-11 is not specifically designed for
the series in this example, it does almost as well as the
more specific procedures.

In table 3, these estimates are examined to see if a
linear combination of the X—11 and another process would
provide a superior method of seasonal adjustment to
either separately. This criterion has been used by Granger
[12] and Neison [22]. When the whole sample period is
used, only the Box-Jenkins estimates contribute to the
X~11. When the first decade is eliminated, the importance
of the X-11 diminishes sharply and has negative or
insignificant weight in each of the smoothed estimates.

The conclusion from this examples is that the various
methods do relatively equivalently in the latter portion of
the sample period. In the early portions, the transients
give substantially increased variances to the filtered and
smoothed estimates, as well as some appearance of bias.
The smoothed estimates perform slightly better, which is
not surprising since they use more information, and the
methods with estimated parameters appear to perform as
well as, if not better than, those with the true values. The
Kalman filter does appear to provide a reliable method of
seasonal adjustment, at least in terms of variance, -but
great attention should be given to finding better methods
of beginning the procedure. This might substantially im-
prove the estimation capabilities of the filter and allow
more information for model identification and diagnostic
checking. The nearly comparable performance of X-11,

5 In an earlier draft, coherence plots for each series with the true
adjusted series were included but gave little grounds for comparison.
The causes for this failure are pointed out in the comments by
Donald Watts.
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however, casts doubt on the extent of the possible
improvement. All of these results, of course, are for one
realization from one model and are, therefore, only
suggestions for further investigation.

MODELS WITH EXOGENOUS VARIABLES

Many of the difficuit problems in seasonal analysis
have to do with the introduction of additional information
about strikes, weather, trading days, holidays, model
change dates, etc., as well as information about business
cycles, inflation, and other causal influences for a particu-
lar series. In order to adapt the analysis of the previous
sections of this paper to these fundamentally nonstationary
influences, it is only necessary to expand the unobserved
component models to include exogenous determinants
and, then again, to estimate and infer seasonal patterns.
The required tools are, however, somewhat different,
especially in the estimation phase.

As an example of the type of problem, consider the
seasonal adjustment of fuel oil consumption. Consumption
in the winter of 1974 fell below its normal winter peak
and, therefore, would appear as a decline in the seasonally
adjusted series, suggesting a very large response to the
sharp increase in fuel prices. On the other hand, the
winter was particularly warm, and, therefore, the seasonal
peak was not as high as usual, so perhaps there was very
little price responsiveness. Treating weather as a causal
variable would help to discriminate between these two
possibilities.

This class of models is generated by using transfer
function models for each of the unobserved components.
Letting Z,, and Z, be matrices of exogenous variables that
determine x and s, equations (1) to (3) can be replaced by

y=s+x+te, (13)
A Lyx=CALYZ s +B AL)ex (14
ALLT)s=C{L) Z ;+B (L)€, (15)

where C, and C, are matrices of lag polynomials and
now B, and B, must be interpreted as rational lag
polynomials in order to maintain full generality. Differenc-
ing operators could still be used to induce stationarity;
this is usually not necessary, since the exogenous variables
will pick up nonstationarity,  leaving the residuals as
stationary.

Again, this set of structural equations can be put in the
form of a single, more complicated, reduced-form transfer
function model in the observed variable y. Premultiplying
by the autoregressive operators, this becomes

A DALY =AALYC L)Z+A, (LT)C AL
+ ALL)BAL)eHA LB AL)er+AAIALey  (16)

This transfer function has both sets of exogenous variables
in it and has constraints implicit between the autoregres-
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sive coefficients and the transfer function coefficients.
The error term is now an ARMA process, since the B’s
were postulated to be rational functions of L, and there
are likely to be constraints between the coefficients of
this process and the other parameters of the model.

The estimation problem for this model might appear to
be extremely complicated, and, indeed, it is if all the
information is to be used efficiently. However, adopting
the strategy that it may be reasonable to ignore some
constraints, equation (16) can be thought of as a simple
dynamic regression problem with a complicated error
structure and some nonlinear constraints between regres-
sion coefficients.

Methods for estimating regression models with lagged
dependent variables and stationary errors were originally
developed by Hannan [15] and given time domain inter-
pretation by Amemiya and Fuller [I]. The procedure
amounts to estimating the spectrum of the disturbances
and then transforming all the data to find a regression
with white-noise disturbances. To bypass the complica-
tions of the lagged dependent variable, this procedure is
applied to the equation obtained when the lagged depend-
ent varable is solved out, leaving an infinite lag distribu-
tion in the exogenous variables. More recently, Espasa
{10] and Engle [9] have pointed out that maximum
likelihood estimates of the lagged dependent variable
model can be obtained directly by iterating until the
coefficient estimates generate a residual spectrum, which,
in turn, generates the same coefficient estimates. This
estimate will be exactly maximum likelihood for some
assumptions on the initial missing observations and only
asymptotically maximum likelihood otherwise. Presum-
ably, a consistent starting guess is not necessary, since
any convergence of the iteration is a solution to the
likelihood equations. However, it is more likely that the
iterations will converge to the appropriate solution if a
consistent start is used.

Having ignored the constraints on the nature of the
error process, a reasonable second step consists of testing
whether these constraints hold in the data. This can be
done in many ways. The procedure, followed here, is
rather ad hoc and consists of examining the properties of
the untransformed residuals to see if they follow the
stochastic process implied by the structural model. A
more attractive way of formulating this procedure® would
be to solve from the autoregressive parameters for the
implied spectrum of the disturbances. The residuals trans-
formed by this constrained estimate of their spectrum
should be white. '

This procedure is to estimate the model without impos-
ing constraints on the disturbance process and then test
those constraints. If the test fails, the adequacy of the
model is questioned, and a new structural relation must
be sought. The end result should be the identification of
the structural model and estimation of its parameters.

6 This alternative was stimulated by Watts’ comments.
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This estimation and testing procedure is less than fully
efficient since a priori information is ignored. It is, again,
a limited information procedure. As before, there is surely
a full-information maximum likelihood estimation proce-

. dure for this problem. One potential method of calculating
this estimator is to use the Kalman filter to evaluate the
likelihood and then to maximize it with respect to all the
parameters. However, at this point, there are far more
parameters because of the presence of the exogenous
variables with their separate lag structures, and, therefore,
one might hesitate to maximize such a complicated func-
tion in so many dimensions. Alternatively, Pagan [25] has
directly calculated the constraints but finds that they help
little with his parameter estimates.

Once the identification and estimation steps have been
completed, the model can be used to estimate the means
of the unobserved components. Again, this can simply be
done by the Kalman filter, although now it must also
include the exogenous variables. The presence of these
variables in the transition equation can either be treated
directly or can be treated as a time-varying ¢ matrix,
depending on the computer programs available.

AN EXAMPLE WITH EXOGENOUS VARIABLES

As an example, several models of seasonally unadjusted
monthly retail sales will be analyzed. The series, titled
*“U.S. Total, All Stores,” series 0A0100, was for 1953
through the first half of 1975. It was deflated by the
trading days of the month, including Saturdays and
excluding all major holidays. This was then logged, since
the seasonal appeared clearly to be multiplicative.

Two models were postulated and fitted, neither of
which appears fully adequate in view of the residuals, but
they suggest a range of possibilities. The first assumes
that the seasonal has a deterministic portion with some
spreading of the spectrum around the seasonals. Twelve
seasonal dummies, a twelfth-order autoregression, and the
timing of Easter were assumed to reduce the seasonal
component to white noise. The seasonal pattern is so
regular that a purely nondeterministic model, such as that
simulated for the previous example, did not appear appro-
priate. The nonseasonal component was assumed to de-
pend upon a constant and the log of monthly personal
income in current dollars (seasonally adjusted). If the
series were not seasonally adjusted, a long moving average
or computation of a permanent income measure would be
appropriate. In this case, the results, using current income
or permanent income, were indistinguishable.

The model is, therefore, written

y=x+s+e,

I x=y,+v, log(PY)+e,

10 .
s=as_;+ Y, 8;Dec,;+8,,Easter+e, (17)
=0

SECTION V

where Dec is a dummy for the month of December,
Easter is a variable which is zero, except in March when
it takes on a value between 0 and 12, depending on how
many of the 2 weeks of shopping days before Easter
occurred in March. The y,’s are normalized to sum to
zero, although this only affects the simulation when they
must be separated from y,.
The regression form of the model is

Y=ay_jpt+y,log (PY)—ay,logPY _y,)

10
+Y 8Dec,;

=0
+98, Easter+y,+u

u=(1—-L2)(e,+€,)+¢, (18)

There are 15 exogenous variables;, a lagged dependent
variable, and a nonlinear constraint. The error process is
a MA(12), with a negative coefficient that would bias «
downwards under ordinary least squares. All autocovari-
ances, except the 12th, should be zero.

The second model assumes that the 12th difference of
the seasonal model is white noise, except for the effect of
the Easter dummy. The nonseasonal component is, how-
ever, assumed to have an AR(1) component. This model
is

y=x-+s+e,
II x=Bx_;+ylog(PY)+y,+e€,

s=s_;,+8Easter+e, (19)

that can be written in the regression formulation as
Ay=BAy_+8Easter—B8 Easter_,
+y1A1,108(PY)+y,+u
u=(1-L*?) (1-BL)e,+(1-L?)e,
+(1-BL)e, 20

This is a regression model in the 12th differences of y,
with | lagged dependent variable, 4 exogenous variables,
a nonlinear constraint, and a complicated error term. The
error term is 13-order moving average with nonzero
autocorrelations only at lags 1, 12, and 13.

Many other models could easily be formulated by
taking any acceptable nonseasonal model from the eco-
nomic literature, where most analysis is performed with
seasonally adjusted data, and one of several seasonal

‘models, suggested by Granger [12]. Here, a more compli-

cated model is formulated that consists of the seasonal
part of model I and the nonseasonal part of model II.
There are consequently autoregressive components from
each of the component models. The regression formulation
of this model is
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y=By 11y 12— By 13 +y:logPY)
—ay,log(PY -1,)+8,,Easter—B8,,Easter _,

10
+ (8;,-B8;-,) Dec_;+8,Dec
I =1

—B8,,Dec_jo+yotu

u=(1—BL)e,+(1—aL¥)e,

+(1-BL) (1—al®e, @n

This model now has 17 regressors, 3-lagged dependent
variables, many nonlinear constraints, and an error term
with a 13-order moving average that has nonzero autocor-
relations at 1, 12, and 13 lags.

Several computational methods were used for each of
these models, all of which were performed on the Troll
computer system. The instrumental variable estimator of
Liviatan [18] is consistent, regardless of the error struc-
ture. This is easily calculated without the constraints but
can also be calculated when the nonlinear constraints are
imposed by minimizing the sum of squares in the metric
of the projection on the instrument list, as discussed by
Amemiya [2] for two-stage least squares.

To achieve a more efficient estimaton, the residual
spectrum can be used to correct for the stochastic
properties, and this procedure, iterated to convergence,
will be maximum likelihood subject to the constraints
imposed. Further estimates can, therefore, be computed
by iterating from either OLS or INST starting points
without the nonlinear constraints or by imposing these
constraints within the spectral estimation. The latter was
not done in these examples.

The iterative Hannan efficient estimator was calculated
using the fast fourier transform with the series extended
to 3 x 2* for some n. The factor of 3 is important when
using monthly data so that spectra are calculated at the
exact seasonal frequencies. The iterative procedure calcu-
lates the spectrum of the residuals, transforms all the data
by taking the fourier transform, dividing by the square
root of the spectral estimate, and then taking the inverse
fourier transform to obtain a time-domain data vector.
The residuals of this process should be white noise if
convergence has occurred. If they are not, their spectral
estimate is multiplied times the previous estimate and the
process repeated. The estimates are said to converge
when the scaled log likelihood changes by less than 0.0001.

In table 4, estimates are presented for model 1. Six
estimates are tabulated that correspond to the various
options previously mentioned. The results are, in many
cases, quite similar. Of particular interest is the 12th-order
autoregressive coefficient. It ranges from 0.2 to 0.42 over
the methods. That is the largest variation, but all of these
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values are small enough that such differences would not
substantially affect the behavior of the model. The nonlin-
ear constraint is only roughly satisfied. When it is im-
posed, the largest values of the autoregressive parameter
are coupled with the smallest values of log (PY) and the
highest standard error. of the regression. One would
expect from economic theory that the elasticity of retail
expenditure concerning personal income would be one, or
maybe slightly less, if the goods are predominantly necess-
ities rather than luxuries. This is precisely observed in the
iterated methods, and, altogether, the results are rather
encouraging. The main disappointment with these esti-
mates is that the final iterative results differ depending
upon the starting point. This is mainly true of the
autoregressive coefficient and suggests that the likelihood
function is relatively flat regarding this parameter. Per-
haps, more efficient algorithms or better criteria for
termination would minimize this discrepancy. Generally,
the likelihood is slightly larger for the OLS-starting values,
and thus, these will be reported subsequently.

In table 5, the iterated Hannan estimates are presented
for models 11 and III. In model II, the first-order auto-
regression is significant but not very large. Economic
theory might suggest that this should be very close to one
to construct a measure of permanent income, however,
the data support a model that says people consume out
of transitory income as well. (This has also been found in
other contexts; see [9].) The long run elasticity is about

Table 1. BOX-JENKINS ESTIMATES

(1-B:L~BoL*)(1~aLf)y +8
=(1-0,L~0,1.2-0,1.%-0,*~05] >~8¢L %€

Coefficient Value Standard
error
(] 6808000085008008 0.946 0.048
B4 EECTTEFERTIREE 1.183 314
By eorrrnrarnnnns -.296 329
B cverernrneens .738 .307
O cevvuvnnnnnnns -.286 .246
R REERRRREEE -.031 .145
Og covvnvnnnennns .598 133
O covverinaenens -124 .278 |
g eveernrnrnnnns -.269 A21
(I B8eaaa606a00¢ -.002 .049

Note: Chi-square (24) = 6.7 with 14 degrees of freedom.
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Table 2. COMPARISON OF ESTIMATORS
X—11 True & True & FIML & FIML® BJ® BJ®
Measure - filtered smoothed filtered smoothed filtered smoothed
January 1950 to April 1974
Correlation ............. 0.990 0.920 0.982 0.892 0.987 0.984 0.991
Bias.......coivivunnnn -37 1.02 1.29 3.58 4.50 -57 -.37
Standard deviation ....... 7 1.96 .97 2.25 .83 .89 .69
Root mean-squared
-] o .80 2.21 1.61 4.23 458 1.06 .78
January 1960 to April 1974
Correlation ............. 0.991 0.992 0.992 0.991 0.992 0.990 0.992
Bias......oviiinnnnnn, -40 -02 .86 2,72 4.22 -84 -.30
Standard deviation ....... .73 .87 .72 1.68 .72 .80 .69
Root mean-squared
BITOT v vviennnnnennnnn. .84 .87 1.13 3.14 4.28 1.16 .75
Table 3. REGRESSION COEFFICIENTS IN EXPLANATION OF TRUE ADJUSTED SERIES
Range Constant X—11 True<b True ® FIML & FIML ® BJ® BJ®
filtered | smoothed] filtered smoothed | filtered | smoothed
1950t01974............ 0.38 1.01 -0.02 - - -
‘ 1(4.2) (25.0) (-37) . - .
.61 1.08 5 .09 - -
(2.2) (8.12) S (-.67) 5 = -
.45 1.01 s - -.02 5 - -
(2.6) (29.3) - = (-.57) = S S
.57 1.04 - - . .04 - .
(.59) (5.06) - - S (-.22) c =
.42 . - = - .29 -
(5.03) (8.45) - - - - (3.41) -
.38 .31 5 . . - - 71
{6.60) (1.68) - - e . - (3.76)
1960t0 1974............ .22 40 .66 - . _ R R
(2.1) (2.0) (3.1) 5 - - - -
-.98 -.08 - 1.04 - - . -
(-1.86) (-.20) S (2.62) - 5 - .
-1.356 .51 - .65 5 -
(-2.3) (3.2) = (2.9) - - -
-4.8 -14 - - - 1.10 .
{-2.15) (-.29) - 5 - (2.3) . -
.62 .56 5 . - - 45 -
(5.15) (4.21) - g = - (3.17) -
.33 .09 - 5 - .03
(3.48) (1.26) - - = = = (2.76)

- Entry represents zero.

! Standard errors are shown in parentheses.
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Table 4. ESTIMATES OF MODEL I: APRIL 1954 TO JUNE 1975
Variable oLS INST Nonlinear Nonlinear lterate from lterate from
INST oLSs INST

Y_1 R 10.38(0.06) 0.22(0.13) 0.42(0.06) 0.40(0.13) 0.30(0.06) 0.23(0.06)
log(PY)........... } 1.22(.08) 1.23(.08) .83(.006) .83(.006) 1.00(.11) 1.01(.11)
log (PY_-, 2) ........ -.72(.09) -61(.12) s = -.43(.13) -.37(.13)
Easter ............ .004(.001) .004(.001) .004(.001) .004(.001) .003(.0007) .003(.0007)
December ......... .09(.01) 11(.02) .09(.01) .09(.02) .10(.010) .11(.010)
January ........... -.10(.01) -.12(.02) -.09(.01) -.10(.02) -11(.011) -12(.011)
February .......... -.09(.01) -.12(.02) -.09(.01) -.09(.02) -.10{.010) -.11(.010)
March ............ -.07(.01) -.08(.02) -.06(.01) -.06(.017) -.08(.009) -.08(.009)
April ............. -.06(.01) -.07(.01) -.06(.01) -.06(.012) -.06(.008) -.07(.008)
May .............. -.03(.008) -.04(.01) -.03(.008) -.03(.010) -.03(.006) -.04(.006)
June ............. -.01(.007) -.02(.008) -.01(.008) -.01(.008) -.02(.005) -.02(.006)
July ...l -.05(.009) -.07(.01) -.05(.009) -.05(.01) -.06(.008) -.07(.008)
August............ -.05(.009) -.06(.01) -.05(.009) -.05(.01) -.05(.007) -.06{.007)
September ......... -.03(.008) -.03(.009) -.02(.008) -.02(.009) -.03(.006) -.03(.006)
October ........... -.04(.008) -.05(.01) -.04(.008) -.04(.01) -.05(.006) -.05(.006)
Constant .......... 1.11(.10) 1.37(.23) .96(.11) .99(.22) 1.16(.118) 1.27{.12)
Standard Error ..... .0235 .0239 .0245 .0345 .0200 .0203
Durbin-Watson ..... 1.31 1.24 1.16 1.16 1.99 1.99

- Entry represents zero.

! Standard errors are shown in parentheses.
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Table 5. ITERATED ESTIMATES USING OLS STARTING VALUES: APRIL 1954 TO JUNE 1975

Model Il Aoy =0.29440y_4+ 0.77A5log (PY) + 0.0005 Easter
1(0.06) (0.10) (0.0004)

+0.0001 Easter__, —-0.012
{0.0004) (0.006)

Model 1l y= 0.40y_4 +0.26y_4, —0.12y_ 43+ 0.69 log {PY) —0.31 log (PY_q0)
{0.06) {0.06) (0.06) (0.10) (0.10)

+ 0.003 Easter —0.001 Easter__1 +0.09 Dec —0.18 Jan —0.08 Feb
(0.0001) (0.0007) (0.01) (0.02)  (0.01)

— 0.06 Mar —0.05 Apr —0.03 May —0.02 Jun —0.08 July —0.05 Aug
(0.01) (0.008) {0.007) (0.006) {0.010) (0.006)

— 0.03 Sept —0.06 Oct + 0.80
(0.006)  (0.008)  (0.14)

SER=0.0181 , DW= 1.98

Model IV Agy = 0.3741,y_3+ 0.9445l0g (PY) —0.334; log (PY_g)
(0.06) (0.15) (0.15)

+ 0. 003A1 2Easter — 0.005
(0.0005) {0.006)

SER = 0.0208 , DW= 1.99

! Standard errors are shown in parentheses.
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unity as expected. The constraint on Easter is not sup-
ported, but the standard errors are large. Probably, the
12th difference of Easter should be used anyway. The
standard error of this model is substantially larger than
model I, and, on that ground alone, one might prefer 1.

Model 1II is the same as Model I except with an
autoregressive term introduced into the nonseasonal com-
ponent. The results are basically similar to those found
above with significant, but not very large, autoregressive
coefficients for both the seasonal and nonseasonal compo-
nents. The autoregressive and Easter constraints are
satisfied almost exactly, while the income constraint is
only roughly true. The standard error of this model is
substantially lower than the 2 percent of model I.

Part of the diagnostic checking of these models must be
examination of the residuals to see if they satisfy the
processes assumed for them. For all of-these models,
there should be a negative autocorrelation coefficient at
lag 12, for some a nonzero coefficient at lags 1, 11, and
13, but always zero for the other lags. The most cursory
check of the autocorrelations of the raw residuals (the
difference between the original data and the fitted values,
before transformation to whiten the regression residuals,
labeled u) shows this not to be true. In figure I, the
autocorrelations are shown for model I, but they look
much the same for the others. There are substantial
autocorrelations at 3, 6, and 9 but not for 12. The pattern
appears to repeat with diminished amplitude. This suggests
a third-order autoregression. Furthermore, the spectrum
of the raw residuals has a slight negative seasonal pattern,
but with a large positive peak at about 0.35, or roughly 3
months per cycle. Since this is a seasonal harmonic, it
seems reasonable to attribute this missing autoregression
to the seasonal component.

A third-order autoregression in the twelfth differences
of the seasonal, plus the twelfth difference in Easter, are
used as the seasonal model with the simple nonseasonal
of model I to get model IV. The regression form is,
therefore,

Apy=aly _;+y,Aplog(PY)

— ay;Aplog(PY ;)
v
+8A,Easter+vy,+u

u=(1 —L‘z)(l —al3) (e +e)te; (22)

This is now one of the simplest models in that there are
only five regressors. There are still a nonlinear constraint
and an error process, which has third-, twelfth-, and
fifteenth-order moving average terms. The estimates of
this model look quite encouraging. The constraint is almost
exactly satisfied, and income has nearly a unit elasticity.
The standard error is between model I and mode] II, but
the structure is far more parsimonious. The autocorrelation
of the residuals looks substantially better with the ex-
pected negative term at 12. Various alternative means of
respecifying the model to capture the unexplained seasonal
part might prove still better.
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The technique of model identification is, therefore, an
iterative one. The autoregressive parameters are esti-
mated, assuming a general stationary error structure. The
residuals ‘are then examined to see if they obey the
prescribed process. If not, a respecification of the model
is required. The mechanics of this search procedure are
yet to be worked out, but this example may be a helpful
illustration.

This discussion has suggested several types of unob-
served component models with exogenous variables and
various estimation methods. The estimation difficulties do
not appear particularly great, but some of the specification
choices may be difficult. It is quite possible that the
seasonally adjusted series would not be very sensitive to
the model specification, just as in the simulated series in
the fifth section. Only further study of this problem can
provide the answer.

CONCLUSION

This paper has proposed a method of seasonal adjust-
ment, based upon specifying and estimating a structural
unobserved components model, and then using this model
to optimally filter the data to remove the seasonal compo-
nent. The computational problems in estimating the
models using asymptotically efficient procedures are quite
severe. In this paper, it has been argued that some
constraints on parameters can be relaxed to yield less
efficient, but still consistent, structural estimates. In this
fashion, model estimation becomes feasible, although the
identification problems remain very complicated.

The model is then used to optimally filter the data,
using the Kalman version of the Wiener filter. Both a
one-sided filter and a two-sided smoother were used on
artificial data. Empirically, even when the true model
parameters were employed, the X-11 performed nearly as
well as the optimal filter. In terms of variance, the
differences between .results using estimated models and
the true model were not great, although one of the
estimated models was badly biased. The filtered and
smoothed results were generally inferior at the beginning
of the sample period, reflecting a badly estimated initial
condition. Improvement in the performance would surely
be expected from imposing a proper prior on this state.

The relative success of the X~11 in a situation where it
should be dominated suggests that, perhaps, the structural
approach to seasonal adjustment, based entirely on a
single series, should not be recommended. However,
when causal variables are introduced, there is no alterna-
tive, to the estimation of a structural model and inference
about the seasonal characteristics from this model. The
second example presents estimation methods and results
for a model of monthly retail sales. Here, the timing of
holidays and trading days were shown to influence the
seasonal component, while personal income influenced the
nonseasonal.

In this case, one would expect the Kalman filter to
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SECTION V

Figure 1. MODEL I, AUTOCORRELATIONS OF RESIDUALS
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Figure 2. MODEL IV, AUTOCORRELATIONS OF RESIDUALS
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more efficiently utilize the information in the causal series the X—11, which can only, in simplistic fashions, make
and provide superior estimates of the adjusted series than use of causal information.
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COMMENTS ON “ESTIMATING STRUCTURAL MODELS OF SEASONALITY”’ BY
ROBERT F. ENGLE

E. Philip Howrey
University of Michigan

In this paper, Engle investigates a relatively new ap-
proach to seasonal adjustment. The distinguishing charac-
teristic of this approach is that an explicit statistical model
of seasonal variation is postulated. On the basis of the
specified model, optimal methods of parameter estimation,
filtering, and smoothing are proposed.

Engle discusses a number of advantages that this model-
specific approach to seasonal adjustment has over the
more traditional methods of seasonal adjustment that do
not depend on a specific model. Since this is a new
approach to the problem, it raises a number of important
and difficult issues. These comments concentrate primarily
on two general problem areas: Criteria for model specifi-
cation (or what is called identification by Box and Jenkins
[3]) and optimal filtering procedures.

MODEL IDENTIFICATION

The first step in Engle’s scheme of seasonal adjustment
is the specification of a model on which to base subsequent
computations. A general class of models is introduced in
which the observed series is the sum of three unobserved
components: A seasonal, a nonseasonal, and a random
irregular time series. Both the seasonal and nonseasonal
time series are assumed to be generated by ARIMA
processes. Each of these two ARIMA processes is char-
acterized by three parameters: p, the order of the autore-
gressive part; d, the degree of differencing required to
achieve stationarity, and g, the order of the moving
average part of the process. Once d is specified, p+g+1
additional parameters are needed to complete the specifi-
cation of each ARIMA process (i.e., p AR parameters, ¢
MA parameters, and the innovation variance of the
process). Thus, p,+q,.+2 parameters are needed to de-
scribe the nonseasonal component, p,+¢q,+2 parameters
are needed to describe the seasonal component, and one
additional parameter describes the irregular component, a
total of p,+q,+p,+q,+5 parameters.

In applied work, it is necessary to assign values to
(@, d, q) for both the seasonal and nonseasonal compo-
nents. But, the basic rationale that is given for the
introduction of this class of stochastic processes is that
ARIMA models have been found to be very useful for
modeling univariate time series. It appears then that the
theory provides little guidance, if any, in the specification
of the appropriate degrees of the AR and MA processes.
Thus, it is necessary to utilize the data to determine the
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length of the lags that are required to yield a model that
provides an adequate description of the time series.

Since the modeling aspect is basic in this approach to
seasonal adjustment, it is desirable, if not essential, to
have some way to determine the appropriate form of the
model to be used. A number of identification criteria have
been suggested, by time series researchers, to determine
or identify the appropriate values of p and g for an
observed series. However, little is known about the
relative performance of these criteria. In an attempt to
determine the ability of several alternative identification
criteria to select-the correct model, a fairly extensive set
of simulation experiments were conducted. The results of
a small subset of these experiments are described in this
paper to indicate how well these criteria can be expected
to perform in actual practice.

In each of the experiments summarized, 100 realizations
were obtained from a Guasian ARMA (p, q) process of
the form

DuL) x=04L) € REEEEEN )

where ¢,(L) is a polynomial of degree p, 6,(L) is a
polynomial of degree g, and ¢ is normally distributed
with mean zero and unit variance. Each of the 100 series
was then analyzed in an attempt to determine the appro-
priate values of p and q.

The first step in the analysis of each series is the
computation of preliminary estimates of the parameters of
the operators ¢, and 6,, using the methods described in
Box and Jenkins [3, 201-203] for the nine models corre-
sponding to p=0, 1, 2 and g=0, 1, 2. These par?méter
estimates are then used to obtain three statistics that could
be used in a straightforward, mechanical way to identify
the order of the model. The first of these criteria is similar
to the mean-squared prediction error (MSPE) criterion
used by Akaike [1]. Modified to handle the moving
average case, it is defined as

MSPE=s*{1+(p+q)in}/{1-(p+q)/n} (¥3)

E. Philip Howrey is a professor of economics at the
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where n designates the number of observations in the
series and s2 is the preliminary estimate of the residual
variance as given by Box and Jenkins [3, 203]. A second
identification criterion is the unconditional mean-squared
error (UMSE) defined by

UMSE = SSE/(n-p-q) ©)

where SSE is the unconditional sum of squared residuals
as defined by Box and Jenkins [3, 215-220]. A third
criterion that was investigated is based on an approxima-
tion due to Grenander and Rosenblatt {4, 267-270]. The

~ absolute efficiency of the predictor based on the ARMA
(p, g) process is defined by

e=c?o? ®. q) @

where o? is the innovation variance of the process and
o2 (p, q) is the prediction-error variance of the ARMA (p,
g) model. Let flw) denote the power spectrum of x,, and
let flw) denote the power spectrum implied by the ARMA
(@, q) model that is used to predict x,. Grenander and
Rosenblatt show that '

¢ ={1+$j [1=F@)/f (@)]* dw

1 _ 2 -1
‘m( f [l—f(w)/f(w)]dw) } ®)

An estimate of the absolute predictién efficiency of an
ARMA (o, ¢) model is given by a discrete approximation
to this expression. Specifically,

é={1+1p, 9)-1.0, D} ©

where

1(p, q)=$ S {farsim)if (msim) — 1} %)

f=—m

m—1 2
Ip, q) = %{5'—”; S fasim)if (wsim) - 1} ®)

§=-m

In these expressions, f(w) is the direct, Parzen-windowed
estimate of the spectrum, and f(w) is the powér spectrum
implied by the ARMA (p, q), prediction model, namely

F@)=|d )2 | f(e') 252 Q)

Finally, an ad hoc degrees-of-freedom adjustment is intro-
duced to yield

PEFF = é-(p+q)in {0

as an estimate of the prediction efficiency (PEFF) of the
ARMA (p, gq) process.

The results that were obtained for an ARMA (0,0)
process are summarized in table 1. The left-hand panel
contains the results for 100 realizations of 30 observations
each, and the right-hand panel shows the results for
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Table 1. IDENTIFICATION RESULTS FOR AN
ARMA (0,0) PROCESS

Identification criteria Identification criteria

Model (n=30) {n = 100)

(p,a) | MSPE | UMSE | PEFF | MSPE | UMSE | PEFF
(0,0 .. 77 52 64 72 51 38
(0,1).. 10 13 23 12 9 9
(0,2).. 6 11 1 6 6 16
(1,0) .. G 8 9 1 16 18
(1,1).. 4 6 - 6 4 2
(1,2) .. e 1 S 1 2 2
(2,0).. 3 8 3 e 12 15
2,1 .. e 1 - 2 0 -
(22).. . -

- Entry represents zero.

realizations of 100 observations. It is seen that, for n=30,
the mean-squared prediction-error criterion identifies the
correct model 77 times in 100 attempts. The unconditional
mean-squared error criterion correctly identifies the (0,0)
process 52 times, and the prediction efficiency method is
correct 64 times. Similar results are obtained with the
MSPE and UMSE criteria for n=100. Interestingly
enough, PEFF performs more poorly with n=100 than on
the shorter series. These results indicate that, at best, we
would be misled into using a more complicated model than
necessary almost 25 percent of the time.

Results are shown in table 2 for simulation experiments,
based on (1, 0) and (0, 1) processes for which the unknown
parameter is 0.9 in both cases. The most apparent feature

Table 2. IDENTIFICATION RESULTS FOR ARMA
(1,0) AND ARMA (0,1) PROCESSES

Identification criteria Identification criteria

Model (1,0) process (0,1) process

(p.a) MSPE | UMSE | PEFF | MSPE | UMSE | PEFF
(0,0).. G e - e - -
{0,1) .. E & - 19 24 23
(0,2) .. S - - 4 3 6
(1,0) .. 84 65 54 3 3 3
(1,1) .. 7 12 23 17 19 20
(1,2) ... 8 17 16 9 9 8
(20).. 1 S 4 6 7 1 2
(2,1).. 1 1 S 34 33 33
(2,2).. S 1 1 7 8 5

- Entry represents zero.



300

of these results is that the identification criteria perform
much better for the AR(1) process than for the MA(1)
process. In both cases, however, the model is incorrectly
identified a minimum of 15 percent of the time.

As a final illustration of the results that can be expected
from the application of these identification criteria, two
ARMA (1, 1) runs are summarized. In the left-hand panel
of table 3, the AR coefficient is 0.9, and the MA co-
efficient is 0.5. In the right-hand panel, the AR coefficient

Table 3. IDENTIFICATION RESULTS FOR
ARMA (1,1) PROCESSES

Identification criteria Identification criteria
Model (¢1= 0.9;04= 0.5) (¢1= 0.5£1= 0.9)
(p.a)
MSPE | UMSE | PEFF | MSPE | UMSE | PEFF
(0,0).. - - 2 2 -
(0,1).. 17 - - 27 16 17
(0,2).. 12 > 1 34 31 36
(1,0} .. 3 7 e 1 -
(1,1.. 44 51 41 12 21 22
(1,2).. 17 | 10 8 10 12 8
(2,0).. 2 23 38 2 4 3
(2,1).. 1 4 2 6 7 10
(2,2) . 4 5 4 7 6 4

- Entry represents zero.

is 0.5, and the MA coefficient is 0.9. With these slightly
more complicated models, the success rate in identification
of the correct model falls to about 50 percent or less.
These experimental results are not intended to be
definitive, but rather suggestive, of the identification
problem. Other identification procedures could be em-
ployed, such as the residual spectrum analysis, suggested
by Engle. Undoubtedly sharper parameter estimates and
~more accurate model specification could be achieved by
proceeding from the preliminary parameter estimates to
more refined estimation procedures. Nevertheless, these
- experimental results do indicate the danger in using
mechanistic rules to identify the order of an ARMA
process. If the model is at all complicated, there is a
danger that the model will not be correctly identified. In
view of the large number of series that are currently
seasonally adjusted, it is difficult to see how any technique
that is not largely mechanical and, therefore, relatively
free of individual judgment would be feasible to use on a
large scale. Unless better criteria than those used here
can be developed, it is difficult to have a great deal of
confidence that the model identified is the correct specifi-
cation and, hence, that it provides a useful basis for
seasonal adjustment of the time series.

SECTION V

OPTIMAL SMOOTHING

After a model has been identified and the unknown
parameters have been estimated, the model can be used
to separate the seasonal and nonseasonal components.
The smoothing problem involves the computation of the
conditional expectation of the unobserved seasonal com-
ponent of the time series, given the model and the
observed series. The rationale for this approach is quite
general. Astrom [2], e.g., shows that if (1) the loss function
is symmetric and nondecreasing for positive arguments
and (2) the conditional distribution of the unobserved
component has a unimodal density function that is sym-
metric about the conditional expectation, then the condi-
tional expectation is optimal in the sense that it minimizes
expected loss.

The computational schemes that are proposed to smooth
a series to extract the seasonal component usually take
the model, including the parameters to be given. If the
model is correctly specified and the parameter values are
correct, the smoothed series is an optimal estimate of the
unobserved component. In actual practice, neither the
form of the model nor the parameter values are known
with certainty. It is not clear that it is appropriate in the
face of model uncertainty to proceed as if the model were
correct. It is well known that, in a regression context, the
best linear unbiased predictor is obtained using the least
squares estimates of the regression coefficients. If a similar
result holds for the unobserved components model, the
case for using the conventional optimal smoothing proce-
dures would be vindicated.

The strength of the optimal smoothing approach to
seasonal adjustment is that, if the model is correct, the
seasonal series obtained is indeed optimal. However, if
the model is not correct, little can be said about the
properties of the resulting series. The results summarized
in this paper suggest that identification of the appropriate
model is not an easy task; there is a nontrivial chance
that an incorrect model will be selected. An issue that
needs to be resolved is the sensitivity of optimal smoothing
procedures to parameter error. There may be suboptimal
procedures that perform quite well over a wide range of
processess, whereas the performance of optimal methods
may be quite sensitive to model error.

The empirical results, presented in Engle’s paper, are
of considerable interest in this respect. Two sets of
parameter estimates are given for the expository seasonal
model: One set of estimates of the structural parameters
and another set for the reduced form of the model. The
structural parameter estimates differ only slightly from the
true values; the reduced form estimates vary more widely
from the true parameter values. The summary results
indicate that the seasonal pattern obtained from the
estimated structural form of the model is quite close to
the optimal seasonal pattern, based on the true parameter
values. This indicates that the smoothing procedure is not
sensitive to small errors in the parameters. It would be
very interesting to know if the reduced-form model
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produces an acceptable seasonal pattern. If it does, then
parameter error of the order of magnitude that is likely to
be encountered in practice may not be a serious problem
for this approach.

In connection with these expository empirical results,
the performance of the X-11 method of seasonal adjust-
ment looks extraordinarily good. The optimal smoothing
procedure should have a real advantage in this case, since
it is given the correct specification of the model. However,
over the full sample period, X-I1 performs nearly as well
‘without any information on the form of the model. Even
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over the last half of the sample, X~I1 produces a
seasonally adjusted series that is highly correlated with
the true adjusted series.

In summary, these comments point toward two problem
areas. One is the development of criteria to aid in the
identification of models of seasonal variation. The other is
the investigation of the sensitivity of optimal smoothing
procedures to model misspecification. In view of the
likelihood of model misspecification, it is desirable to

~ develop seasonal adjustment methods that are not overly

sensitive to model error.
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COMMENTS ON “ESTIMATING STRUCTURAL MODELS OF SEASONALITY” BY ROBERT F.
ENGLE

Donald G. Watts
Queen’s University

It is Engle’s intention, in his paper, . . . to define and
estimate several classes of models of seasonal behaviour.”
He then attempts to illustrate the models and estimation
procedures for them, using two examples.

TWO CLASSES OF MODELS

In the section concerning a class of unobserved compo-
nent seasonal models without causal variables, Engle
discusses standard additive models of the form

Bs By n
y _A—.t €y Zes €y )
where A4 and B are transfer function operators and the e
are white-noise processes. Schematically, the model can
be represented, as in figure 1.

This model can be rearranged to give a covariance-
equivalent model (4), as in figure 2. In this representation,
as Engle points out, the relationship between o2 and the
parameters of B and o2, 0%,0%,4,,4, B,, B; is a
complicated nonlinear one, as well as the fact that the
transfer function B is not a multiplicative one.

These two models constitute Engle’s arsenal of UCAR-
IMA models.

In the section concerning models with exogenous varia-
bles, Engle adds causal variables Z, and Z, (which may
be matrices) to the system in figure 1 to produce the
models (18) and (19) with the block diagram representation
shown in figure 3. As before, the operators 43! and 4;!
may be factored out to give a covariance-equivalent
representation (20) with the block diagram shown in figure
4, Again, it is recognized that o2 and the parameters of B
are related in an extremely messy fashion to 0%, 0%, 0%
and the parameters of A ,, 4, B, C, and C,.

The models portrayed in figures 3 and 4 constitute
Engle’s collection of additive models with exogenous
variables. )

Now, the models shown in figures | and 2 are certainly
standard additive models for seasonal time series, of
which economists seem highly enamored, even to the
extent of extolling the fact that taking logarithms of a
multiplicative series can convert it to an additive one.?

1 Equation numbers refer to the equations in Engle’s paper.

This seems, to me, to introduce many difficulties that
must then be overcome using complicated methods, such
as those discussed in this paper. I wonder why economists
do not try multiplicative models, with their equally valid
justification and vastly simpler and more effective analysis
procedures, more often?

Upon reflection, 1 suppose it is because we like to
incorporate the effects of exogenous variables in an
additive fashion. One can then argue that if a seasonal
component is added when its cause is known, why not
add it when its cause is unknown? Accepting additive
models, then, it still seems to me that the models shown
in figures 3 and 4 are ill conceived, because they impose
the same dynamics (43!) on all of the regular exogenous
variables Z, and the same dynamics (4;*) on all of the
seasonal exogenous variables Z,. Possibly more appropri-
ate models would be of the forms

C, B

=27 +-=
x D, Axe,

and

C B,
s=EZZ,+Z €

where each exogenous variable Z, and Z, has its own
denominator. Cross-multiplying these models would then,
of course, yield very high-order autoregressive and moving
average polynomials, but this seems, to me, to be the
price one has to pay for having a realistic model in which
each exogenous variable influences the response in its
own particular fashion.

THE ESTIMATION PROCEDURES AND EXAMPLES

Having introduced the additive models, Engle next
attempts, in the main body of the paper, to apply some
methods of estimation for the models chosen. For the
UCARIMA models, he follows Pagan (20) to try to

2 It is important to recognize that transformation should only be
done in order to ensure assumptions about the error structure. That
is, if the variance of a series is constant and if the error is normal, |
transforming to produce an additive model will foul up the variance
and the normality, thereby invalidating ordinary least squares estima-
tion procedures.
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SECTION V

Figure 1. BLOCK DIAGRAM FOR AN ADDITIVE MODEL

-1

ex > BX e —————— Ax ——\
A _/
€& > Bs  —— As
Figure 2. COVARIANCE-EQUIVALENT BLOCK DIAGRAM FOR THE ADDITIVE MODEL
€ — B > Al > Al by
x _ s
Figure 3. BLOCK DIAGRAM FOR AN ADDITIVE MODEL WITH CAUSAL VARIABLES
Zx > cx _\
€ > B L A'l
x X X _\
éy > + > Y
& > Bs > A;1 ‘—/
(o __./
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Figure 4. COVARIANCE-EQUIVALENT BLOCK DIAGRAM FOR THE ADDITIVE MODEL WITH -
CAUSAL VARIABLES

Z, > o2 I A —'\
z ., - A ___/

Figure 5. FILTERING AND REMOVING COMPONENTS
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maximize the log-likelihood function in order to estimate
the parameters in the state-variable formulation, and
following Box and Jenkins, he estimates the parameters in
an unconstrained ARIMA model. These estimations were
performed using a simulated series for which the true
form of the model is known.

It would seem that no success can be claimed for the
Kalman approach, because estimates were only obtained
when the true variance ratios were used and, possibly
even more important, when the true parameter values
were used for starting values. In this case, the converged
values may have simply been constrained to lie near the
true values because of the influence of the prior on the
Kalman procedure. The unconstrained ARIMA model
yielded a good estimate for the seasonal parameter but
rather poor values for the regular model parameters. It is
clear from table | that, in this case, the model is over
parameterized, since three of the parameters have nonsig-
nificant ¢-values.

Using the true and Kalman-approach results (obtained
under unrealistic conditions) Engle then apparently used
the Kalman filter approach to estimate the seasonal
component s and, by subtraction, the seasonally adjusted
series x+e€,=y—S$. He then compared these seasonally
adjusted series and the seasonally adjusted series obtained
from applications of the X-11 process against the true
original composite series x+¢,,.

The X~11 process proved to give the highest correlation
between the values of the adjusted series. I believe that
additional correlations, given in table 2, between various
differences of the adjusted series, are unjustified, arbitrary,
and potentially misleading.

Professor Engle remarks that for all the seasonally
adjusted series, the coherence squared between the true
adjusted series and the seasonally adjusted series dips at
the seasonal frequency. This dip is entirely. expected,
because removal of a component (that is subtraction) is
not the same as filtering (that is multiplication). In fact, as
will be shown, the coherency squared between any filtered
version of y and (y-s) is theoretically identical, which
explains Engle’s inability to ‘“‘pick one model over the
others.”

Consider the system shown in figure 5. Now, the
spectrum of Gy is |G|* I',=|G|*Ts+I,+T9, since s, x,
and € are independent. I' denotes the autospectrum and
G, the frequency response function. Vertical bars indicate
a modulus. Similarly, the spectrum of y—s=€+x is T;+T.
The cross-spectrum between (y-s) and Gy is then G X
(cross-spectrum of y and e+x)=G({T ,+I'9. Hence, the
coherency squared is

_ |G (T +T )2
G AT AT T +T

_ Il 1
| S T

K2

LU

I+T

independent of the filter G. Now, at the seasonal fre-

SECTION V

quency, I', >>T,+TI and so K2 = 0, while elsewhere
I << T 4T and K2 = 1, which is how the coherency
squared behaves in figure 1, lying near | except for dips
to 0.3 or 0.4, at frequency 0.25 cycles per year. The
coherency squared suffers from bias, however, as shown
in Jenkins and Watts, the bias depending mainly on the
smoothing window used and the ratio of L/N, the number
of covariance lags to the number of observations. For
L=40, N=100, and a Tukey window, the bias is about
0.3, which could explain the nonzero value at the seasonal
frequencies.

Turning to the section that deals with a real series with
an exogenous variable, we see that Engle abandons the
Kalman filter approach and uses statistical methods,
proposed by Hannan, and other methods available on the
Troll computer system. Several models are fitted, using a
barrage of methods, with seemingly satisfactory results to
the author that are unsatisfactory to me.

A major criticism can be levied at his procedure which
proposes that the autoregressive parameters can be esti-
mated, assuming a general stationary error structure, and
the residuals can then be examined to see if they obey
the prescribed process. This is, of course, completely
antithetical to modern statistical practice that employs
careful and clear specification of the error structure and
estimation procedures consistent with that error structure,
to say nothing of the sampling properties of nonwhite-
noise processes and the difficulties these impose. Also, it
is not clear just what approach or criterion Engle will use
to estimate the autoregressive parameters.

SUMMARY

With regard to the Kalman filter approach, I find it
wanting in two major respects. The first is that it requires
specification of a state-variable model and the second,
that it requires specification of the statistical properties of
all the disturbances. In economics, as contrasted with
missile guidance, e.g., where does the state-variable model
come from? And, from where do the disturbance variances
and covariances come? The approach used by Box and
Jenkins, which allows the data to lead the way, seems, to
me, to be better suited to dealing with economic time
series.

Also, concerning multiplicative versus additive models,
it would seem that a very worthwhile program could be
mounted to consider the problem of discriminating be-
tween additive and multiplicative models. This, of course,
was not considered by Engle but, perhaps, should have
been included since additive models are only one structural
form. '

Engle’s iterative procedure, suggested in the sections
on models with exogenous variables and an example with
exogenous variables, states that ‘‘the autoregressive pa-
rameters are estimated, assuming a general stationary
error structure. The residuals are then examined to see-if
they obey the prescribed process.” I suggest that, again,
the preferred statistical procedure is to develop models
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that produce white-noise residuals, which then have the
enormous advantage of having simple, well-defined statis-
tical properties. ,

Indeed, if 1 may close with a comment concerning
seasonal adjustment of series, I have yet to be convinced
that seasonal adjustment is the best thing to do to a
series. I believe, rather, that the aim of time series model
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building should be to develop forecasting models that
yield white-noise residuals. Nonwhite forecast errors then
yield information on turning points, changes in level,
changes in parameters and models, etc. And, in addition,
such information enjoys the important advantage that
probability or confidence levels can be derived, stemming
from the properties of white noise.

RESPONSE TO DISCUSSANTS

Robert F. Engle
University of California, La Jolla

The discussants have made a wide range of remarks. |
was particularly grateful to Watts for pointing out that the
coherence between the true and estimated seasonally:
adjusted series has a shape independent of the seasonal
adjustment filter. Although this result applies for time-
invariant linear filters, it must also be approximately true
for time-varying filters, such as the Kalman filter, or
nonlinear filters, such as the X-11. He, thus, explained
why results that could be seen to be widely different gave
similar coherence plots.

1 take issue, however, with several of his other remarks.
Watts asks, in his concluding section, ‘‘in’ economics, as
contrasted with missile guidance, for example, where does
the state-variable model come from?”’ The whole point of
this paper is to discuss procedures for estimating and
_testing the state variable or structural models using actual
data. It is only by practical experience that we can learn
whether techniques developed in other fields have useful
economic applications.

Watts criticizes the procedure for estimating ‘‘the auto-
regressive parameters . . . assuming a general stationary
error structure,”’ and would prefer “‘to develop models
which produce white-noise residuals.”” The estimation
method employed, however, does just this. It is descended
from earlier works of Hannan, Amemiya, and Fuller.
However, his point is well taken in a hypothesis testing
context, because the ignored constraints can be more
easily tested by examining transformed residuals for white-
ness than untransformed residuals for the appropriate

degree of color. In the revised paper, I have suggested
this alternative.

Watts suggests using multiplicative models ‘‘with their
equally valid justification and vastly simpler and more
effective analysis procedures.”” It is not clear what he has
in mind, since he excludes taking logarithms, and since,
in general, multiplicative models generate complicated
nonlinear statistical procedures.

He asserts that the causal models are ‘‘ill conceived,
because they impose the same dynamics (4;!) on all of
the regular exogenous variables Z,. and the same dynamics
;1Y) on all of the seasonal exogenous variables Z,.”
These models, however, do not impose the same dynam-
ics, only the same autoregressive portion. Further gener-
alization, of course, is easy.

Turning now to the comments of Howrey, he first
discusses the problem of identification of ARMA models
but draws no particular conclusions about unobserved
component ARMA models. This identification problem is
probably more difficult, but insofar as there are over-
identifying restrictions, these might provide additional
diagnostic checks of model adequacy.

His second point is concerned with the properties of
the estimates of the unobserved components when the
state-space model is estimated rather than known a priori.
The answer is surely the same as forecasting from any
ARMA, nonlinear, or lagged dependent variable model.
The parameter estimates will be consistent and, thus,
asymptotically, the unobserved component estimates will
be unbiased and of minimum variance.



