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ABSTRACT

Procedures for the optimal seasonal adjustment of economic time series and
their aggregation are derived, given a criterion suitable for the adjustment of data
used in political or journalistic contexts. It is shown that data should be adjusted
jointly and then temporally orsectorally aggregated, as desired, a procedure that
preserves linear aggregation identities. Examination of actual economic time series
indicates that the optimal seasonal adjustment and aggregation of data provide a
substantial improvement in the quality of sectorally disaggregated, adjusted data
and considerably reduces the required subsequent revision of current adjusted

series.
INTRODUCTION

How seasonal adjustment should proceed depends on
the information available and the context within which
adjustment takes place. Since information sets and the
purposes of investigators are many and widely varied,
different methods of seasonal adjustment have been pro-
posed in the literature, each with desirable properties in
certain contexts. If one’s final purpose is minimum mean
square error estimation of the nonseasonal component of
a single series and the seasonal component is assumed to
be deterministic, then fairly simple methods can have
desirable properties, as Lovell [4] and Jorgenson [3] have
illustrated. If one’s final purpose is estimation of the
parameters of an equation or a system of equations and
seasonal disturbances are allowed to have indeterministic
components, then more sophisticated procedures are re-
quired. (See, e.g., Wallis [7] or Sims [6].) From the
proliferation. of literature on this topic, it is evident that
which procedure is desirable very much depends on the
model used and the information available, and no single
seasonal adjustment procedure is suitable for all users of
economic time series. Those who approach the economet-
rics of model construction seriously are perhaps least
likely to be satisfied with any official method of seasonal
adjustment, but these investigators are also probably best
equipped to cope formally with seasonality problems on a
case-by-case basis. In this paper, it is assumed that the
final purpose of seasonal adjustment is extraction of ‘the
nonseasonal components of a set of economic time series
and that the loss function to be minimized in so doing is
mean square error. The purpose of this assumption is to
provide an analytically tractable formalization of the

objectives of the seasonal adjustment of data for use by
policymakers or journalists.

The following section begins with a very general state-
ment of the seasonal adjustment problem that provides an
indication of the many ways in which composition of the
information set will affect the deseasonalization procedure.
Optimal seasonal adjustment for a special case in which
the joint distribution of the time series in question and
their seasonal and nonseasonal components are known, is
illustrated. The main theoretical resuit of the paper is
developed in the section on aggregation and optimal
adjustment, where it is shown that, for virtually every
conceivable time series (including many processes that
have deterministic components, are nonstationary, or even
explosive) and a reasonably inclusive class "of potential
adjustment procedures, minimum mean-square-error ad-
justment implies that seasonal adjustment should always
precede temporal or sectoral aggregation.

The practicality of optimal adjustment and the magni-
tude of the increase in mean square error that results
when the aggregation problem is handled inappropriately
are examined in the sections on temporal and sectoral
aggregation. The widely used assumptions that the spectral
density of the nonseasonal component of any economic
time series should be smooth and not show peaks at
seasonal frequencies and that seasonal and nonseasonal
components are additive and independent are used to
achieve identification of the covariance structure of sea-
sonal and nonseasonal components of a vector of time
series. It is shown how this assumption leads to optimal
seasonal adjustment and revision of recently adjusted data
as time proceeds. The optimal adjustment procedures for
an artificial series, suggested by Grether and Nerlove [2],
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and two actual series, U.S. housing starts and the quit
rate in U.S. manufacturing, are computed.

In the case of the housing starts and quit-rate data, it is
found, in the séction on temporal aggregation, that virtual
elimination of the seasonal component is possible and
that, if monthly data are adjusted optimally, then revisions
of data after initial publication are minute. In the seasonal
adjustment of historical data (that pertaining to a period 5
or more years ago), it makes virtually no difference, in
practice, whether one adjusts monthly data and then
aggregates to form a quarterly series or adjusts the
quarterly aggregate directly, in spite of the theoretical
superiority of the former method. In the seasonal adjust-
ment of more recent data, however, there are substantial
gains to be realized from seasonally adjusting the data at
the most frequent sampling interval available (in this case,
monthly) and then aggregating to the desired frequency.
The more recent is the data, the greater is the gain; the
procedure reduces, by about half, the total required
revision of recently adjusted data as time proceeds.

section disaggregation is possible. In the first procedure,
the sectoral components are adjusted jointly using the
estimated covariance matrices for their seasonal and
nonseasonal components and then aggregated to yield an
estimate of the nonseasonal component of the aggregate
series; this is the procedure shown to be optimal in the
section on aggregation and optimal adjustment. In the
second method, each sectoral component is adjusted
optimally, but individually, and the seasonally adjusted
aggregate is taken to be the sum of the individually
adjusted series. In the third ‘procedure, the aggregate itself
is adjusted optimally. Theoretically, all one can say is that
the second two methods, in general, yield a larger mean
square error than the first; the Grether-Nerlove variable is
used to construct examples in which the third method is
superior to the second, and vice versa. In the case of
housing starts, where data disaggregated by geographical
region are available, the mean square error of the first
method is about half that of the second or third. While
this one example can only be suggestive, it seems plausible
that substantial improvement in the quality of seasonally
adjusted data can be obtained if joint adjustment of
sectoral components is employed.

OPTIMAL ADJUSTMENT

We shall be concerned with a kx1 vector stochastic
process x(¢) defined on the usual probability space. This
process is a function of two components,

x()=g (x™(1), x5(1)) . )

The kX1 vector processes x¥(¢) and x5(¢) are each
unobservable and are termed the ‘‘nonseasonal” and
**seasonal” components of x(t), respectively. The process
x(r) is observable, and the function g and the joint
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distribution of x¥(¢) and x5(¢) are assumed to be known.
Further assumptions about x (¢) will be introduced in some
specific examples.

The optimal adjustment problem may be stated formally
as follows: Given a realization ... x(¢-1), x(#), x(¢+1),
... of x(¢) and given a class C of functions, each having a
domain that has a countably infinite set of real numbers,

Ifn;gE[ﬁt(x(t),x(t+l), x(t=1), ..., x(t+m), x(t-m),
x(t-m=1), x(t-m=2), x(t-m=3), ... )=xY()F (2

where j is some number between 1 and k. The problem
presumes that there exists at least one f; for which (2) is
finite, a presumption that is satisfied by most processes
and reasonably inclusive C. We shall denote the solution
of (2) by f# and define

HO=FHx @), x @+, x(2=1), ...,

x(t+m), x(t-m), x(t-m-1), ...) €))

The function £} depends not only on the nature of the
processes x;(t),xy(t), and x§(f) but also on the five
following aspects of the problem that must be chosen by
the investigator:

1. The solution depends on C. The choice of C may be
affected by the need for analytical simplicity (e.g., it
may be some subset of linear functions) or practical
constraints that arise in the publication and revision
of adjusted data for a wide variety of users.

2. The constituents of x(z) affect the solution. As the
composition of x(z) is expanded, the magnitude of (2)
evaluated at f%, in general, decreases, but the
assumption that g and the joint distribution of x*(z)
and x5(¢) are known becomes less tenable; we shall
return to this difficulty in the section on sectoral
aggregation. In many seasonal adjustment problems,
k=1.

3. In general, the solution depends on j. Unless the
joint distributions of x¥(¢) conditioned on x(z) are the
same for all j—a condition which seems unlikely—
f} depends on the variable being adjusted. If k=1,
this amounts to saying that the relation of seasonal
and nonseasonal components is not the same for all
variables. This fact is implicit in seasonal adjustment
procedures that use dummy variables, the decision
not to adjust certain time series while adjusting
others and the existence of a certain amount of
flexibility within official adjustment procedures.

4. The solution is allowed to depend on ¢. If x(¢) is
stationary, f § will be the same for all 7, but when x (¢)
has nonstationary components, such as a trend or a
deterministic seasonal, the adjustment of x;(¢) will, in
general, change with ¢, In simple dummy variable
adjustment procedures, e.g., ¢+ and the joint distribu-
tion of x§'(¢) and xj(¢), this is all that matters.
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5. The value of m is important in the adjustment.
Because of the desire to obtain seasonally adjusted
series that are up to date, the problem (2), with m
equal to zero or some small positive integer, is
especially relevant. The fact that f% changes as m
increases from zero is responsible for the revision of
recent, seasonally adjusted data.

Note that (1) and the assumptions about x(f) are quite
general: We leave open the question of whether x*(¢) and
x5(¢) are related additively, multiplicatively, or in some
other fashion, and the vector x(¢) is not required to be a
stationary process. Formally, there is no need to require
the loss function to be quadratic, and the domain of the
functions in C could be limited to a finite number of
realizations of x(z). We shall not pursue either of these
cases in any detail, since both are straightforward exten-
sions of the problem posed here. The case m= is often
instructive, since it is usually analytically more tractable
than m<o and provides a paradigm for the seasonal
adjustment of historical (as opposed to recent) data.

Solution of (2) may be illustrated in two special cases.
Perhaps the most widely studied situation is x5(¢)=S (¢),
where S (f) is a deterministic function of time. Assuming
that linear functions are included in C and the seasonal
enters additively, the solution of (2) is simply

(@) =x5(6)-S ;D)

“the loss function then having the value zero. This model
underlies the application of simple dummy variable proce-
dures.

When xM(¢) and x5(¢) are jointly wide-sense stationary
and independent, x(t)=x"(t) +x5(¢), m=», and C is the
class of all linear functions of x(z), the problem (2)
becomes

min E[xY () -a#*x (O)F “

ay

In this expression, a;*x (¢) denotes the convolution of a;(s),
a 1xk vector of functions defined on the intergers’ with x (¢)

ax (D)= 2, 2 aﬁ(s)x,(t—s)

i=] §=-—o

It is actually convenient to solve the more general problem
min E[c*(x¥(t)-A4 *x (1))]% &)

7 :
where c¢(s) is any 1xk vector of functions for which the
expectation exists, and 4 (s) is the k Xk matrix of functions

having a j'th row that is a;(s). In the frequency domain,
this problem becomes the minimization of

fa ({5 @)=SH( @) ()’ A (@)S¥(w)
+4 (0)S {w)A (w)'}é (@) 'do (6)
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with respect to

A(w)= i A (s)exp(—isw)

=00

the Fourier transform of A (s). The 1xk vector ¢(w) is
similarly defined to be the Fourier transform of ¢ (s). The
kxk matrix S¥w) is the spectral density matrix of x™(¢),
and S () is the spectral density matrix of x (¢). So long as
S (w)~! exists, the expression (6) has a regular global
minimum at

A(0)=S¥®)S Lw) )

The inverse Fourier transform of 4 (),
A()——l—}/i(w)ex (isw), s= 1,0,1
S_Z”_,, plisw), s=...-1,0,1, ..
is the matrix of functions having a j’th row that solves (4).

AGGREGATION AND OPTIMAL ADJUSTMENT

In the special case of the preceding example, seasonal
adjustment amounts to a signal extraction problem where
the solution is the population regression of the unobserva- -
ble component x¥(f) on the observable vector x(t). The
regression interpretation is clear in expressions (6) and (7).
Since every type of linear aggregation of x¥(¢) and x(f)
amounts to a choice of ¢ (s) and since the solution (7) of
(5) is the same for all c(s), we should seasonally adjust
first and aggregate—across variables or over time-—sec-
ond. In this case, aggregation at the outset amounts to a
loss of information that, in general, precludes optimal
solution of (4).

The suboptimality of preliminary aggregation is not
solely a property of the historical seasonal adjustment of
wide-sense stationary processes: It applies in more general
and realistic situations as well. Turning our attention to
solution of (2) in the general case, the result may be stated
formally in the theorem and proof.

Theorem

Let C have the following property: K fin fie-v fri-z
.. all belong to C, then so does

8= E b (s)fit-s

=0
where b is any function defined on §=0, 1,2, .... Let
¥ (¢) be the solution of the problem
min E[z§()-x{(1)]*

for given C, x(t) and m, and denote x"(t)=
&), ..., x§(@). Let c(s) be any 1xk vector of
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functions defined on s=0, 1, 2, ... such that E[c*(¥(¢)-
x(2))]1? is finite. Then, a solution of the problem

mtirnE[c*(.vc"’(t)—f"'(f))]2
is #¥(D)=%M(1).

Proof

1. EN(@)-x¥()1[EM(s)—x(s))'=0 for all s<z. To see
this, let B*(x¥(#)-x¥(z)) be the linear, least squares
projection of #¥(t)-x™(t) on all past values of itself.
Define a new process

2 (£)=x"(t)-B*(x"(1)-x"(1))
Then E[z ()-x™O] [z (£)-x" ()
=E[N()-x"()-B*((1)—x"(1))]
V(@) =x(1)-B*(Z¥ () -x" ()Y
=ERN(@)-x"(ONM@)-x (@)Y
-E[B*(x¥()-x"NIB*(x¥(8)-x ()Y

Since % is the solution of the problem (2), we can
choose B=0. '
2. To complete the proof of the theorem, observe that

E[c*(ZN(#)-x"()]?

k 2
=E[E > CJ(S)(J'C’;V(f—S)—X’f(t—s))]

=1 5=

k ©
=Y ¥ cHs)ERLt -s)-x(t —s)]?

j=1 s=—» 5

The foregoing theorem is applicable in a wide variety of
cases. So long as x (¢) has finite variance and one restricts
attention to square summable ¢ (s), the conditions on x (r)
are met: x (¢) need not be a wide-sense stationary process.
The theorem also applies to any vector process x(¢) that
has a multivariate ARIMA representation. The theorem

assumes, as we did at the outset, that m=0, but with slight -

rewording could be modified to include the case m<O0,
optimal forecasting of the nonseasonal component of x (¢).
As it stands, the above result embraces the seasonal
adjustment and revision of recent data as well as historical
series. For example, it implies that if one’s criterion is
minimum mean square error and monthly data are avail-
able, then the quarterly seasonally adjusted series for
1976: III should be formed as the sum of the adjusted
July, August, and September observations. The only
restrictions of real consequence in the theorem are on the
adjustment process itself. The class C may embrace a
wide variety of adjustment functions, including quadratic
as well as linear mappings or allowing the exclusion of
outliers in x(z), so long as these adjustments may be
followed by any one-sided linear adjustment. Put another
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way, the adjustment procedure must be constructed so
that optimal linear adjustment of the adjusted series leaves
that series unchanged.! This property of the adjustment
procedure is necessary for the result, and, without it, the
conclusion that seasonal adjustment always should precede
temporal or sectoral aggregation no longer follows.

Two further questions remain to be examined before
conclusions about the importance of the aggregation prob- |
lem in seasonal adjustment can be drawn. First, of what
order of magnitude is the increase in mean square error
that results when temporally or sectorally aggregated
series are adjusted? Seasonal adjustment of daily time
series or the joint adjustment of data for each of 50 States
is sufficiently burdensome that one might be satisfied with
a less than optimal solution if the sacrifice were not too
great. Second, our assumption that the joint distribution of
x¥(t), x5(t) and x(¢) is known is never strictly correct in
any applied situation. Do we, in fact, know enough about
these distributions that the foregoing theoretical result can
even serve as a paradigm for seasonal adjustment? These
problems are considered in the next two sections.

TEMPORAL AGGREGATION: SOME EXAMPLES

What loss is incurred if aggregation, over time, precedes
optimal seasonal adjustment? In this section, we answer
this question, both for the adjustment of historical data
(that pertaining to a period infinitely long ago) as well as
recent data (that which pertains to a few periods ago, the
current time, or even the future) for the case in which loss
is measured by mean square error and the process in
question is wide-sense stationary. Three series will be

. examined: A widely used representative process and two

actual economic time series that display considerable
seasonality. Our examination is limited to the univariate
case to isolate the problems of temporal aggregation from
those of sectoral aggregation, considered in the next
section.

Consider, first, the adjustment of historical data that are
the realization of a wide-sense stationary process
x ()=xM()+x5(t). Suppose data are available monthly,
x¥(t) and x5(¢) are independent, the spectral densities
SY¥w) of x¥(t) and S$(w) of x5(¢) are known, and C is the

!This requirement should not be confused with the suggestion of
Lovell [4] that the seasonal adjustment process should be idempotent.
Lovell’s suggestion is that £% should satisfy

SEHx@), x4, )RR, )y flalx(+D), 20D, 1)

a property that will not, in general, be exhibited by the solution of (2).-
Our requirement is that f ¥ has the property

min Ela*x¥(1)-x (1) =ELJ(t) x}(1)}?

where x¥(¢) is defined in (3) and ¢ is any one-sided linear function.
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class of all linear functions of x(¢). From (6) and (7), the
solution of the optimal adjustment problem is

¥(t)=a*x (1)
where the function a (s) has Fourier transform
a(w)=S¥w)/S {w)

For monthly data, the mean square error of x¥(¢) is

EL#()—xM1)]2= f [ 8(w) ®

-

SHw)*
—Sx(w) ] de

Optimal seasonal adjustment of quarterly data is the
special case of (5) in which c(s)=1/3 if |s|=<I, and 0,
otherwise. The Fourier transform of the function c¢(s) in
this case is Dj(w)=(1+2cos(w))3, and the mean square
error of the resulting optimally adjusted quarterly process
is

T N
EL(0-x¥(0F = f D;;(w)*[sz(w):;f((‘;’};

]dw ©)

Given #¥(t), #4(t) =GN -1)+¥(@)+2M(@ +1))/3: Assume
that, instead, one were to form the unadjusted quarterly

series xq(f)=(x(t—=1)+x(t)+x(¢+1))/3 and then optimally
adjust this process. The process xq(#) has spectral density

A 2

, .
SYw)=>, Ds(m 2;”) S,(w+2;”)=Fs[D§SI](w)
=0 '

where S .(w) is taken to be periodic with period 27 and
the truncated folding operator F, is implicitly defined by
the latter equality.? Similarly, S %(w)=F3;[D}S¥](») and
S (w)=F;[D3S$](w). Another application of (6) and (7)
shows that the adjusted series is

£8(=ag*x (1)
where aq(s) has Fourier transform
| Gg(@)=F [DESE@)/F3lDsS N(w)
The mean square error of this adjustment procedure is
E[x§(6)-x¥(0))*

/3

- f {Fstogssn(w)—

—7l3

(Fawgsz](w))Z} do  (10)

F4[D3S ;)(w)

Since temporal aggregation before seasonal adjustment is
_suboptimal, the value of expression (10) exceeds that of
©9), and, given S¥(w) and S .(w), the magnitude of this
increase in error can be measured. In similar fashion, the

2The folding operator reflects the aliasing inherent in the temporal
aggregation of a wide-sense stationary process. (See, e.g., [1, pp. 36-
38].
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increase in mean square error that results when one

~ optimally adjusts annual data rather than forming annual

adjusted data as the sum of adjusted monthly data can be
computed. . .

The expressions (8), (9), and (10), as well as the
analogues of (9) and (10) for annual aggregation, were
evaluated and compared for three processes. The first
process is the one considered by Grether and Nerlove

21—

| (LH0.6LY(D) |

1+0. ’
(1+0.8L)e(?) rn(0)

*O=q 005 )1-0.75L) " (1-0.9L™)

The processes €(t), ¥(t), and 7(¢) are mutually independent
and serially uncorrelated. The first term is the trend-cycle
component of x (¢), with var(e(¢)) such that the trend cycle
accounts for 85 percent of the variance of x (¢); the second
term is the seasonal component, with var((¢)) such that
the seasonal accounts for 10 percent of the variance of
x(7). The term L is the conventional lag operator.

_ The other two processes are U.S. housing starts and the
quit rate in U.S. manufacturing. Both were assumed to be
wide-sense stationary, strictly indeterministic processes
with additive, independent seasonal, and nonseasonal
components. In each case, these components were identi-
fied using Nerlove’s criterion (see [5]) that S¥(w) should
be smooth and exhibit no peaks at seasonal frequencies.
This form of identification is far from exact, but experi-
mentation showed that the results reported here are robust
regarding a variety of exact interpretations of Nerlove’s
criterion. Exact computational procedures are described in
the appendix.

The results presented in figures 1 and 2 indicate that,
for the adjustment of historical economic time series, it
makes essentially no difference whether one seasonally
adjusts monthly data and then aggregates to form quarterly
data or adjusts the quarterly data directly. The increase in
mean square error from following the latter procedure is
greatest in the case of the quit rate, and there the increase
is orly 2.74 percent. For both housing starts and the quit
rate, the optimal adjustment process is very effective,
leaving an adjusted process having a mean square error
that is less than 10 percent of the variance of the seasonal
component and a much smaller fraction of the total
variance. For the Grether-Nerlove variable, the adjustment
process is not nearly as successful, but the increased error
that results from the direct adjustment of quarterly data is
only 0.3 percent. For annual data, the proportional differ-
ence in mean square error is large in the case of housing
starts and the quit rate, but the fraction of variance in the
annual series accounted for by the seasonal term is so
small that the point is moot.

In the optimal adjustment of recent economic time
series, the increase in mean square error that results from
the direct adjustment of quarterly series, as opposed to
the quarterly aggregation of adjusted monthly series, is
much greater. Since x¥(¢) and x5(¢) are jointly wide-sense
stationary processes, the signal extraction problem of
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Figure 1. ALTERNATIVE ADJUSTMENT PROCEDURES FOR THE GRETHER-NERLOVE VARIABLE
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Figure 2. ALTERNATIVE ADJUSTMENT PROCEDURES FOR HOUSING STARTS
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Note: Covariance properties of the variable were estimated from housing starts data, 1959-74, for which var (x
37.403. (Mean square errors were calculated as described in the text.)
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Figure 3. RATIO OF MSE TO MSE OF OPTIMAL ADJUSTMENT PROCEDURE WHEN x1 AND x2 ARE
SUMMED AND THEN SEASONALLY ADJUSTED
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x (t))-pN and corr(x (t), xs(t))—ps



GEWEKE

419

Figure 4. RATIO OF MSE TO MSE OF OPTIMAL ADJUSTMENT PROCEDURE WHEN x1 AND x2 ARE

SEASONALLY ADJUSTED AND THEN SUMMED

-1.0 ——

0.0

Note: Both variables are the same as those in fig. 3.’
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estimating x"(¢), given a realization x(¢t+m), x(t+m-1),
x(t+m=2), ..., can be approached using the Wiener-Hopf
technique, an exposition of which is given in [8, ch. 6]. A
brief summary of the procedure follows.? ‘

Let R (f), the autocovariance function of x(z), and
R¥(1), the autocovariance function of x¥(¢), have Laurent
expansions

2xD= 3 Ruls)z* (11)
and
=S R¥s)z (12)

respectively, where z is any complex number. (Note that
gx(e7')=§ . (w).and g¥(e~'*)=S5Y¥(w).) Assume that g ,(z)
and g¥(z) are analytic in some closed annulus of the unit
circle and § . (w)>0 for all w.* Under these conditions, x (¢)
has a moving average representation

£ (D=3 b(s)elt =s)

§=0

where €(¢) is a serially uncorrelated process having a
variance ¢? that is the mean square error in forecasting
x(t) one period ahead, and 5 (0)=1. Let B(z) denote the
Laurent expansion of 5. Then,

O= 2 an(s)x(t-s) 13)
§=-m N
where a,,(s) has Laurent expansion

1 g¥2)
B (2) [B (zl)],,,, 14

An(2)=

Following the notation of [8], the last term in expression
(14) denotes the Laurent expansion of the first m future,
the current, and all past coefficients of the function having
a Laurent expansion that is g¥(z)/B (z~!). The function
B(z) may be obtained as the canonical factorization of
g:(z), described in [8, p. 26]. Writing

gz(z)=exp[ i c(s)zs] (15)
we have
B (z)=eXp[ ic(s)zs] (16)
s=1

3The contents of the following paragraph are taken directly from
[81, making only the obvious substitutions required for application to
the problem of seasonal adjustment.

*This requirement as well as the stipulation that 1n(g.(z)) have a
Laurent expansion analytic in some spen annulus of the unit circle are
not restrictive. They are almost tantamount to saying that the process
in question cannot be perfectly predicted, given its entire past. (See
[8, pp. 23-26].)
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so long as 1n(g(z)) has a Laurent expansion analytic in
some open annulus of the unit circle.

The validity of expressions (11)—(16) on the unit circle
and the existence of the fast Fourier transform computa-
tional algorithm makes possible extremely rapid computa-
tion of the optimal deseasonalizing filter a,,(s) for any m
and any autocovariance functions R ,(z) and R¥(¢). From
(15),

In (S (W)= c(s)eise

§=—00

so that ¢(s) may be formed as the inverse Fourier
transform of 1n(S .(w)). Having obtained c (s), use (16) to
form

5(w)=exp[ Se (s)e_m]

s=1

Form the ratio S¥(w)/b (—w), inverse Fourier transform,
and set to zero all terms beyond the m’th future of the
resulting function; Fourier transform to obtain
[g¥(2)/B (z7")]-n evaluated at z=e~*. From (14), division
by b (w) yields d,,(w) having an inverse Fourier transform
that is the function a,(s) in (13). (The further computa-
tional details needed to reproduce the results presented
here are provided in the app.)

Once 4,.(w) is known, the mean square error of the
estimate x,,(¢) may be evaluated using the relation

© 2
E[N()—xN)P=E [ > am(s)(x”(t—s)+xs(t—s))—x”(t)]

s=-m

= ] {1 DS U )+ i) ESY)}dw (1)

From the result on aggregation in the section on aggrega-

tion and optimal adjustment, optimally adjusted recent
quarterly data for the quarter centered at month ¢ is

©

xzm(t)=[ i Am-i($)x@E+1-8)+ X am(s)x(t—s)

s=—-m+1 §=—m

+ i am+1(5)x(f—1—s)]/3

s=-m—1

= D (am-1(s+D+an(s) +amer (s =D)x (2 =5))/3

§=—00

©

= a%(s)x(t-s)

§=—00

where it is understood that 4,,(s)=0 for s<—m and the
last equality is defining for a%(s). The mean square error
for this quarterly adjusted series is

[ 1D 3@s Kardu+ [las@pss@do a8
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where % (w) denotes the Fourier transform of a&(s). The

mean square error of the adjustment process that works
directly from unadjusted quarterly data is obtained exactly
as that for the monthly data, except that one begins with
F3[D3S ;) (w) and F4[D3;S¥(w) in lieu of §,(w) and
S¥(w), respectively, and the integration in the analogue of
“expression (17) is over the interval [-m/3, 7/3].

Mean square errors for the optimal adjustment of recent
monthly data (17), for the quarterly aggregation of adjusted
monthly data (18), and for the adjustment of quarterly data
(the quarterly analogue of (17), were measured over a
wide range of values of m, for the artificial variable
constructed by Grether and Nerlove, and for U.S. housing
starts. S¥(w) and S5(w) for the latter were estimated as
described in the appendix. The results are presented in
figures 1 and 2, which show that the more information one
has (i.e., the larger is m), the better the estimate x,(¢)
becomes. Revision of recent data as time proceeds im-
proves the quality of the adjusted series, but in neither of
the cases reported here is the mean square error reduced
by as much as half, once the unadjusted data is available.

Figures 1 and 2 indicate that, for recent data, the
improvement which results when one aggregates adjusted
monthly data to form an adjusted quarterly series instead
of adjusting quarterly data directly, is nontrivial: The

improvement is greatest for the current quarter and tapers ;

off thereafter. (It turns out that, if one attempts to forecast
future values of x¥(¢) from current and past x(¢), the
reduction in mean square error is proportionately even
greater.) In the case of housing starts, directly adjusted
- quarterly data do not reach the quality of the current
quarterly aggregation of adjusted monthly data until half a
year has elapsed. Given the wide journalistic and political
use of seasonally adjusted data, revision of adjusted data
or delays in its publication are undesirable. The results
reported in figures 1 and 2 indicate that substantial
reduction in both revisions and delays may be achieved by
seasonally adjusting data measured at the finest available
time intervals, and then aggregating over time to the
desired reporting interval.

SECTORAL AGGREGATION: SOME EXAMPLES

In this section, we consider the optimal seasonal adjust-
ment of historical data that are a realization of a series x (¢)
with

x(D=2 xi(1) 19
i=1
Each x;(¢) is observed and is, in turn, the sum of
unobservable nonseasonal and seasonal components
xi(=x¥(O)+x5@1), i=1, ..., n 20)

The x¥(¢) and x§(¢) are assumed to be jointly wide-sense
stationary; the components x'(¢) and x§(s) are independ-
ent for all i, j, ¢, and s, and C is again the class of all
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linear functions. To isolate the problem of sectoral aggre-
gation, we shall assume that x(¢£)=(x,(1), ..., x.(2))’ is
observed monthly, but the examples considered here
easily could be reworked using weekly or quarterly data.
If S¥%w) and § (w), the spectral density matrices of
x™(¢) and x (¢), respectively, are known, then, from (7),
the optimally adjusted series is

()=a*x(1) 1)

where a(s) is a 1xn vector of functions with Fourier
transform

e SHw)S (w)™! (22

where the 1xn vector e=(1, ..., 1). We shall call this
method of adjustment method A. Application of (6) shows
that

EL[£¥(@#)-x™(1)]?

=f elSM @) -S U )S Lw) SWw)'}e'do  (23)

Two practical questions about this procedure arise
immediately. How much do we gain, as a matter of
practice, in using the multivariate form (21)? When n is
large, adjustment may become computationally burden-
some. Unless (23) is substantially smaller than

a2 sﬁﬂ(w)) ( _§’_¥&(_¢1)>
L.gl E{(I_SI,,(«») Salel\1-50)
S (@) SE(SEL w)}
S 2 (@)S £ (@)

Q4

which is the mean square error when the n series are
individually adjusted and then summed (method B) and

N 2
j{e s’;(w)e'-M} do 25)
J e S (w)e

which is the mean square error when x(z) is adjusted
directly (method C), recourse to (21) and (22) may not be
worthwhile. We shall adduce evidence that in applied
situations the value of (24) and (25) may exceed (23) by a
factor of more than 2. The second question is how one
might go about estimating the matrices S ¥(w) and §$(w),
a problem which must be solved before optimal joint
adjustment can proceed but is not required in the other
two methods. We shall argue that $ ¥ w) and $$(w) are,
indeed, identified by Nerlove’s criterion.

The relation between (23), (24), and (25) depends on the
covariance structure among x¥(z) and xS(¢): Without re-
stricting this structure, one can say nothing about the
relative sizes of (24) and (25) or compare them with (23),
except to say that they are, in general, larger. A few
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examples will illustrate the considerations involved. Con-
sider the case n=2 with

Si(w)  pyeSY(w
S¥w) =[ >] ,
preSi(w)  2SY(w)
Si(@)  pedSi(w)
SH w)=[ } (26)
psdS3(w) &% (w)

When py=ps=0, mean square error for both method A
and method B is

———y

ST (@) [e?(1+c)SY (w)+(d+c4) S5 ( w)]} ”
w

2} (N
{‘”‘ W ) ST () 15T ()]

v

Since there is no interaction between x1(2) and x,(z), both
methods adjust each series individually. Unless d=c, the
adjustment of x,(r) will not be the same as that of x2(0),
and method C (which forces the same adjustment on both
variables) will have a larger mean square error. When
d=c=1, mean square error for both method A and method
Cis

ks

| {2(1+p~)ssz,(w)-

-7

283 (@)*(1+py)y }dw
(S (@) +pyST (@) +psS5 (0))

The joint adjustment process in method A treats the two
variables symmetrically, using their interaction to help sort
out x¥(¢) and x5(#), so long as py#ps. Hence, the fact
that method C forces a symmetric treatment of x(?) and
x2(#) does not increase mean square error, but method B
has a higher mean square error unless py=ps. When d=¢
and py=ps=p, all three methods have mean square error

Sﬁl(w))
S (@)

(1+2¢cp+c?) fS'}'l(w)(l_

In this case, the relative spectral shapes of the pairs
x¥(2) and x{(s), x¥(¢) and x§(¢), and (x,+x5)¥(z) and
(x1+x2)S(2) are all the same: The method B and method C
adjustment procedures, therefore, coincide. In fact, for
any square summable linear functions 4 (s) and b (s), the
ratio of the spectral density of a*%¥(1)+b*x}(r) to
a*x:(0)+b*xy(t) is S ( w)/S ;(w), and this accounts for
the inability of method A to improve on method B or
method C.

Some further examples are provided in figures 3 and 4.
S7, is taken to be the spectral density of the nonseasonal
component of the Grether-Nerlove variable, described in
the previous section, while §7%,(w) is the spectral density
of its seasonal component that accounts for 10 percent of
the total variance in x,(r). S¥(w) and S$(w) are con-
structed from (26), with ¢=d=2.0, and the mean square
errors are computed using (23), (24), and (25). The
correlation py of the nonseasonal components is assumed
to be high, as is the case for the components of many

SECTION Vi1

economic aggregates. In general, the smaller is the product
pspy the more method B and method C suffer by
comparison with method A, which is able to use the
information on interactions in an optimal fashion to
eliminate as much of the seasonal noise in x1()+xy(2) as
possible. In most cases, including many not reported here,
method C produces better results than method B. A
notable exception is the situation in which one series is
contaminated and the other is not, and the spectral shapes
of x,(¢) and x,(r) are different enough that there is a real
advantage in separately adjusting x,(z) and x2(1) before
aggregation takes place. Even then, the results achieved
are not nearly as good as those obtained by using the
optimal method A, which has comparative advantage
increases as correlation between the nonseasonal compo-
nents approaches 1. This case has an obvious empirical
analogue in the adjustment of data for which disaggrega-
tion by geographical regions with different seasonal factors
is possible.

In order to examine the gains likely to be realized for
the joint seasonal adjustment of sectoral components, in
practice, estimated spectral densities of the seasonal and
nonseasonal components of a disaggregated economic time
series were used in (23), (24), and (25). The variable
chosen was housing starts, available for 1959_74. This
series shows large seasonal fluctuations, increasing any-
where between 75 percent and 150 percent from its early
winter low to its spring high. Data are disaggregated
geographically into the northeast, north-central, southern,
and western regions. Seasonality is even more pronounced
in the first two components than in the aggregate series,
while seasonal variance in the South and West is much
smaller. A priori, the housing starts series appears to be
one in which substantial gains from joint seasonal adjust-

" ment might be realized. -

Unfortunately, the problem of estimating the matrices
$3(w) and S$(w) employing Nerlove’s criterion, which
must be considered before joint seasonal adjustment of
time series can proceed, has not (to the author’s knowl-
edge) been resolved satisfactorily. In principle, the prob-
lem may be attacked using the fact that if the seasonal and
nonseasonal vector components are additive and independ-
ent, then the spectral density of a linear combination of
the nonseasonal components is smooth and exhibits no
peaks at seasonal frequencies.’ This implication is restric-
tive and, with a suitable parameterization of peaks, might
be testable; as a practical matter, use of just enough linear
combinations to identify §¥(w) and S5 (w) can easily pro-
duce estimates of these matrices that are not positive
semidefinite. In studying the housing starts data, S¥(w)
was estimated by smoothing the matrix of periodogram
ordinates after eliminating those ordinates near the sea-
sonal frequencies. This procedure guarantees that esti-
mated S¥(w) and S5(w) will be positive semidefinite but
results in a systematic downward bias of S¥(w) near

*One would, of course, have to exclude linear combinations that
have transfer functions which exhibit seasonal peaks.
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Figure 5. OPTIMAL SEASONAL ADJUSTMENT AND SECTORAL AGGREGATION OF HOUSING

STARTS VARIABLE
Component Estimated covariance matrix Estimated correlation matrix

Nonseasonal. . ....... 1.3098 0.9579 2.2977 1.4096 1.000 0.522 0.486 0.563
.9579 2.6639 4.8619 1.9556 .522 1.000 .735 .568

2.2977 48619 17.0810 6.5652 486 .735 1.000 .726

1.4096 1.9556 6.5652 4.7902 .563 558 .726 1.000

Seasonal ........... 26567 3.6459 2.2995 1.0650 1.000 956 741 651
3.6459 5.4743 3.6683 1.7251 .956 1.000 .824 .735

2.2995 3.6683 3.6179 3.6179 741 .824 1.000 .886

1.0650 1.7251 1.6932 1.0076 651 7356 .886 1.000

Note: Housing starts were disaggregated geographically into northeast, north-central, southern, and western regions, in that order.

Variance of aggregate series Mean square errors
Component Variance Method Error
Nonseasonal component. . . . . 61.8407 | A. ... ... .. ... .., 0.70033
Seasonal component . ... ... 409505 | B.........ciiiunnnn 1.3900
C e e 1.3836
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seasonal frequencies and, consequently, a lower estimated
variance of the nonseasonal components than was the case
in the univariate methods employed in arriving at the
results reported in figures 1 and 2. (For details, the reader
is referred to the app.) Formal resolution of this problem
appears to be a topic, in its own right, that would take us
far afield.

Once the seasonal and nonseasonal spectral density
matrices have been estimated, the mean square error of
each of the three adjustment procedures may be com-
puted. The results of these calculations are-shown in figure
5, which reports the estimated variance and correlation
matrices for the nonseasonal and seasonal components
and the mean square errors of the three methods. Several
features of the housing starts data reported in figure 5 are
important. First, the four series are contaminated in
different ways by seasonality: While about two-thirds of
the variance in'housing starts in the northeast and north-
central States is ascribable to seasonal factors, less than
20 percent of variance in the South and West is accounted
for in this way. Of the variance in housing starts in the
northeast-north-central region, 72.7 percent is accounted
for by seasonality, while only 18.6 percent of the variance
in this series can be so described for the rest of the United
States. Hence, application of the same deseasonalizing
filter to all four series is inappropriate. Second, the series
are exceptionally contaminated by seasonality, by conven-
tional standards: Recall that in the typical Grether-Nerlove
variable only 10 percent of the variance is due to
seasonality. Finally, correlation among the seasonal factors
is higher than correlation among nonseasonal factors, and
variances differ widely for the four series, conditions
under which a substantial gain from an explicitly multivar-
iate treatment is likely.

As the results show, mean square error of the optimal
method A is about half that of the other two procedures.
In addition, method A produces deseasonalized sectoral
series with mean square errors smaller than those from
method B. The sum of the four series adjusted by method
A equals the aggregated method A deseasonalized series,
while the sum of the four series adjusted by method B is
not the same series produced by method C. These
attractive features of the optimal, joint-adjustment proce-
dure indicate that it may be an important way of improving
the quality and .internal consistency of officially adjusted
data. Until other series are examined in a fashion similar
to our study of housing starts and the problem of joint
estimation of seasonal and nonseasonal components in the
multivariate case is resolved more satisfactorily, this
conclusion can only be tentative.

SECTION VII -
CONCLUSIONS

The results presented in the sections on temporal and
sectoral aggregation indicate that optimal seasonal adjust-
ment of economic time series followed by aggregation, as
described in the sections on optimal adjustment and
aggregation and optimal adjustment, results in seasonally
adjusted data that are of substantially higher quality than if
data are aggregated first and then optimally adjusted.
Mean square error is reduced by about half in the
adjustment of current, univariate series and in the histori-
cal adjustment of at least one series for which disaggrega-
tion by sectors is possible. The fully optimal adjustment
procedure has the further advantages of reducing the
required revision of current, seasonally adjusted data and
producing sectorally disaggregated, seasonally adjusted
series that are consistent with the aggregate adjusted
series. In interpreting these results, some qualifications are
necessary.

First, in the estimation of mean square errors in the
sections on temporal and sectoral aggregation, it was
assumed that the covariance structure of the seasonal and
nonseasonal components was known exactly: No allow-

-ance was made for the estimation error that must result in

the actual application of these methods. The latter consid-
eration, of course, increases all mean square errors for
actual economic time series reported here, but it is not
evident how it would affect the relative errors reported in
figures 1 and 2 and table 1. If the covariance structure
changes over time, a further source of error is introduced.

Second,' our comparisons in the last two sections were
limited to alternative methods which were all the outcome

" of seasonal adjustment procedures that were already

optimal in some sense. The class of adjustment procedures
allowed in each case was much wider than that permitted
in official adjustment procedures. It is quite possible that
the improvements realized by handling the aggregation
problem properly are small compared with the gain
achieved by allowing official adjustment procedures to be
more flexible than they are now.

Finally, while the examples in the sections on temporal
and sectoral aggregation are intended to be both realistic
and illustrative, they reflect few of the complications that
arise in practice. These include the treatment of nonsta-
tionarity, the combination of multiplicative seasonal and
nonseasonal components with additive sectoral compo-
nents, and the use of more specific knowledge about
seasonality, the treatment of which is nontrivial.
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APPENDIX

COMPUTATIONAL PROCEDURES

Figures 1 and 2

To compute the spectral density of the nonseasonal
portion of the Grether-Nerlove variable, the following
sequences were formed:

a(1)=10, a(2)=0.8, a(3)= ... =a(384)=0.0
b(1)=1.0, b(2)=-0.95, b(3)=...b(384)=0.0
c()=1.0, ¢(2)=0.75, c(3)= ... =c(384)=0.0

Using the fast Fourier-transform algorithm the finite Four-
ier transform of each series was computed, e.g.,

d(j)=3§a(s)exp(—i21r(s-—1)(j—1)/384, Jj=1,...,384

=1

The sequences b (j) and ¢ (j) were computed in the same
way. The inner products | ()%, |b ()P, and |¢ (j)]? were
formed, and the nonseasonal spectral density was taken to
be |a (Db (DP+|é ()B)+constant, j=1, ..., 384. Simi-
larly, the seasonal component was taken to be |d(j)}
le(NIE, j=1, ..., 384, where d(1)=1.0, d(2)=0.6,
d(3)=...=d(384)=0.0 and e(1)=1.0, ¢(2)=-0.9,
e(3)=...e(384)=0.0. The nonseasonal, seasonal, and
constant were weighted to achieve the decomposition by
variance, noted in the section on temporal aggregation,
and a total variance of 1.

The spectral density of housing starts was estimated by
removing the mean of the 192 observations in the 1959—74
monthly sample and computing the periodogram at 384
equally spaced ordinates. The periodograms at each of the
11 seasonal ordinates were removed, and the remaining
ordinates were smoothed using an inverted V-window that
has a base of 9 ordinates, a correction in the smoothing
weights being made for the absent seasonal ordinates. The
seasonal ordinates of the smoothed periodogram were then
removed and replaced by the original periodogram ordi-
nates at those frequencies. The result is the estimated
spectral density, allowing for a spike at seasonal frequen-
cies. The spectral density of the nonseasonal component
was estimated by removing the ordinates at the seasonal
frequencies and three adjacent ordinates in each direction.
The remaining portion of the periodogram was smoothed
with the inverted V-window, correcting for the downward
bias across seasonal frequencies. The spectral density of
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* Entry

the seasonal component was estimated by subtracting
estimated S¥(w) from estimated S (w), setting $$(w) to
zero and SY(w) to S (w) in those few cases in which the
difference was negative. The procedure for the manufac-
turing quit rate was the same, except that 384 monthly
observations for 1943-74 were used.

In all three cases, the. mean square errors were com-
puted according to (8), (9), and (10) and the analogues of
(9) and (10) for annual aggregation, summation across 384
equally spaced ordinates replacing integration.

For the study of current seasonal adjustment, spectral
densities of nonseasonal and seasonal components were
formed as previously described. The sum of the two
components was taken to be (11), evaluated at 384 equally
spaced ordinates on the unit circle, while the nonseasonal
component is (12), evaluated in the same way. The
function g,(w) was computed as described in the text,
evaluation always being at 384 equally spaced ordinates.
The inverse Fourier transform, where required, is formed
by computing the Fourier transform of the complex
conjugate of the sequence in question and dividing by 384.
The first entry of the resulting series is the current term in
the time domain, coefficients with positive arguments
being the successive entries, up through the 192d term.
Terms with negative argument begin at entry 384, coeffi-
cient with argument —j being in entry 385, j=1, ..., 191.
193 was split "between the 192d and
-192d arguments, a division of no real consequence, since
entry 193 was always small. The mean square errors (17)
and (18) and the quarterly analogue of (17) were computed
as the sums across these ordinates.

Figures 3 and 4

S, for the Grether-Nerlove variable was estimated as
described for figure 5. Equations (23), (24), and (25) were
evaluated directly using (26) and replacing integration by
summation over the 384 ordinates.

Figure 5

The 4x4 matrix of 384 equally spaced periodogram
ordinates was computed. For each of the 10 distinct
entries in this matrix, the nonseasonal component of the
spectral density was constructed as described for figures 1
and 2, except that correction for the downward bias in the
estimate of $¥(w) at seasonal and nearby ordinates was
not made. The matrix § (w) was estimated as described



GEWEKE

for figures 1 and 2, allowing for a spike at seasonal
frequencies. The matrix S§(w) was taken to be the
difference between S (w) and S¥(w). Mean square error
was computed from equations (23), (24), and (25), sum-
mation over 384 equally spaced ordinates replacing integra-
tion.

Data
The quit rate in U.S. manufacturing was taken from
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Employment and Earnings, United States 1909 -72, Bu-
reau of Labor Statistics Bulletin 13129, pages 37-38, for
January 1943-June 1972 and from various issues of
Employment and Earnings, table D-1, for July 1972-
December 1974.

Data for U.S. housing starts, disaggregated by geograph-
ical region, were supplied directly by the Bureau of the
Census.



COMMENTS ON “THE TEMPORAL AND SECTORAL AGGREGATION OF SEASONALLY
ADJUSTED TIME SERIES” BY JOHN GEWEKE

Michael C. Lovell
Wesleyan University

John Geweke is to be congratulated on presenting us
with a very neat result on a troublesome problem. He
shows that “‘for virtually every conceivable time series
... and a reasonably inclusive class of potential adjust-
ment procedures, minimum mean-square-error adjustment
implies that seasonal adjustment should always precede
temporal or sectoral aggregation” [4]. He illustrates the
advantage of prior adjustment with artificial data, regional
data on housing starts, and data on the quit rate in U.S.
manufacturing. He finds that the gain from adjustment
prior to aggregation is particularly strong in terms of
revision stability; i.e., when initially released data is
deseasonalized in advance of aggregation, it is subject to
much smaller revision as additional observations accumu-
late.

I must confess that I was particularly naive on my first
reading of this paper, and, while I am still enthusiastic
about Geweke’s result, I was guilty of thinking that he
had achieved much more than he claims. I thought that
the theorem had something to say regarding the simmering
controversy between John Brittain and the Bureau of
Labor Statistics (BLS) [1; 3]. The BLS adds seasonally
adjusted unemployment to seasonally adjusted employ-
ment in order to obtain the seasonally adjusted labor
force.  Brittain’s residual procedure subtracts seasonally
adjusted employment from seasonally adjusted labor force
in order to obtain a seasonally adjusted figure for unem-
ployment. The difference is quite marked. You may recall
that the initial BLS figure for unemployment for May
1975 was 9.2 percent; Brittain's residual figure was 8.9
percent; revisions announced by BLS at the beginning of
1976 dropped the official May 1975 rate to 8.9 percent and
the residually adjusted figure to 8.7 percent. There are
several reasons why Geweke’s theorem does not resolve
this controversy. First, the Census Bureau’s X-11 proce-
dure is not what Geweke has in mind when he refers to a
*“‘reasonably inclusive class’ of seasonal adjustment pro-
cedures, and I do not think anyone has claimed that
Census Bureau’s X-11 is a mean-square-error adjustment
procedure. Second, Geweke’s result requires that the
component series to be summed must be adjusted jointly;
as figure 3 reveals, there may be a loss, rather than a gain,
from adjusting in advance of aggregation if each of the
component series is adjusted individually, rather than by
pooling the evidence. Moving-average adjustment pro-
grams do not pool the evidence in the way required for
Geweke’s theorem. Third, Geweke’s theorem holds for
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additive, rather than the more popular multiplicative
adjustment. I would guess that, if multiplicative adjustment
is achieved by simply taking the logs of the original data,
his theorem applies to ratios and/or geometric averages of
the data, rather than sums obtained in aggregation. Let me
emphasize that my own feeling is that these factors do not
distract all that much from Geweke’s results. For one
thing, I suspect that this conference will contribute to
modifications of seasonal adjustment practice in a direction
that will make Geweke’s theorem applicable: None of us
will fight optimal seasonal adjustment (although we may
quarrel about what we mean by ‘‘optimal’’), and joint
adjustment of related series is undoubtedly the wave of
the future.

There is another problem concerning aggregation that
can be clarified by considering data on unemployment.
The official BLS figures are based on an age-sex break-
down of unemployment and an age-sex, agricultural-non-
agricultural breakdown of employment; thus, 12 separate
series are adjusted in obtaining the labor force aggregate.
This yields an official figure of 8.9 percent for May 1975,
but the figure for that month is 8.8 percent if the data are

(disaggregated by duration of unemployment, 9.0 percent

if disaggregated by industry, and 9.1 percent if disaggre-
gated by occupation.! I think Geweke’s theorem tells us
that, if we were using an optimal additive procedure, it
might be worth the tabulation effort and computer burden
of breaking down the. aggregates into very fine detail,
rather than choosing between alternative disaggregation
procedures; the payoff might be a reduction in the
magnitude of revisions, which is currently a serious
problem. But, a difficulty with using so many cells would
be that many would have so few observations that they
would be subject to large sampling error. I am curious as
to whether Geweke’s results apply when the individual
series are subject to sampling and enumerator errors,
particularly when the errors are not independently distrib-
uted.

I like Geweke’s paper, but I must state that I disagree
with his underlying seasonal adjustment philosophy. I
suspect that the majority at this conference may prefer
his approach to mine, but, in good conscience, I must

! Each month, the Commissioner of Labor Statistics customarily
discusses the latest figures before the Joint Economic Committee.
Inserted in the record is a table with 13 alternative estimates of the
current seasonally adjusted unemployment rate.
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state my piece. I feel that there is much to be said for
using a least squares seasonal adjustment strategy. One
advantage of my least squares procedure is that it pre-
serves sums; this means that it makes no difference
whether you seasonally adjust the components and then
sum or seasonally adjust the aggregate [2; 5]. You don’t
need to worry about whether you should disaggregate by
occupation or by industry; you do not have to worry
about the danger that the components will be subject to
sampling and classification error. A second advantage of
my least squares approach is that it is possible to explicitly
model seasonal forces. Geweke notes that the housing-
start seasonal is much more pronounced in northern than
in southern regions. Obviously, this is because the sea-
sonal in construction stems, in large measure, from the
seasonal in the weather. One might try to exploit this fact
in explicitly modeling the process, using climatic variables
in the regression, rather than dummy them out. A useful
model would explain differences between regions; because
data from different areas could be pooled, tighter estimates
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could be gained. I think that users of seasonally adjusted
construction data would like to have the effect of an
unusually severe winter netted out, and the regression
approach can accomplish this.

In conclusion, I would like to say that I particularly
like Geweke’s emphasis on the question of sensitivity to
revision. We need standard errors for seasonally adjusted
series that will be revealing with regard to the likelihood
of revision, as well as sampling error. Currently, there is
a tendency for business analysts to overreact to random
pips, such as the erroneous 0.3-percent increase in the
initially reported unemployment rate for October 1975; it
is hard for the White House to resist the temptation to
mumble about faulty seasonal adjustment when indicators
move in an undesired direction. I hope it will not be too
long before press releases of key economic indicators will
contain explicit warnings in the form of engineering-style
error bands or confidence intervals concerning the sensi-
tivity of seasonally adjusted data to revision and sampling
€erTors.
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COMMENTS ON “THE TEMPORAL AND SECTORAL AGGREGATION OF SEASONALLY
ADJUSTED TIME SERIES” BY JOHN GEWEKE

John B. Taylor
Columbia University

By treating the problem of seasonal adjustment as a
general minimum mean-square signal extraction problem,
Geweke derives a procedure for the seasonal adjustment
of aggregate tiine series that optimally utilizes the correla-
tion structure among the components of the aggregate

_series. His paper also contains a very general proof that
the procedure is efficient, relative to procedures that
cither ignore the information provided by the component
series or use it incorrectly. A byproduct of this derivation
is a formula for the minimized value of the mean-square
loss function that he uses to compute the efficiency of the
optimal procedure, relative to several suboptimal proce-
dures. The general finding is that the relative efficiency of
the optimal procedure depends on the spectral density of
the nonseasonal and seasonal components of the aggregate
series and, in some cases, may be quite large.

In discussing this paper, it will be convenient to
illustrate the problem in a considerably more simple
model than used in Geweke’s paper. This will allow
abstraction from some technical issues that would other-
wise significantly lengthen the discussion. Although most
of the main points can be demonstrated in this less
general setting, actual applications, of course, require the
full model of the Geweke paper.

Consider two observable economic variables, x,; and x,,
which are both additively composed of unobservable
aonseasonal and seasonal parts

x=x¥+x$ )
Xo=xY+x§ )

It is assumed that the pair of nonseasonal components
x¥, x¥) has a zero mean and covariance matrix Y ¥, and,

similarly, the pair of seasonal components has a zero mean |

and covariance matrix Y ¥. Furthermore, the pair (x¥, x¥)
s uncorrelated with (x5, x3).

The seasonal adjustment of the observable variables x,
ind x, can be viewed as a problem of extracting the
1onseasonal parts xy and x}. However, suppose that the
Hitimate objective is not extracting the individual nonsea-
sonal components x{ and x§ but, instead, the aggregate!
1onseasonal component y=x{+x}. If the loss function is

'This sum may represent either a temporal or a sectoral aggregate.

quadratic, then this objective can be formally represented
as finding a value y to minimize

E[(y-y)x1, x5 3
Clearly, the minimizing value of y is
Ya=E(y|xy, x)=E(xf{|xy, x)+E(xf|xy, x) @)
and, in general, the values
¥8=E (x}|x)+E (x§]|x,) &)
or

Ye=E (x{+x¥|x,+x,) 6)

will not minimize the criterion. Given the obvious optimal-
ity of the solution y, in this simple problem, one might
wonder why y; and y. would ever be of interest. The
answer is that, in more complex practical problems with
important data or computing limitations, y; and y. are
frequently used as solutions to seasonal adjustment prob-
lems. In equation (5), each individual series is adjusted
before aggregation without reference to the other series.
The seasonally adjusted aggregate is then the sum of
these individually adjusted series. This method is fre-
quently used in practice when the series of interest is an

_ aggregate of several other series. For example, the U.S.

money supply is adjusted in this way, with the components
of currency and demand deposits each adjusted before
aggregation into M1. In equation (6), on the other hand,
the observable series are first aggregated and then season-
ally adjusted. This approach is frequently used in cases of
temporal aggregation.

The optimal solution in equation (4) is the one derived
by Geweke for general time series problems, and its
superiority over the other two approaches is the reason
for his statement that ‘‘for virtually every conceivable
time series ... and a reasonably inclusive class of potential
adjustment procedures, minimum mean-square error ad-
justment implies that seasonal adjustment should always
precede temporal or sectoral aggregation.”” However, as it
stands, this statement is misleading. As a comparison of
(4) and (5) shows, it is not the preaggregation adjustment
that is crucial for optimality, but rather the utilization of
all observable components simultaneously. The solution
¥z seasonally adjusts before aggregation but does not
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utilize the joint distribution of the components of x, and
x, properly. On the other hand, looking only at the first
equality in (4), it is optimal to project the aggregate
variable y on x, and x, to get the seasonally adjusted value.
In deciding whether the optimal solution ¥, should be
used in practice, the relative efficiency of this solution
- should be compared with the other methods. Geweke
computes the relative efficiency of the optimal solution
for several time series using his general formula for the
mean square error, and this is a very useful and informa-
tive part of his analysis. The results indicate that, in cases
where the series that are aggregated are very heteroge-
neous or where the stochastic structure of the nonseasonal
and seasonal components are dissimilar, the relative effi-
ciency of the optimal procedure is quite high. However,
in cases where the series that are aggregated are homoge-
neous, the efficiency gains are likely to be small.

Some of the intuition behind these results comes from
examining the simple model previously discussed. Suppose
that x¥, xJ, x§, x§ has a joint normal distribution. Then, it

" is easy to show that

Ya=aix1+azx,
Ys=b1x,+b;yx,

Ye=c(x1+x2)

SECTION VII

where the a, b, and ¢ coefficients depend on the elements
of ¥ and I in such a way that, if 35=3%", then
a,=a;=b,=b,=c- so that each procedure is identical.
Further, if the covariance between x{ and x§, as well as
between x§ and x§, is zero, then ¥ ,=yp.

These results provide a useful guide for the selection of
seasonality problems that can potentially benefit from the
optimal method. However, the results also suggest that
there are likely to be relatively few aggregate series in
this category. Moreover, those which are in this category
should be disaggregated before serious economic analysis.
Aggregation theory suggests that one should avoid aggre-
gating heterogeneous components. Consequently, many
analyses are likely to avoid aggregate series composed of
grossly heterogeneous series. This may limit the potential
usefulness of the results presented in this paper, but
further experimentation with the methods is required
before a definitive answer can be given.



