A SURVEY AND COMPARATIVE ANALYSIS OF
VARIOUS METHODS OF SEASONAL ADJUSTMENT

John Kuiper
University of Ottawa

HISTORICAL DEVELOPMENT OF SEASONAL
ADJUSTMENT TECHNIQUES

The unobserved component model assumes that a
time series Y; consists of three parts: A trend-cycle
component 7', a seasonal component Sj;; and an irreg-
ular component /;; If this relationship is assumed to
be additive, the statistical model may be written as

Yy=Ty+8;+1y

where =1, ..., 12 indicates the months and j=1, .. .,
n, the years. (For more details, see [51].)

The methods used for seasonal adjustment by earlier
research workers were adaptations of this model. For
example, the filters of Buys Ballot [9] were used in
early studies. (See [17; 18].)

The ratio-to-moving-average method was developed
during the 1920°s by Frederick R. Macaulay at the
National Bureau of Economic Research. It was found
that, for most economic time series, a multiplicative
relationship between the three components holds. (See
[25].)

Abraham Wald [50] developed the moving-ampli-
tude method to overcome shortcomings of the then
current methods. His method requires that the seasonal
pattern, i.e., the proportionality relationship between
the seasonal factors for the months within a year, re-
mains stable. However, he allows for relatively rapid
changes in the seasonal amplitude. Wald’s method is

described in detail by Godfrey and Karreman [16].

The method was generalised by Zaycoff [53] Tinbergen
[43] applied these methods to time series for the
Netherlands and found that they both gave superior
results relative to then common methods. Mender-
shausen [29] gives a detailed description of work on
seasonal adjustment, especially Wald’s method.

An extensive survey of the historical development of
seasonal adjustment methods is presented in BarOn

[1].

SEASONAL ADJUSTMENT METHODS
STUDIED

From the outset, it was decided to limit this study to
methods currently used by government agencies.

The methods which were analyzed are described in
the following sections. They are the census X-11
method ; Statistics Canada X-11; the Burman method,
used by the Bank of England ; the method of the Euro-
pean Economic Communities; the Berlin method, used
by the DIW (Deutsches Institut fiir Wirtschaftsfor-
schung) and the Statistisches Bundesamt in Wies-
baden; and the method of the Dutch Central Planning
Bureau.

The seasonal factor method of the Bureau of Labor
Statistics is quite similar to the X-11 method. It was
excluded from this study because BLS now uses the
X-11 method. It is described in [47].

Regression methods were used in the early 1960’s by
the Deutsche Bundesbank. They have recently been
used experimentally at the Board of Governors of the
Tederal Reserve System. (See [42].) The British Cen-
tral Statistical Office developed a regression technique
that was used by the Department of Employment from
1969 to 1972. (See [6; 13].) This method allows for
mixed adjustment, i.e., a combination of additive and
multiplicative adjustment.

Box and Jenkins [4] have applied time series
methods to seasonal adjustment. The Box-Jenkins ap-
proach has been used extensively by Brewer. (See [5].
Also see [10; 115 44].)

Both the regression and the Box-Jenkins approach 4

require careful analysis of each individual series. These
methods are, thus, not suitable for use as the standard
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method of adjustment for a government statistical
agency, but they may be useful for the adjustment of a
limited number of important series.

De Vos [49] has applied ARIMA models to estimate
the trend cycle component of the series of Dutch male
unemployment. In his adjustment method, he also in-
cludes the number of days with a maximum temper-
ature below zero.

X~11 Method

Census method II was developed by the U.S. Bu-
reau of the Census. It is based on the ratio-to-moving-
average method. By switching to a computer program
in 1954, large-scale adjustment of time-series became
practicable. Census method II differs from the earlier
method, because it estimates the trend-cycle, seasonal,
and irregular components using several iterations, an
adjustment for trading-day variations, and an adjust-
ment for extreme values. Both an additive and a multi-
plicative version are available.

The cepsus method IT programme became stable by
the end of 1961. The X-11 variant of the programme
has been in current use since 1965. Tt is a modification
of earlier Bureau of the Census programmes and is
described in [46]. Also see [28; 52].)

Because this program is well-known, only a brief
description will be given. The trend cycle component of
the series is removed with a 9-, ﬁ-, or 23-term Hender-
son moving average. The 9-term average is used for
smooth series and the 23-term filter for highly irregular
series (those with a preliminary I/C ratio of 8.5 and
over). The seasonal factors are calculated with a [3, 8]
filter in the first round and with a [8, 5] filter in the
second round.

The o limit, used to eliminate extreme values com-
pletely, is 2.5. Between 1.5¢ and 2.5¢ graduated
weights are used.

Statistics Canada X-11

The moving-average methods employed by the X~11
programme require data for up to 3 additional years
before the symmetric filters may be applied. This
necessitates the use of asymmetric filters for the last
observations of a time series.

In January 1975, Statistics Canada introduced a
modification of the X~11 method that is used for the
seasonal adjustment of about 60 of the more important
Canadian Labor Force Survey series. It consists of
enlarging the original time series by 1 additional year,
with forecasts from ARIMA models. The method is
described in [12]. This modification resulted in im-
proved estimates of the current seasonal factors, based
on a comparison with the stable factors, calculated
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when 38 years of additional observations have become
available. :

Burman Method

This method was developed by J. P. Burman at the
Bank of England. It is fully described in [7]. Both an
additive and a multiplicative option are available. The
multiplicative option is based on converting the series
to natural logarithms.

A 13-term weighted average is subtracted from the
series to eliminate the trend. This filter was developed
by Burman and has weights ( — 0.0331, —0.0208, 0.0152,
0.0755, 0.1462, 0.2039, 0.2262). Harmonic analysis on
successive blocks of 12 terms of the SI series is then
performed. The amplitudes are smoothed. Linear com-
binations of these smoothed amplitudes give the pre-
liminary scasonal factors. Extreme trend values may
be replaced by a weighted average of the neighbouring
terms (six at each side). The preliminary adjusted
series is extrapolated by a Box-Jenkins approach
(0, 1, 1) or (0, 2, 2) model to give six more terms at
the end and six more terms at the beginning. Using
these terms, one obtains the trend and seasonal factors
for the end terms. These terms are then used to extend
the original unadjusted series, and this series is used
to determine the final seasonal pattern in a second
iteration.

The Burman method replaces extremes above 2.5¢
and uses graduated weights betweeni2.0¢ and 2.50. An
option is available to omit the replacement of extremes
and the extrapolation of the original series. Extrap-
olation is suppressed when a large number of extremes
have been identified in the end terms.

The Method of the European Communities

The EEC method, also known as the SEABIRD
method, was developed by Bongard and Mesnage at the
Statistical Office of the European Communities. As a
supra national agency, the EEC obtains most of its
statistical series from member countries, the data may
have been adjusted, using different procedures, or may
still be in an unadjusted form. They require a method
which has to be universal, i.e., capable of effectively ad-
justing the widest possible variety of economic time
series, and robust, i.e., manual intervention, either be-
fore or after adjustment, should not be required.
Furthermore, because the primary use of the adjusted
series is for economic analysis, it emphasizes the ad-
justment of the most recent data. A detailed descrip-
tion is given in [30].

As a first step, extreme values are eliminated. The
second step applies the Bongard 19-term filter f2] to
the raw data, modified for extreme values. The method
assumes that the seasonal pattern (PSN) is relatively
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stable in time, but the magnitude of the seasonal flue-
tuation, measured by the coefficient of expansion 8, may

change rapidly. The seasonal component is, thus, writ-
ten as

8=8PSN

A first estimate of PSN is obtained by. eliminating
the irregular component from the SI series. The value
of § is then calculated as

_3IPSN.SI
SPSN.PSN

The values of PSN for the end terms are obtained by
repeating the last value calculated. The values of § are
extrapolated by regressing § on T.

The calculations are repeated once with the restric-
tion that no new estimate of the seasonal pattern is
made.

Recently, the EEC has developed a new method
called DAINTIES, which will replace SEABIRD.
(See [3; 81].)

The Berlin Method

This method is, like the EEC method, primarily used
for current analysis. Thus, revisions to the current ad-
justed observations are minimized. It is described in
[36]. The version presently in use is ASA IIIL (See
[34; 35].)

The Berlin method assumes an additive relationship
between the trend-cycle, seasonal, and irregular com-
ponent. Observations identified as extremes are first
eliminated. An observation is considered to be extreme
if it exceeds 30, based on the 24 previous observations,
and is replaced by the value of 2¢. This implies that
once an extreme has been replaced, the new observation
will remain unchanged.

The trend and the seasonal component are obtained
using filters which have been estimated in such a way
that their transfer functions have, as far as possible,
optimal spectral properties. The transfer function for
the trend filter should be near one for low frequencies

().<%) and should be approximately zero for the other

frequencies (lsé)»éqr) , while the transfer function for

the seasonal component should equal to one at seasonal
frequencies (A=jx/6, j=1,9,. .. 6) and be approxi-
mately equal to zero at all other frequencies.

The trend filters consist of polynomials of up to de-
gree 3, together, in some cases, with trigonometric func-
tions of a length of 36 or 60 months to represent a
cyclical pattern. The seasonal filters are estimated with
harmonic analysis using 11 trigonometric base fune-
tions. The trend filters use between 34 and 39 observa-
tions (27 to 34 for end terms), while the seasonal filters
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use either 47 or 59 observations (86 or 48 for end
terms). The filters are applied asymmetrically over the
full length of the time series. For example, several
trend filters of length 36 are used that estimate the
25th, 27th, or 29th observation. The seasonal component
filter with length 47 estimates the 24th observation, and
the one with length 59, the 36th observation.

The trend-cycle component is estimated from the
original series, corrected for extreme values. The sea-
sonal component is estimated after the trend-cycle has
been identified. '

Berlin ASA-IIT is now used for about 300 monthly
series which require a total of 47 different combina-
tions of filters.

The filter selected is the one that minimizes the sum
of squared derivations between the spectrum of the
original series and that of the adjusted series at all but
the seasonal frequencies.

Central Planning Bureau Method

The Central Planning Bureau method allows for
both additive and multiplicative seasonal influences.
The method is an adaptation of a hand method which
was used for many years by the Central Planning Bu-
reau. It is used mainly for adjusting quarterly series
but is now also used by the Bureau of Statistics for
the monthly unemployment series. The procedure is
related to the Wald method [50]. (For a detailed de-
scription, see [19].)

The CPB method assumes that the trend-cycle, sea-
sonal and irregular components are related additively
and that the seasonal component (Sy;) may be repre-
sented as the product of a seasonal factor (s;) and a
multiplicator (my;), i.e., :

S¢f= 843° N5

The seasonal factor represents exogenous influences
(such as the weather, holidays, etc.) which have an ef-
fect on both the direction and size of the seasonal com-
ponent, while the multiplicator represents endogenous
influences affecting the size of the seasonal component
only.

The seasonal factors are measured separately for
each month and are fitted to a second degree polynomi-
al, i.e.)

8yy=apu+ Ayl + agt?

For most time series, the multiplicator may be esti-
mated as a linear relationship

my=(1=2) +A(Ty/T)

where 7' is the average trend-cycle component for the
mid-year (i.e., when ¢ is 0). The value of A lies in the
interval 0==A=1.

The seasonal component will, therefore, be inde-
pendent of the level of the series when A=0 (i.e., com-
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plete additivity), while with A=1, a multiplicative re-
lationship holds.

For certain volatile stock variables, such as unem-
ployed, this linear relationship may not be sufficiently
general to describe the series adequately. In these cases,
the multiplicator is assumed to be a function of both
the level and the relative change in the trend. The rela-
ship estimated, after transformation, is

Ty/T+bs _ Ty/T-1
40 /T 40,

where 7'y, is the trend value for which my; reaches its
maximum.

The trend and seasonal component are estimated
iteratively. In the first round, a 12-term moving aver-
age, is used to determine the trend that is replaced dur-

“ing four later iterations by the 15-term Spencer.

Before each iteration, irregulars above 1.5¢ are con-

sidered as extremes and eliminated.

1]

miy=exp [b.{In

TIME SERIES USED

The results obtained from seasonally adjusting two
series, U.S. total employed and U.S. total unemployed,
will be reported. The period covered is from January
1953 to December 1975.

Total employed is a relatively smooth series with a
1-percent absolute month-to-month variation, while
total unemployed is highly volatile, with a 9-percent
absolute month-to-month variation.

In addition to these two series, fifteen other series
were analyzed. Because it was found that the analytical
results for these series were very similar to those ob-
tained for total employed and total unemployed, the
relevant summary measures have not been included.

COMPARISONS OF SEASONAL ADJUSTMENT
METHODS

The major difficulty in making comparisons between
adjustment methods is that actual series have unknown
composition. An experimental technique of generating
artificial series and analysing the decomposition has
been adopted in several studies. (See [16; 18].)

A difficulty with this approach is that the choice of
generating mechanism of the components may in itself
favor certain methods, because the underlying model
used in the adjustment process was also used in gen-
erating the artificial series. In this study, only pub-
lished series were used.

Fase, Koning, and Volgenant [15] have compared
the seasonal adjustment for four published Dutch
series and one generated series, using nine seasonal ad-
justment methods, including the X-11, Burman, CPB,
and EEC methods. Fry [48] has compared the results
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from several seasonal adjustment methods on one
series, the monthly money stock (M1).

Choice Between Additive and Multiplicative
Adjustment

The X-11 and Burman methods require that either
additive or multiplicative adjustment be selected. Be-
cause most series, especially for the post war period,
are better represented by a multiplicative pattern,
there has been a tendency to use this method with- -
out checking if the additive option might be more
appropriate.

Recently, model selection routines have been sug-
gested that test both options. (For a description of
work in Great Britain, see [13; 22].) Model selection
routines are also used at Statistics Canada and the
Bureau of Labor Statistics.

The following model test was applied. A SI series
was obtained by subtracting a [12, 2] trend from the
original series. A trend was then fitted to 7-year spans,
i.e., :
Sl=a+bt+e

If only the slope coefficient is significant, multiplica-
tive adjustment is suggested, and additive adjustment
in the reverse case. If both the intercept and slope co-
efficient are significant a mixed adjustment technique
would be appropriate.

The z-values for the period July 1953-June 1975 are
presented in table 1. The results show that multiplica-
tive adjustment would have been appropriate for the
unemployment series up to 1970, with a shift to mixed
adjustment after 1970.

The employment series might have been adjusted
with a mixed model during the full period.

Because no clear pattern of either additivity or mul-
tiplicativity was shown, it was decided to include both
options for the X-11 and Burman programme in the
comparison of seasonal adjustment methods for these
series.

It should be mentioned that the BLS obtains the
seasonally adjusted total employed and total unem-
ployed by aggregating component series. The additive
option of X-11 method is used for males 16-19 years
old and for females 16-19 years old, while the multi-
plicative option is used for the other components.

Summary Measures Used

The summary measures presented in this section are
used to determine the extent to which there are signifi-
cant differences between the various methods of season-
al adjustment analyzed.

They were calculated for the full period (1953-75);
for the historical period (1956-72), for which the sea-
sonal factors may be considered to be final in a statisti-
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Table 1. t-VALUES FOR MODEL TEST FOR 7-YEAR SPANS
Employed Unemployed
Years
Intercept Intercept Slope
1953-69....... B8 G0 0000060085800 00006000 20 3.1 1.2 0.8
1954-60. . . o vt v vt e it et e 38 5.2 .0 24
195561, o vt e te et 3 13 A 28
105662, . .t i vt s et e 5 3 -4 19
1967-63. . o o it ittt et e 1.1 2 5 1.1
1958-B4. . o vt vs e ittt e 19 8 2.0 36
195965. . .......00. . 5000006000 005860800000 3.1 17 15 5.2
1960-66. . .o v v v et 44 2.7 15 6.8
196167, . v vt ittt ittt e 8.3 34 2.0 7.9
1962-68 10000000000 00d00C 10G0B006a0000 838 3.7 5 34
1963-69. . .. i vt vttt ettt e 82 43 3 3.6
1964-70. . . .o it ittt et e e 53 33 1.9 3
196571, .o it ittt e sttt 6.3 44 24 14
1966-72. . c v v e v vvernn st 46 3.1 24 2.0
1967-73. . o it it 3 Gao000huc000 9 .0 25 19
106874, . o oottt i e 1.2 21 7 2.0
1069-75. . vt vt vt e s s 20 24 16 5.1
Note: Additional tabular materials and computer printouts are available from the author upon request.
Table 2. AVERAGE ABSOLUTE MONTH-TO-MONTH PERCENTAGE CHANGE
Method 1953-75 1956-72 1973-75
Employed
X-11TAdditive. . .. oo ei ittt it esneronsnas 0.32 0.31 0.27 0.25
X-11 ArimaAdditive . . . .....coiiiii i 32 31 25 .20
Burman Additive. , . .« c o vt vt vt ta i 33 32 .26 .20
Berlin......... AD0O000008AaA00000p00000000s 30 29 27 .24
(o - 0000000000 00000q6000000000000000¢ 32 32 .27 24
HEe A a0 00t 0a0d500060000000000000000¢ 32 32 .29 34
X-11 Multiplicative .. .. ...covieerneenenvroass 32 31 27 .24
X-11 Arima Multiplicative. . . ... oo v v i i 32 31 .25 .18
Burman Multiplicative . ... ..............outn 33 32 .26 21
RaW SEriBS + v v v v i vt ev e eeccsnsasncnseasonens 92 93 91 .75
Unemployed
X-T1TAdditive. . . oo ittt ittt oneanenns 3.56 334 2.60 1.40
X-11 Arima Additive . . . . ........ 50 A0000003000 355 334 2.48 1.18
Burman Additive. . .. .ot ittt i e e 383 3.37 2.77 1.19
Berlin o v v v it ii ittt 3.65 3.31 2.96 1.05
(e} e 0000000 ¢0 000000000800 300000 600000 3.60 3.38 2.84 1.90
(28 5 0600000000000 08000800000000000000000 3.58 3.20 3.50 3.26
X-11 Multiplicative . . ... vvvvnivernonenronns .. 3.66 3.38 3.29 3.06
X-11 Arima Multiplicative. . . .. ...... .00 3.66 3.38 3.25 2.99
Burman Multiplicative ... .........cceiviven.n 3.87 3.51 3.39 3.47
Rawseries . . « v e v e v veneenaas 00000000030 9.00 9.15 7.91 3.70
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cal sense;-and for the current period (1973-75). Where
applicable, the calculations were also performed for
individual years of the current period (1973, 1974, and
1975).

Average absolute month-to-month percentage
change—The average absolute month-to-month per-
centage change indicates to what extent the series has
been smoothed by seasonal adjustment.

These percentages changes are presented in table 2
for the periods 1953-75, 1956-72, 1973-75, and sepa-
rately for 1975.

The reduction in the average absolute month-to-
month change is about the same for all methods for the
historical period (1956-72), but significant differences
are shown for the current period (1973-75). The differ-
ences for 1975 are the most striking.

-Correlation coefficient—The correlation coefficients
between the adjusted series for the historical period,
the current period, and for 1975 are presented in table
3 for employed and in table 4 for unemployed.

For the historical period, the correlation coefficients
are very close to one, while, for the current period, di-
vergences occur, especially in the series of unemployed.

Inequality coefficient—A second measure which
was used to describe the differences between seasonal
adjustment methods is the inequality coefficient. This
coefficient was used by Fase, Koning, and Volgenant
[15]. It quantifies differences between the estimated
seasonal components. It is defined as the ratio of the
average absolute difference between two methods of
adjustment to the original series, multiplied by
100,.

IC=2M*IOO

t
The statistic has a minimum value of zero when two
adjustment procedures provide an identical seasonally
adjusted series.

Inequality coeficients for all nine procedures are
presented in table 5 for employed and table 6 for un-
employed for the periods 1956-72, 1973-75 and for
1975. The results show very clearly that the differences
between the seasonally adjusted series are relatively
small for the historical period but that there are sig-
nificant differences for the current perlod and espe-
cially for 1975.

Relative contribution of components to variance
in original series—The relative contribution of the
irregular, trend cycle and seasonal, component to the

variance in the original series is widely used for -

analysis. This table is included in the summary meas-
ures table (pt. F) of the X-11 programme.

The contributions to between month variance are
presented in table 7 for the historical period (1956-
72) and the current period (1973-75).

This table shows that the relative contribution of
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each component is very similar in the historical period
but that divergences occur during the current period.

Average duration of run—The average duration
of run was used to check that the irregulars may be
considered to have been generated by a random proc-
ess. (See [21].) It should be noted that an oscillatory
series may be generabed when a moving average of
a random series is taken (the Slutsky-Yule eﬂ'ect)
(See [41].)

This measure was calculated for the irregulais
(after extremes were removed). Table 8 gives a sum-
mary for 1953-75, 1956-72, and 1978-75. The expected
value of this statistic for the full period is 1.50 with
95 percent confidence limits of 1.40 and 1.61. For a
3—year period, the expected value is 1.48, with con-
fidence limits of 1.23 and 1.86. , »

The Berlin method is the only procedure which falls.
outside these limits, except for the employed durlng
the historical period.

Optimal propertles of seasonal adjustment—Asan
alternative to the summary measures used in this sec-
tion, one might determine to what -extent optimal
properties of seasonal adjustment are met. (For this
approach, see [26; 27].)

Spectral Analysis

In many studies, an evaluation of seasonal adjust-
ment procedures has been undertaken in spectral
terms. (See [20; 24; 32; 33; 39; 40; 45]; for a discus-

" sion of spectral analysis in terms of the time domain,

see [14].)

A spectral evaluation of the seasonally adjusted
series was performed for the methods analyzed. One
of the spectral requirements is that seasonal peaks, in
the spectrum of the original series, should be removed
in the spectrum of the seasonally adjusted series. Also,
phase shifts should not occur. The power density
spectra for the adjusted series were quite similar. All
exhibited, to some extent, dips at the seasonal fre-
quencies. Therefore, it was not practicable to discrimi-
nate between the procedures on the basis of the spec-
tral criteria.

Stability of the Seasonal Component

One of the important properties of a seasonal ad-
justment procedure is that the preliminary estimate of
the seasonal factors be relatively close to the final esti-
mate.

To test the extent to which the seasonal component
changes when additional observations become avail-
able, the seasonal factors for the current year were
compared with the seasonal factors calculated when 8
additional years of data have become available. At that
time, the seasonal factors may be considered final.
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Table 7. RELATIVE CONTRIBUTION OF COMPONENTS TO BETWEEN-MONTH VARIANCE IN
ORIGINAL SERIES

1956-72 1973-75
Method
1 T S I T
Employed
XAT AGIIVE. + + e v e e e e e e ee e 7.9 36 88.5 43 6.3 89.4
X-11 ArimaAdditive . . .. ..o viie i e 79 36 88.56 40 5.7 90.3
Burman Additive. . . .. .. ittt i e 8.4 34 88.2 49 5.8 89.3
BerliN o oo v veeeieieeat e 75 33 89.2 49 5.5 89.6
;-2 - JPR PG 9.1 34 87.6 49 6.2 88.9
=1 ={ o3P 9.1 33 87.6 6.6 49 88.6
X-11 Multiplicative .. ......oviiinneeeeens 8.2 36 88.2 43 59 89.8
X-11 Arima Multiplicative., .. ... ... oo 8.2 3.6 88.2 3.7 5.6 90.7
Burman Multiplicative . . . ... ... .. it 8.9 33 87.9 48 5.5 89.7
Unemployed
KA1 AGGIIVE. .+ oo eeseee e e e e 18 as| 817 66| 100 83.4
X-11 Arima Additive . . . ... it ittt 7.7 45 87.8 655 9.2 85.3
Burman Additive. . . .. ...t ev i ie ittt 8.7 3.8 874 6.7 9.8 83.5
2 a1+ T P 8.8 3.4 87.8 14,7 123 73.0
(03] 68080000 000000008606 0608000000000060¢ 9.3 35 87.2 8.1 9.8 82.1
= ={o 7R AP 8.8 34 87.8 10.0 5.7 84.3
X-11Muliplicative. . ... .. cviiiin s enn 8.4 39 87.7 9.0 6.0 85.0
X-11 Arima Multiplicative. . . .. . ..o vn v 8.4 39 87.7 8.2 6.2 86.6
Burman Multiplicative .. . ... .....iivet 104 3.2 86.3 8.5 55 86.0
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Table 8. AVERAGE DURATION OF RUN FOR IRREGULARS,

SECTION II

EXCLUDING EXTREMES

Method 1953.75 1956-72 1973-75
Employed
XATAdditive. . ..... oo 1.44 1.43 1.35
X-11 ArimaAdditive . .. ....... ... .. ... 1.46 1.43 1.46
Burman Additive. . ............... .. ... ... ..., 1.50 1.47 1.67
Berlin .. ... . . 1.61 162 2.33
CPB . 1.67 1.54 1.84
EEC . .o 1.52 1.47 1.84
X-11 Multiplicative . . .. .................... .. ... ... 1.47 1.43 1.59
X-11 Arima Multiplicative. . ... ...................... . 1.47 1.43 1.69
Burman Multiplicative . .. .................. ... . .. ... 147 1.47 1.52
Unemployed
X-1TAdditive. .. ... oo 1.38 1.36 1.52
X1V ArimaAdditive . . .................... ... .. ... 1.40 1.36 1.67
Burman Additive. . ............. ... ... ... 1.57 1.57 1.46
Berlin ... ... 1.87 1.90 1.94
CPB . . 1.60 1.60 1.67
BEC . .. 1.56 1.56 1.40
X-11 Multiplicative ... ..................... ... .. ... 1.34 1.36 1.25
X-11 Arima Multiplicative. .. .. ........... ... . ... .. .. 1.36 1.36 1.40
Burman Multiplicative . .. .................. . ... .. ... 1.56 1.52 1.52
Table 9. STABILITY INDICATORS
Employed Unemployed
L CuC Mean algebraic | Mean absolute | Mean algebraic | Mean absolute
" difference difference difference difference

Seasonal factors

X1 Additive. . ........... ... ... . .. 0.060 0.102 0.031 0.062
X-11 ArimaAdditive . . . ..................... . .043 .083 .017 .052
Burman Additive. ......................... .. .064 104 .040 .070
EEC . .. .091 129 .046 .083
Seasonal ratios

X-11 Multiplicative ... ....................... 0.114 0.160 0.927 1.692
X-11 Arima Multiplicative. . .. .. ................ .072 21 491 1.387
Burman Multiplicative . .. ................... .. .097 142 1.164 1.812
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The differences in the seasonal factors were aver-
aged for each month separately for 10 years to exclude
random fluctuations. The period covered was 1963 to
1972. The average deviation is a measure of the bias
and the mean absolute deviation, a measure of the dis-
persion.

The mean absolute values for the 12 months are pre-
sented in table 9. The calculations were not available
for the Berlin and the CPB methods.

The results shown that the X-11 ARIMA method
performs best on the criterium of stability of the sea-
sonal component. The percentage reduction in the bias
(mean algebraic difference) was 33 percent for em-
ployed and 46 percent for unemployed, while the re-
duction in dispersion (mean absolute differences) was
21 percent for the employed and 19 percent for the
unemployed. The Burman method performed slightly
better than the X-11 for the employed but performed
worse for the unemployed. The EEC method showed
the largest revisions.

Elimination of Extremes

As discussed in the section “Seasonal Adjustment
Methods Studied,” the various procedures determine
extremes quite differently.

The number of extremes identified will be a function
of the ¢ limit above which an irregular is considered
to be an outlier.

The method of replacement will have an effect on
the irregulars after replacement of extremes. For ex-
ample, the Berlin method replaces extremes by the
value of 2¢, while the Burman and X-11 methods re-
place the extreme by an average of those neighbouring
irregulars that were not identified as extremes.

Table 10 gives a summary of the extreme adjust-
ments made for the historical (1956-72) and the cur-
rent period (1973-75). Table 11 compares the irregulars
for both of these periods. In this table, the RMS for all
irregulars, for those without extreme adjustment and
those with extreme adjustment, is shown.

The results of this analysis cannot be used to rank
the seasonal adjustment procedures studied. However,
they give one of the reasons why adjustment proce-
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dures may differ substantially in some cases. When two
seasonal adjustment methods use the same procedure to
replace extremes, the one with the lower number of
extremes will be more appropriate. This criterium may
be used in the choice between multiplicative and addi-
tive adjustment.

Method of Calculation

The analysis was performed using the MATOP soft-
ware package. (See [23].) This package includes sub-
routines for all seasonal adjustment procedures used
in this study with the exception of the Berlin method.
The trend, seasonal and irregular components, as well
as the extremes, for the adjusted series are retained in
memory and, thus, remain available for subsequent
analysis.

CONCLUSION

It was found that the seasonal adjustment ‘proce-
dures studied tend to give a similar adjustment for the
historical period (the part of the series excluding the
first and last 3 years) but that the adjustment for the
current period (the last 3 years) may be quite differ-
ent.

Because the adjustment for the current period is the
most important for policy analysis, it may be useful,
when adjusting the more important series, to compare
the results obtained with more than one method, espe-
cially when an additive or multiplicative option must
be selected.

This is also suggested by Kendall and Stuart who
stated, “Our general recommendation would be to try
several methods and to choose the one which appears
to give the most reasonable results” [21]. )

The extent to which preliminary seasonal factors are
revised when new data becomes available is an im-
portant consideration for policy analysis. Using this
criterium, the X-11 ARTMA method performed best.
It should be noted that the procedure projects the un-
adjusted series for a period of 12 months. Therefore, it
is possible to use the extrapolated series together with
other seasonal adjustment procedures.



72 SECTION II
Table 10. EXTREME VALUES
1956-72 -75
Method U
Number RMS Number RMS
Employed
XATAdditive. .. ... ... e 35 0.305 7 0.300
X-11ArimaAdditive.. . ....................... 32 319 9 .255
Burman Additive. . .. ........................ 8 405 3 176
Berlin.........ooiin 0 {X) 0 (X)
CPB . 24 .146 5 .156
EEC . ... 2 461 0 (X)
X-11 Multiplicative . .. .. ..................... 32 318 6 .292
X-11 Arima Multiplicative. . .. .................. 32 318 9 216
Burman Multiplicative .. .. .................... 8 419 1 .089
Unemployed
X-11Additive. . .. .......... .. ... ... ... 36 0.171 8 0.250
X-11 ArimaAdditive . . ....................... 37 .169 7 216
Burman Additive. . . . ........................ 6 229 3 .262
Berlin ... ... 1 871 2 1.345
CPB . 24 .087 5 .245
EEC ... e, 2 .262 0 {X)
X-11 Multiplicative . .. ...........covvuun... 36 162 7 322
X-11 Arima Multiplicative. . . ................... 34 157 8 .241
Burman Multiplicative . .. ..................... 10 .188 2 399

X Not applicable.
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COMMENTS ON “A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS
METHODS OF SEASONAL ADJUSTMENT” BY JOHN KUIPER

J. P. Burman
Bank of England

INTRODUCTION

It might be thought somewhat embarrassing for me
to act as a discussant of a paper which compares my
own seasonal adjustment method with those of others.
But my method has been around for 11 years, and I
feel that it is now old enough to take care of itself.
Changing the metaphor, the present state of the art
may be compared with that of the early Christian
Church : The dominant stream of orthodox theology—
the X-11 method, of course—and a number of heresies.
The heretics are each sure that they are right, and there
is a dialogue of the deaf amongst them and between
them and the orthodox theologians.

The deafness arises from the lack of agreement on
objective criteria for judging the quality of the ad-
Justments to a series, a lack which, I hope very
strongly, that this conference will be able to remedy.
A lot of effort has been spent on the development of
new and complicated methods, which seem to have arbi-
trary elements in them, because the authors have not
taken us step-by-step through the processes that led
them to introduce these—I may have been guilty of this
myself.

FEATURES OF METHODS

The paper before us gives a brief description of five
methods. I would like to concentrate on their important
features and differences. Every procedure can be divided
conceptually into trend-removal and smoothing—with
an intermediate stage in the case of the Bank of Eng-
land (Burman) method of choosing the smoothing
average. Table 1 sets out the stages for four of the
methods. Three of them use various symmetric aver-
ages for trend-removal, but, in contrast, the BERLIN
method [6] has an asymmetric 23-term average. How-
ever, I do not believe that the differences in trend-
removal are the major cause of differences in the final
results: Any differences in the spectral properties of
the filters at low frequencies will be attenuated at the
smoothing stage. ‘

What matters most are—

1. The choice of additive, multiplicative or mixed
model;

2. The method of smoothing the SI series;

3. The treatment of extremes.

The mixed model of the Dutch Planning Bureau
(CPB) avoids the choice in (1), but the large number
of parameters causes problems. The CPB reduce these
by assuming a fixed ratio between the additive and
multiplicative components and a deterministic evolution
of the seasonal pattern.

The manner of smoothing determines the flexibility
of the method. X-11 method uses a {3} {5} year smooth-
ing on the final round. EEC splits the seasonal into a
normalised pattern (PSN), smoothed over 5 years, and
a scaling factor, estimated over 1 year; thus, it is con-
siderably more flexible than the X-11 method. Conse-
quently, the seasonal adjustments for a given month
are generally more erratic than those of the X-11
method, and they do not sum to approximately zero
over a year. For the BERLIN method, the smoothing
average covers 45 months (again asymmetric), which
would make this method more flexible than the X-11
method. The CPB model, with its deterministic funec-
tion for moving seasonality, is apparently fitted over
periods of 8 years.

In contrast to the foregoing methods, the Burman
method has variable smoothing. For each of the 11
harmonics, it selects from the following: Fixed, ex-
ponential smoothing with a ratio of 0.9, 0.8, or 0.7,
{8} {5} and {5}. In practice, this method is usually less
flexible than the X-11 method because most of the
components are smoothed by longer averages than
{3} {5}.

The treatment of extremes varies a good deal. For
example,

X-11 treats all extremes in isolation, with taper-
ing weights between 1.5 and 2.5 sigma (estimated
iteratively). Burman tapers between 2.0 and 2.5
sigma, allowing for the effect of isolated extremes
on the trend and for interaction between two ad-
jacent extremes [4].
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EEC deals with isolated extremes but has also an
elaborate system of successive truncations (MOT-
ARD).

COMPARISON OF RESULTS

Professor Kuiper has obviously devoted a great deal
of effort to developing a system of programs for carry-
ing out simultaneous tests; but, I am sorry that he has
not found time to do more tests or to analyse more than
two series. I am sure he would agree that generalisa-
tions cannot be made from one or two series, and I
understand he plans to add comparisons for a number
of other series before publication.

The tables showing the variance contributions of T, S,
and I and the MCD’s tell us something about each
series, but they provide no information to help in rank-
ing the methods of seasonal adjustment. The inequality
coefficients show the close relation between the X-11
additive and Burman additive and also between the
corresponding multiplicative methods. CPB stands
next closest to these two groups; BERLIN (being ad-
ditive) is closer to the additives X-11 and Burman;
and EEC is closer to their multiplicative versions (be-
cause of its scaling factor). But, what use are we to
make of these family relationships?

A cursory look at the tables of the irregular com-
ponent show runs of the same sign near the end of the
unemployment series for the BERLIN method and, to
a lesser extent, CPB. The BERLIN method has a dis-
tinetly high average length of run over the whole series
(as Kuiper points out), suggesting something unsatis-
factory in its trend filter.

One objective test is to use spectral analysis to detect
residual seasonality in the adjusted series: The paper
contains two examples, and I hope that more will be
added. The difficulty is to devise a numerical test of
whether the peaks have been removed and a measure
of the loss of power at nonseasonal frequencies. (The
discussions by Tukey on [5] and Wecker on [7] show
that the latter cannot be completely avoided.) More
simply, the sequence of irregulars for each month can
be tested for nonrandomness. Stability can be meas-
ured by the extent of revisions in the latest year or two
when the series is up-dated. Obviously, there is a trade-
off between these tests: The more flexible the method,
the more likely that it will pass the simple residual
seasonality test, but the larger the revisions will tend
to be.

Professor Kuiper kindly supplied me with the 15
series he obtained from the NBER, and we have done
some comparisons between X—11 and Burman methods.
Using a von Neumann test for residual seasonality on
the 15 series, the Burman method had only 6 months
out of 180 significantly nonrandom at the 5-percent
level—less than the 9 to be expected by chance. The
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X-11 method should show even fewer on this test be-
cause of its greater flexibility. We also looked at the
autocorrelation structure of the first differences of
seven of the seasonally adjusted series—those with a
relatively significant seasonal pattern and not too
noisy. (Where the seasonal adjustments indicated. a
multiplicative model, a logarithmic transformation
was made.) The results for r,, are given in table 2.
All but one of the series has a small negative auto-
correlation, suggesting slight overadjustment, and in
5 out of 6 cases, the Burman method shows the smaller
negative figure. The positive figure for retail sales is
mentioned in the following section.

We also tested the size of revisions of the seasonals
for the seven series. The adjusted figures for the pen-
ultimate year were compared with those obtained from
running the series with the last year omitted. The re-
sults in table 3 slightly favour the Burman method in
four of the seven series.

An extreme example of differences between the
methods is in housing starts, a very noisy series: The
Burman method finds only one of the eleven harmonics
is moving, the first cosine term. Nevertheless, its ad-
justed series passes the residual seasonality test in all
12 months. This and similar results with the Consumer
Price Index support findings [7] that a fixed determi-
nistic seasonal pattern is sufficient for these two series.

It might be possible to estimate the trade-off between
maximum flexibility and minimum revisions, using an
objective forecasting technique such as the Box-
Jenkins. The steps would be to—

1. Seasonally adjust and forecast the adjustments,
for example, 6 months ahead.

2. Fit a Box-Jenkins nonseasonal model to the ad-
justed series and forecast it 6 months ahead.

3. Combine these two forecasts to project the orig-
inal series and find the mean forecasting errvor.

If, with a wide range of series, one method of seasonzl
adjustment led to smaller mean forecasting errors than
another method, the former could be said, unequiv-
ocally, to be superior. The thought behind this is that,
if a method was too flexible, it would impart noise to
the forecast seasonal adjustments; if not flexible
enough, it would fail to pick up genuine changes of
pattern.

For the seven series selected, we fitted Box-Jenkins
models to the X-11 and Burman adjusted series. From
a range of models fitted, we chose a common one for
both verisions of each series. The results are in table
4,

For all except retail sales, the fit of the models is
very poor (after differencing), so that both sets of fore-
cast errors are large; but on the basis of this limited
evidence, the X-11 method does better than the Bur-
man method. However, earlier work on 60 simulated
series, on which I reported at a seminar in Amsterdam
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in April 1976, suggested that on average the two
methods performed equally well.

The good fit of the AR model for retail sales seems
to result from a damped 3-month cycle in the adjusted
series. Presumably, this is due to imperfect length-of-
month adjustment of 4- and 5-week periods; this
feature cannot be picked up by the seasonal adjust-
ment as the 4- and 5-week periods shift around. The
fact that 7,,>0 for this series may be due to masking
of negative autocorrelation by the approximate 3-
monthly cycle.

The results of this section are conflicting: Two tests
suggest that the Burman method is flexible enough and
that the X-11 method is slightly over-adjusting. The
third favours the X-11 method.

SEASONAL ADJUSTMENT BASED ON
MODELING

I now wish to discuss a very different method of
seasonal adjustment using Box-Jenkins models, partly
based on [2]. Assume that an ARIMA seasonal model
can be fitted to the series

e(B)
py=———————
¥(B)2(B*)
Brewer showed that, if this is expressed as a poly-
nomial (possibly zero) and partial fractions, the latter
can be divided into trendlike and seasonallike terms.
The real positive roots of ®(x) =0 generate sets of ¢
roots of ®(B°) =0 : each set contains a real positive
root and (s—1) complex roots, corresponding to the
seasonal frequencies. The former is naturally associated
with the trend, and the latter, with the seasonal com-
ponent. But, any negative or complex roots of & ()
=0 produce sets of roots of ®(B*)=0 that do not
correspond to seasonal frequencies and, thus, would
more naturally be associated with the trend.

The polynomial represents the transient or irregular
component that can be combined with the trend to give
an adjusted series. The partition into seasonal and
nonseasonal components at time ¢ depends on that at
previous times, but it becomes unique and obvious in
the eventual forecast function. (See the app. for de-
tails:;) Brewer, therefore, suggests that after model
estimation, backcasting should be used to provide an
EFTF at the start of the series, and then forward fore-
casting provides estimates of the seasonal and non-
seasonal components up to time ¢ But, this makes the
seasonal adjustment filter entirely one-sided (except for
the effect of the later terms in the backcasting; this is
negligible for long series). Brewer, therefore, recom-
mended a complex and somewhat arbitrary way of
making the filter two-sided. I have shown (in unpub-
lished correspondence) that his extension gives a filter
that asymptotically has not the right properties for
seasonal adjustment.

(s=period of seasonality)
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I digress for a moment to discuss a general prop-
erty of seasonal adjustment filters. All of the methods
considered earlier consist of a two-sided filter which is
approximately linear. The filters are not symmetric,
except for the middle terms of the series, but all except
those for the BERLIN method have the following
property: The application of the process to the re-
verse of a series produces the reverse of the original
seasonally adjusted series. This may be called weak
symmetry.

Returning to Brewer’s one-sided filter, we see that,
instead of backcasting and then forecasting, we could
have reversed the order, i.e., finding an EFF at the
end of the series instead of at the beginning. A
weighted average of the two estimates of the adjusted
series provides a filter with weak symmetry.

CONCLUSION

Looking at the five methods compared in Kuiper’s

paper, it seems to me that—

1. The rationale of the EEC method is quite clear
(apart from the truncation procedure for dealing
with extremes called MOTARD), but it produces
seasonal patterns considerably more erratic than
the X-11 method.

9. The rationale of the CPB method is clear, but it
assumes deterministic moving seasonality. It
seems doubtful whether this can respond to rapid
changes of pattern as well as the X-11 method.

3. I do not understand the rationale of the BERLIN
method with its asymmetric filters.

4. There seems to be no evidence that the X-11
method is not flexible enough; if anything, it is
sometimes too flexible. The problems that several
countries have had recently with unemployment
series stem mainly from the use of the Multipli-
cative X-11 method: This was indistinguish-
able from the additive model when unemployment
was low, but the seasonality has shown itself at
least partly additive with high unemployment.
Therefore, I feel that there is little justification
for methods more flexible than the X-11 method
(e.g., the EEC and BERLIN methods).

5. The advantage claimed for the Burman method
over the X~11 method is that it offers an admit-
tedly crude and suboptimal, but automatic, way
of choosing from a range of alternative models.
The disadvantage is that, on occasion, the choice
of model changes as a result of an annual up-date.

6. But, if direct use of Box-Jenkins models on a
large scale proves feasible, the signal extraction
methods described in [1; 7] might be better than
any of the traditional moving average methods.

7. In any case, we need more comparative, objective
tests on a large number of economic series.
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APPENDIX

BOX-JENKINS MODELS FOR SEASONAL ADJUSTMENT

Consider the IMA model
_9(B)
“Tam) "
where

®(B)=(1-B)%(1-B#)P
As Brewer [2] has shown, this model can be split up

uniquely into a polynomial (zero if it is bottom heavy)
and two groups of partial fractions, i.e.,

- 0r(B) | 04(B)
2= pOI(B) +7(B—) +W}a¢

(A1)
where
d(B)=(1—-B)¢+D
8(B)=(1+B...+B*—)P
The first part is a transient or irregular component, the
second represents the trend, and the third, the seasonal
component. The first two parts can be combined to give
the seasonally adjusted series

e [O(B) _ 0u(B)
d(B)  s(B)
This formulation in terms of the sum of three compo-
nents (7+8+7) can be translated into an equivalent
filter for the adjustment process, ie.,
_9(B) _ @.,(B)d(B)s(B)
“dB) " dBed)
_0(B)s(B)_
o(B)
Again following Brewer, the operators for the seasonal
component and the adjusted series imply recurrence
relations which need to be started up. If we estimate
the parameters by least squares or ML, the eventual
forecast function (EFF) satisfies
$(B)2:41=0[i>q+Qs]
since

(A-2)

(A-3)

$(B)2:411=0(B)arys and a;1,=0[i>0).
The EFF breaks down into a polynomial trend of de-
gree (d+D—1) and a set of (s—1) seasonals that are
polynomials of degree (D —1). If D=1, the breakdown
is unique, since the seasonal pattern of the EFF is
fixed, and the sum of the s elements is zero. If D>1,
the breakdown is not unique but in a trivial way; e.g.,

if D=2, the seasonal pattern changes linearly, the sum
of the changes over s observations is zero, and the sum
of the levels in some specific set of s observations (e.g.,
calendar years) is zero. If we change the zero condi-
tion from the calendar year to some other year, the
constant term in the trend EFF changes, but the total
EFF remains the same.

Brewer’s proposal is that, when the model param-
eters have been estimated, it should be used for back-
casting from the end of the series to provide an EFF
at the beginning.! This can then be partitioned into
seasonal component and adjusted series and used as a
starting point for the recurrence relations:

d(B)2,(t) =0,(B)a;

8(B)2,(¢) =0,(B)a
But, this approach gives a one-sided filter for seasonal
adjustment, whereas nearly all of the classic methods
have weak symmetry. (Here we depart from Brewer.)
It seems logical to make another estimate of the ad-
justed series by using the forward EFF as the starting
point for partitioning and backeasting to obtain
another version of the adjusted series. The forward and
backward versions can then be combined by a linearly
weighted average to give a weakly symmetric estimate.

If 2% and 2% are the forward and backward ad-
justed series, the former starts with the EFF at é’“_a.
and the latter with the EFF at 2¢ +qr41 (N=the num-
ber of observations, ¢*=g¢+sQ). The final adjusted
series is

5‘:='w,z't"+ (1—wy) 2%
where
*
o L

N+2¢*+1
The parameters may be estimated by constrained least
squares (setting @_geii=a_geyz. .. =a, and ey,
=€Niz2...=€xi¢ Where e, is the backcasting error).
Alternatively, they may be estimated by ML, which
gives estimates @_geyy, @_gop2,...8,; since these de-
pend only on the ® parameters and not on the observa-
tions, €y41=8, y42=a_,, etc. Thus, in both cases,
weak symmetry is preserved.

*That is, estimating e, from 6(F)e;=¢ (F)z:.
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SECTION II

Table A-1. COMPARISON OF MAIN STEPS IN FOUR SEASONAL ADJUSTMENT METHODS
Step X-11 EEC Seabird Bank of England Berlin
Model Additive or Additive only. Additive or multiplicative Additive.
multiplicative (ratios).| Multiplicative assumed (log transform).
covered by rapid adjustment
of scaling factor. {See
below.)
Trend 9, 13-, or 23-term 19-term weighted average. 13-term weighted average Regression of cubic (plus
removal weighted average (at | Symmetric in central part, | (except 1st harmonic that harmonic variables) fitted
2d iteration). skew for end terms. uses 25-term weighted and | to 23 observations, 12
Symmetric, end terms 13-term unweighted before and 10 after the
lost averages). Symmetric, end | term being estimated.
terms lost.
Components 12 months constrained | 11 harmonics {excluding 11 harmonics. 11 harmonics (excluding
of pattern to sum to zero. insignificant ones).! insignificant ones).!
Choice of {X) (X) Pooled Von Neumann ratio | (X)
smoothing as criterion of moving
pattern.
Smoothing [3]1 [3] 1stround. [5] Fixed or exponential Regression of 11 harmonic
seasonals [3] [5] 2d round. (A=0.9,0.8,0r 0.7) variables (plus 5th-degree
or [3] (5] or [6]. polynomial) fitted to 45
observations, 23 before
and 21 after the term
being estimated.
Special (X) Seasonal split into pattern | (X) (X)
feature (moving 5-year average) and
scaling factor (moving
12-month average).!
Extremes Graduated weights Effect of extremes muted Graduated weights between | Identified by comparison
replaced between 1.5 and 2.5 | by various steps with 2.0 and 2.5 sigma.! with previous 24 terms.
sigma.! truncation.! Also, extremes Replaced by upper/lower
identified and given zero bound of selected
weight.! confidence interval.
Quarterly Yes No Yes Yes
version
Trading-day Yes No Not included but has been | No
adjustment used in separate program.

X Not applicable,

! Steps which create nonlinearity in the filters.
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Table A-2. SEASONAL AUTOCORRELATION IN ADJUSTED SERIES
Series Model X-11 BUR
Unemployed . ................. A 0.22 -0.05
Retail sales . .................. M .03 -
Ml e e M -17 -.10
Shipments:
All manufacturing . . ........... M -10 -.10
Durables . .................. M -.18 -.07
Nondurables ................ M -.07 -.02
Neworders ................... M -.14 =11
— Entry represents zero.
Table A-3. MEAN ABSOLUTE REVISIONS IN LATEST YEAR
Series X-11 BUR
Unemployment ... .......... ... ... 0.097 0.093
Retailsales ...........0iiiinivnnnnnnn. 165.5 161.8
Mi, deposits ... ..... ...ttt 1795 1638
Shipments:
Manufacturing . ................ ... .. ..... 195.9 181.9
Durables .......... . . . i, 126.8 174.0
Nondurables . .............. ... ... .. .. 93.2 105.3
Neworders . .......cuviiiiinnnnnnenennnnns 246.8 2371
Table A-4. COMPARISON OF MODEL FORECASTING ERRORS
Mean
Percent variance! absolute
. lained forecast
Series Jenkins exp
error
model
X-11 BUR X-11 BUR
Unemployed .......... (2,1,0) 125 8.4 1.10 1.26
Retailsales ........... (2,1,0) 47.8 441 823 840
M1, deposits . ......... (1,1,0) 4.4 4.4 1376 1839
Shipments:
All manufacturing . . . .. (1,1,3) 6.3 6.0 2636 4080
Durables ........... (1,1,3) 8.5 7.3 893 2017
Nondurables ........ (1,1,3) 104 11.0 1755 1903
Neworders ........... (2,1,1) 1.1 134 1253 1371

! After differencing.
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It might be thought that the forecasting and back-
casting could be iterated, but a little thought shows
that it is unnecessary for the IMA models. After fore-
casting and backecasting once, the first forward step
(calculating @,) does not depend on 2, Z_,, etc., but
only on @, @_,, etc., which are the same as before.

EXTENSION TO AR MODELS

The following changes are necessary :

1. The seasonal AR function in ®(B) has to be par-
titioned between trend and seasonal: if it is of the

SECTION II

form (1-—@;B*), the real positive root goes with
the trend and the (s—1) complex roots with the
seasonal. If P=2, the two roots nearest unity go
with the trend and the remaining 2(s-1) roots
with the seasonal; but, if there are no roots very
close to unity, it is not clear what to do.

. The EFF of the two components are still (B)

and s(B), but these are only reached asymptoti-
cally as the AR portion dies away, instead of in
a finite number of steps.

3. It is possible that iteration of forecasting and

backcasting alternately will be useful, because a,

depends on 2,.Z_,, ete.



COMMENTS ON “A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS
METHODS OF SEASONAL ADJUSTMENT” BY JOHN KUIPER

Estela Bee Dagum
Statistics Canada

In his thorough and interesting study on the com-
parison of various methods of seasonal adjustment offi-
cially adopted by Statistical Bureaux,® Professor
Kuiper reaches the following conclusions:

1. There are no significant differences among the
seasonally adjusted values obtained by each
method for the total period of the series analysed
(1953-75). This is shown in the corresponding
tables of inequality coefficients, correlation co-
efficients, and summary measures.

2. There are significant differences in the current
seasonally adjusted values (1975) produced by
the various methods as shown in the tables of
inequality coefficients and correlation coefficients.?
To a lesser degree, this is also found to be true
for the seasonally adjusted figures of the last 3
years of observations.

3. The smallest mean algebraic error and mean abso-
lute error in the current seasonal factors is ob-
tained by the X-11 ARIMA method® that T
developed for statistics Canada, as shown in the
table of stability indicators.

I will comment on these three points and show that
they are not exclusive of the series considered but are
the results of the underlying basic assumptions of the
methods surveyed. These methods belong to the class
that estimates the seasonal component by purely me-

* The methods analysed are: (1) the U.S. Bureau of the Cen-
sus method II X-11 variant; (2) Statistics Canada X-11
ARIMA method ; (3) Burman method of the Bank of England;
(4) Berlin method, ASA-II; (5) the method of the Statistical
Office of the European Economic Communities of Brussels, and
(8) the method of the Dutch Central Planning Bureau.

*The current seasonally adjusted values were obtained by

- applying current seasonal factors from data to December 1975
and not seasonal factor forecasts.

? The total error is defined as the difference between the cur-
rent seasonal factor 8:*; and the estimate of the same seasonal
factor when the series is enlarged with 8 more years of obser-

vations, 8:** . The two statistics chosen to determine which of
H
the methods generates better current seasonal factors are the

mean algebraic error and the mean absolute error.

chanical procedures and not on the basis of a causal
explanation of the seasonal variation,

The time series probabilistic model of these methods
is the classical one known in the theory of stochastic
processes as error model. (see [1; 3].)

In an error model, the generating mechanism of a
time series is assumed to be composed of a systematic
component (sometimes called signal) that is a com-
pletely determined funection of time f(¢) and a random
component (the noise) *¢ that obeys a probability law.
The random element is supposed to be purely random,
i.e., identically distributed with constant mean, con-
stant variance, and zero autocorrelation.

The signal of the observed time series, like the ran-
dom element, is not observable, and assumptions must
be made concerning its behaviour.

In general, two types of functions of time are as-
sumed by these methods. One is a polynomial of fairly
low degree which fulfills the assumption that the eco-
nomic phenomenon moves slowly, smoothly, and pro-
gressively through time (the trend). The other is a
linear combination of sines and cosines of different
amplitudes and frequencies (representing cyclical oscil-
lations), strictly periodic or not (the cycle and the
seasonality).

When the systematic part is assumed to be approxi-
mated closely by simple functions of time over the en-
tire range of the series, the statistical technique used
is that of regression analysis (the classical least squares
theory).

The methods surveyed, however, make the assump-
tion that, although the signal is a smooth function of
time, it cannot be approximated well by simple func-
tions over the entire range. Therefore, they use the sta-
tistical technique of smoothing.

The general basis for most smoothing procedures is
to fit a polynomial to 2n+1 successive observations and
use this fitted polynomial to estimate the trend cycle at
the middle value. Since the estimates of the parameters

Dr. E. B. Dagum is the chief of the Seasonal Ad-
justment and Time-Series Staff at Statistics
Canada.
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of the polynomial are linear in the observed values, say
X 4x, the smoothed series has the form,

(1) XT:ch Xt+k7 t=n+1, .o ey T—n
k=—n

The (1) is a moving weighted average of the ob-
served values where the ¢,’s are constant weights, n is
a positive integer, 2n+1 is the span of the average. It
is called moving, because the weights are moved one
position to the right relative to the X, to obtain succes-
sive smoothed values.

The process of fitting a polynomial by the moving
average technique consists of determining the weights
c that are functions of the length of the moving aver-
age, 2n+1, and the degree of the polynomial to be
fitted, e.g., p. For a given p, the variance of the
smoothed series decreases with increasing n, and, for a
given n, the variance goes up with increasing p [1, p.
54]). The methods surveyed fix p for each systematic
component and let the n vary. Therefore, depending on
the n, some methods are more flexible than others.
Although this does not affect their historical per-
formance, it indeed introduces differences in their cur-
rent performance.

The basic properties of moving averages are: (a)
Scale preservation, (b) superposition principle, and
(c) time invariance.

The property of scale preservation means that if the
original series X is amplified by a given constant, the
smoothed series X; will be amplified by the same fac-
tor.

The superposition principle means that if two time
series are added together and presented as the input to
the given moving average, then the output will be the
sum of the two smoothed time series that would have
resulted from using the original series as inputs to the
moving average separately. That is (X,+7Y,)¢
=X¢+7Y 2 where the superscript ¢ indicates that a
moving average has been applied to the original series.*

Properties (a) and (b) are a consequence of the fact
that moving averages are linear transformations (often
called smoothing linear filters).

The time invariant property means that if two inputs
to the moving average are the same except for a rela-
tive time displacement then the outputs will also be
the same except for the time displacement, ie. if
(X:)e=#, then (Xi41)%=2Z: s In other words, no mat-
ter what time in history a given input is presented to
the filter, it will always respond in the same way. Its
behaviour does not change with time.

The methods surveyed apply symmetric filters to
estimate the components that fall in the middle of their

*In practise, however, the equality is not fulfilled by the
methods analysed because of nonlinearities introduced at differ-
ent stages of the calculations, for example, in the replacement
of the extreme values.

SECTION 11

span, e.g., 2n+1, and asymmetric filters to the n— first
and last observations.®

The sum of the weights of both kinds of filters equals
one; therefore, the mean of the original series is un-
changed in the filtering process,®

It is desirable in filter design that the filter does not
displace, in time, the components of the output relative
to the input, i.e., the filter should not introduce phase
shifts.

The symmetric moving averages have a phase shift
function that is equal to zero or £1I. A phase shift of
*11 is interpreted as a reversal of polarity of a sinusoid
which means that its maxima are turned into minima
and vice versa.

For practical purposes, however, symmetric moving
averages act as though the phase shift is null. This is
because the sinusoids that have a phase shift of +180°
in the filtering process are cycles of short periodicities
(annual or less) and moving averages tend to suppress
or significantly reduce their presence in the output.

On the other hand, the asymmetric filters introduce
phase shifts for most of the components of the original
time series.”

Aside from the fact that the asymmetric filters of
these methods are bound to introduce phase shifts, the
functions not affected by these filters are different from
those corresponding to the symmetric filters.

In effect, the symmetric moving averages that are
applied to estimate the trend-cycle component repro-
duce the middle observation of a third-degree poly-
nomial within the span of the filter. The fact that the
trend is assumed to follow a cubic over an interval of
short duration (one or two years approximately) makes
the assumptions of these methods quite adequate for
the historical adjustment of a large class of economic
time series.

The same conclusions are valid for the symmetric
filters that estimate the seasonal component; they can
fit closely a local linearly moving seasonality. These

®The only exception being the Berlin method ASA-II that
applies an asymmetric fiter for trend-cycle removal but with a
weighting scheme based on a third degree polynomial.

®The sum of the weights of a filter determines the ratio of
the mean of the smoothed series to the mean of the original
series, assuming that these means are computed over periods
long enough to insure stable results.

"The necessary and sufficient condition for a linear filter to
have a phase shift function ®(\)=0 for all A is that its trans-
fer function be real valued and nonnegative definite for all A
Symmetric filters have real valued, but not necessarily non-
negative, transfer functions which lead to the possibility that
®(N\)==II for some frequencies. A digital filter with (real
valued) weights {°k:k=o0, %1, . . .} is said to be nonnegative
definite if, for every positive integer m and complex number
ax, k=0, 1, ... =n, we have Za?j=-n Z"4=—n@;@rCsz>0 [4, pp. 206—
207].
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methods assume that the seasonal pattern changes grad-
ually with only occasional reversals in direction.®

For current estimation, however, more rigid patterns
of behaviour are assumed, namely, a straight line rep-
resenting the trend cycle and a stable seasonality. These
more restrictive assumptions generally produce syste-
matic errors in the current seasonally adjusted values
that are gradually corrected as the series is enlarged by
inserting more years of observations.

Since the implicit functions calculated by the sym-
metric filters of these methods are different from those
corresponding to the asymmetric filters, the historical
seasonal adjustment will always differ significantly
from the current one, except for the trivial (non-
existent) case of series with a constant trend cycle and
a stable seasonality.

There will also be significant differences among the
current estimates obtained by the various methods.
These differences will be more apparent for those series
that are highly irregular or have extreme values present
in the most recent years. This is due to the short length
of the asymmetric filters that does not allow a sig-
nificant reduction in the variance of the smoothed
series and to the fact that these methods use different
procedures and sigma limits for the replacement of the
outliers.

The third finding of Kuiper’s study, i.e., the smallest
total error in the current seasonal factors is produced
by the X-11 ARIMA method, is also explainable by
the basic properties of this method.

The X-11 ARIMA generates seasonal factor fore-
casts from the combination of two filters: (1) The
filters of autoregressive integrated moving averages
(ARIMA) models to forecast raw data and (2) the
filters of census II X-11 variant to seasonally adjust
current observations. (See [4].)

This procedure proved to be superior to the X-11
program in the sense that the size of the total error in
the monthly forecasts and also in the current seasonal
factors (measured by the monthly absolute means) was
significantly smaller for the 12 months, and the same

¢ Series with abrupt or rapid changes in the seasonal varia-
tion cannot be seasonally adjusted properly. Sudden changes in
the seasonal amplitude can be found, for example, in agricul-
tural series, where the level varies considerably from year to
year, and in series such as unemployment, which undergo rapid
changes in composition when the economy changes from ex-
pansion to recession and back to expansion.
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happened for the bias (measured by the monthly alge-
braic means).

The main reasons for significant reductions in the
total error of the seasonal factor forecasts and current
seasonal factors are that—

1. The seasonal factor forecasts of X-11 ARIMA
are obtained from forecasted raw data, whereas
the X-11 method forecasts from estimated sea-
sonal factors; it is well known that the seasonal
factors for the last 3 years are less reliable,

2. The forecasting filter of the X-11 method is the
same for all series, while in the ARIMA models,
the forecasting filters depend on the model chosen
and the parameter estimates. The ARIMA filters
are very flexible and are able to pick up the most
recent movements of the series.

3. The trend—cycle estimate for the last observation
is made with the central weights of the Hender-
son’s moving averages (the same for the centered
12-term moving average) which are capable of
reproducing a cubic in their time interval. This
is very important for years with turning points,
since the X-11 program applies the asymmetric
weights of the Henderson method that only esti-
mate well a linear trend cycle.

4. The replacement of the extreme values for the

last 2 years of data is improved. In effect, by add-

ing 1 more year of data (with no extremes, since
they are forecasts), a better estimate of the vari-
ance of the irregulars is obtained.

The sets of weights applied to the seasonal irreg-

ular ratios (differences) are closer to the central

weights, and, thus, the moving seasonality can be
estimated with more accuracy.

&

Although Kuiper’s analysis was made for the current
seasonal factors, I obtained similar results for the
seasonal factor forecasts. The mean algebraic error and
the mean absolute error were reduced by approximately
40 percent and 20 percent with respect to those of
X-11 method. Moreover, the Wilcoxon-signed-rank
test indicated that the differences for each month were
significant and in favor of X-11 ARIMA method.

This is a very important conclusion, especially if one
takes into account that producers of current seasonally
adjusted data tend to use the seasonal factor forecasts
more often than to rerun the series each time that a
new observation is added to it.
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APPENDIX

STATISTICS CANADA X-11 ARIMA METHOD OF SEASONAL ADJUSTMENT

Introduction

The Statistics Canada X-11 ARIMA method of
seasonal adjustment is a modified version of the Bu-
reau of the Census method IT X-11 variant that con-
sists of enlarging unadjusted series with 1 year of
forecasted raw data and then seasonally adjusting the
enlarged series with the X-11 program. (See [4].)
The forecasts of the raw data are made by ARIMA
(autoregressive integrated moving averages) models
of the Box-Jenkins type that have been identified and
fitted to the original series.

The seasonal factor forecasts are, thus, obtained
from the forecasted raw data and their estimation re-
sults from the combination of two filters: (1) The fil-
ters of ARIMA models to forecast raw data and (2)
the filters of the X-11 program to seasonally adjust
current observations.

This new technique produces seasonal factor fore-

casts and current seasonal factor superior to those of
the census method IT X-11 in the sense that the mean
absolute error and the mean algebraic error of the
seasonal factors is significantly smaller for the 12
months.
" When applied to Canadian and U.S. series, the re-
duction found was about 40 percent in the bias and 20
percent in the absolute value of the total error. An-
other advantage of the X-11 ARIMA is that if cur-
rent seasonal factors are used to obtain current season-
ally adjusted data, there is no need to revise the series
more than twice, For many series, just one revision
will produce seasonal factors that are final in a sta-
tistical sense.

The X-11 ARIMA also provides a univariate time
series model that describes the behaviour of the unad-
justed series. Confidence intervals can be constructed
for the original observations, and, since the one-step
forecast is an unbiased minimum mean square error
forecast, it can be used by producers of raw data as a
benchmark for the last available figure.

The Forecasting Filters of ARIMA Models and
Their Properties

The ARIMA models used for forecasting the unad-

justed series are of the general multiplicative type
[2], i.e.,

¢ (B)®p(B*)AWNPZ,=0,(B)®g(B%)a: (A-1)
where s denotes the periodicity of the seasonal compo-
nent (equal to 12 for monthly series) ; B denotes the
backward operator, ie., BZ,=Z,_,; BZ,=Z,_,;
Vi=(1-B)? is the ordinary difference operator of

order d; 2= (1—2B°*)? is the seasonal difference op-
\Y ]

erator of order D; ¢,(B) and &» (B*) are stationary
autoregressive operators (they are polynomials in B
of degree p and in B* of degree P, respectively);
0,(B) and @¢(B*) are invertible moving-average op-
erators (they are polynomials in B of degree ¢ and in
B* of degree @, respectively) ; and «; is a purely ran-
dom process.

The general multiplicative model (A-1) is said to be
of order (p.d,g) (P,D,Q), Its forecasting function
can be expressed in different forms. For computational
purpose, the difference equation form is the most use-
ful. Thus, at time #+1, the ARIMA model (1) may
be written

Zepi=Zepaat ... FymZisi-m— Q1= Mt 11

BRI Rk 71/ P N (A-Q)
where m=p+s8.P+d+s.D and n=¢+38.Q; ¢y(B)=¢,
(B)2y(B*)v*V? is the general autoregressive opera-
tor; and x(B)=0,(B)®¢(B) is the general moving
average operator. For example, if the ARIMA model
is of order (2,1,1)(0,1,1),, the difference equation
form that generates the observations Z, ; is

Zeyi=(1+¢:1)Zeqist ($2— 1) Zes1—2— 2 Zes1-s
+Zpic12— (1+¢1) 2o 15+ (P1—¢2)
Zis1— st ¢ Zepi_ssta g
—O0t 411~ Oy 12+ OO 113 (A-3)
Standing at origin #, to make a forecast Z:(l) of Z,4,,
the conditional expectation of (A-2) is taken at time

¢t with the following assumptions:
EZis)) =Zupy, 103 Eu(Zos)) =2(2), 150 (A-4)
Ei(ar+1) =@y, [=0; Er(ar41) =0, 1>0 (A-5)
where E';(Z;,) is the conditional expectation of Z,,
taken at origin ¢ Thus, the forecasts 2,(l) for each

lead time are computed from previous observed Z’s,
previous forecasts of Z’s, and current and previous
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random shocks @’s. The unknown a’s are replaced by
zeroes.

In general, if the moving average operator =(B)
=®(B)®(§') is of degree ¢+ 5.9, the forecast equa-
tions for Z:(1), Z.(2),..., Z,(g+5Q) will depend
directly on the a’s, but forecasts at longer lead times
will not. The latter will receive indirectly the impact
of the a’s by means of the previous forecasts. In effect,
Zi(g+s.Q+1) will depend on the ¢+s.Q previous Z,
that, in turn, will depend on the a’s.

From the point of view of studying the nature of
the forecasts, it is important to consider the explicit
form of the forecasting function. For I>n=q+s.Q,
the conditional expectation of (A-2) at time ¢ is

2,0) ~:Ze(1=1) = . .~ (I=m) =0 I>m (A-6)
and the solution of this difference equation is
Z:(1) =50 fo () +bOF, (1) +..
+B® O Ispem o (A7)

This function is called the eventual forecast function,
eventual because, when n>m, it supplies the forecasts
only for lead times I>n—m. In (A-T), fo(2), f2(1),...
fm—1(?) are functions of the lead time 7, and, in gener-
al, they include polynomials, exponentials, sines and
cosines, and products of these functions. For a given
origin 2, the coefficients b}‘) are constants applying for
all lead time I, but they change from one origin to
the next, adapting themselves to the particular part
of the series being considered. It is important to point
out that it is the general autoregressive operator y(B)
defined above that determines the mathematical form
of the forecasts function, i.e., the nature of the f’s. In
other words, it determines whether the forecasting
function is to be a polynomial, a mixture of sines and
cosines, a mixture of exponentials, or some combina-
tions of these functions. The ARIMA forecasts are
minimum mean square error forecasts and can be
easily updated as new raw values become available.

In the context of the X-11 ARIMA, the forecasts
should follow the general movement of the series.

In my experience with Canadian and U.S. economic
time series, I found that the ARIMA models
chosen must fit the data well and produce forecasts for
each of the last 3 years with a mean absolute error
smaller than 5 percent for well-behaved series (e.g.,
employed men, over 20 years old) and smaller than 10
percent for volatile series (e.g., unemployed women,
16-19 years old.) The smaller the forecasting error,
the better. This is particularly true for the forecasting
error of the first 6 months, given the way they will be
treated by the X-11 filters.

Since ARIMA models are robust, the identification
is often good for several years. However, they should
be checked when an extra year of data becomes avail-
able to insure that the most recent movements of the
series are properly followed by the model.

SECTION II

The Seasonal Adjustment Filters of the U.S. Bureau
of Census Method II X-11 Program

The Bureau of the Census program is summarized
in [6] and described fully in [7].

The main steps of this method for obtaining the sea-
sonally adjusted series are as follows :*

1. Compute the ratios between the original series
and a centered 12-term moving average (2 x 12-
term moving average, i.e., 2-term average of a
12-term average) as a first estimate of the sea-
onal and irregular components.

2. Apply a weighted 5-term moving average to each
month separately (a 3 X 3-term moving aver-
age) to obtain an estimate of the seasonal fac-
tors.

3. Compute a centered 12-term moving average of
the preliminary factors in (2) for the entire
series. To obtain the six missing values at either
end of this average, repeat the first (last) avail-
able moving average value six times. Adjust the
factors to add to 12 (approximately) over any
12-month period by dividing the centered 12-term
average into the factors.

4. Divide the seasonal factor estimates into the sea-
sonal irregular (SI) ratios to obtain an estimate
of the irregular component.

5. Compute a moving 5-year standard deviation (o)
of the estimates of the irregular component and
test the irregulars in the central year of the 5-year
period against 2.50. Remove values beyond 2.5¢
as extreme and recompute the moving 5-year o.

Assign a zero weight to irregulars beyond 2.5¢
and a weight of 1 (full weight) to irregulars
within 1.50. Assign a linearly graduated weight
between 0 and 1 to irregulars between 2.5¢
and 1.50.

6. For the first 2 years, the ¢ limits computed for
the third year are used; for the last 2 years, the o
limits computed for the third-from-end year are
used. To replace an extreme ratio in either of the
two beginning or ending years, the average of the
ratio times its weight and the three nearest full-
weight ratios for that month is taken.

Apply a weighted 7-term moving average to the

SI ratios with extreme values replaced for each

month separately to estimate preliminary sea-

sonal factors.

8. Repeat step (3).

9. To obtain a preliminary seasonally adjusted series
divide (8) into the original series.

'It is assumed that the relationship among the time series
components is multiplicative. For an additive model, the words
“difference” and “subtracting” are substituted for “ratio” and
“dividing.”
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10. Apply a 9-, 13-, or 23-term Henderson moving
average to the seasonally adjusted series and
divide the resulting trend cycle into the original
series to give a second estimate of the ST ratios.

11. Apply a weighted 7-term moving average (3 X 5-
term moving average) to each month separately,
to obtain a second estimate of the seasonal com-
ponent. Compute estimates of seasonal factors one
year ahead by the formula

S;‘t+1=SL¢+1/2(Sj,t*Sj,t—l)

where j=1, 2, . . ., 12 denotes the month and ¢, the
year.

12. Repeat step (3).

13. Divide these final seasonal factors into the orig-
inal series to obtain the seasonally adjusted series.

Allan Young [8], using a linear approximation of
the census method II, arrives at the conclusion that a
145-term moving average is needed to estimate one
seasonal factor with central weights if the trend-cycle
component is adjusted with a 13-term Henderson mov-
ing average. The first and last 72 seasonal factors (6
years) are estimated using sets of asymmetrical end
weights. It is important to point out, however, that the
weights given to the more distant observations are very
small, and, therefore, the moving average can be very
well approximated by taking one-half of the total num-
ber of terms plus one. Thus, if a 145-term moving aver-
age is used to estimate the seasonal factor of the cen-
tral observation, a good approximation is obtained
with only 73 terms, i.e., 6 years of observations. This
means that the seasonal factor estimates from unad-
justed series that have observations ending at least 3
years later can be considered final in the sense that
they will not change significantly when new observa-
tions are added to the raw data.

The forecasting function specified in step (11) for
each monthly seasonal factor forecasts perfectly if the
seasonal factors are relatively constant through the
years (stable seasonal pattern). However, if the sea-
sonal pattern is evolving through time, with a trend
that is linear within the span of the moving average
used to estimate the seasonal pattern, a bias is easily
introduced. Months for which the seasonal factors tend
to decrease will have a forecasted seasonal factor larger
than expected. The opposite will happen for those
months in which the seasonal factors tend to increase.
Moreover, the size of the bias will be larger, the larger
the slope of the line followed by the seasonal factors.
It is evident then that in the case of linearly evolving
seasonality, the seasonal factor forecasts for some
months will have larger biases than others.

In the X-11 ARIMA, the unadjusted series is en-
larged with 1 more year of data (forecasted values).
Consequently, the X-11 program estimates the compo-
nents with better filters.
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The trend cycle is no longer estimated with the end
weights of the centered 12-term and Henderson moving
averages but with their central weights. This means
that the Henderson filters will not miss a turning point
at the end of series, since the central weights of these
filters minimize the sum of the squares of the third
difference of the trend-cycle curve.

The end weights applied to the seasonal factors are
closer to the central weights and can reproduce a local
linearly moving seasonality with less error. In effect,
for the 3 X 3-term moving averages, its forecasting
filter is now 0.185, 0.407, and 0.407 instead of —0.056,
0.148, 0.426, and 0.481. Similarly, the weights of 3 X 3-
term moving average for the current seasonal factors
are now only one step ahead of its central weights.

In the case of the 3 X 5-term moving average, its
forecasting filter is 0.150, 0.283, 0.283, and 0.283 in-
stead of —0.034, 0.134, 0.300, 0.300, and 0.300. Observe
that the new forecasting filters are those that the X-11
program apply for current seasonal factors, and none
of their weights is negative.

Because of their longer filtering intervals for given
cutoff frequencies, smothing filters, having negative
weights beyond the positive central values, tend to
stretch too far the implicit assumption in filtering that
the periodicities present at the time for which the
filtered variable is estimated are unchanged in ampli-
tude and phase during the filtering interval.

The replacement of the extreme values for the last
year of observed data is also improved. In effect, by
adding 1 more year of values with no extremes, since
they are forecasts, a better estimate of the residuals is
obtained.

Design of the Experiment and Conclusions

The X-11 ARIMA has been tested with Canadian
and U.S. economic time series. Two statistics were
chosen to determine which of the two methods, X-11
ARIMA or X-11, generates better current seasonal
factors and forecasts, namely—

1. The mean algebraic error of the current and fore-

casted seasonal factors for each month.

2. The mean absolute error of the current and fore-

casted seasonal factors for each month.

The method giving the lowest statistics is considered
the best. The Wilcoxon-signed-rank test was applied to
matched pairs of statistics (1) and (2), obtained from
current and forecasted seasonal factors given by both
procedures to determine whether the differences are due
to chance variations or whether they are really sig-
nificant. Since an improvement would mean low sta-
tistics (1) and (2), a one-sided test of the null hy-
pothesis H, (zero difference) versus the alternative H,
cutoff frequencies, smothing filters having negative
(positive difference) was applied at a 5 percent level
of significance.
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To obtain statistics (1) and (2) corresponding to
the seasonal factor forecasts given by each method for
the series, I proceed as follows (the same was done
for the current seasonal factors) :

1. Estimate the one-step seasonal factor forecast
8t for each month j=1, 2,..., 12 and year
:=1963, 1964, . . ., 1975. (The superscript denotes
the last year available of an unadjusted series
with a minimum of 7 years of monthly data. In
my case, I used data from 1953.)

2. Estimate the seasonal factor Si* for each month
j=1,2,..., 12 and year i=1963, 1964,..., 1972
from an unadjusted series ending in year ¢+3.
(According to the type of filter used by census
method IT X-11 variant, this seasonal factor can
be considered final in the sense that it will not
change significantly when more observations are
added to the original series.)

Define e;,-=S“;L3—S‘bT‘ as the total error in the
seasonal factor forecasts.

4. For each series, build a double entry table of the
e’s defined in (3).

5. For each double entry table of the e’s, calcu-
late—

o

SECTION I1

a. The mean algebraic error for each month, i.e.,

1/n2 ezy,y 1L,2,...,,12.

b. I‘he mean absolute error for each month, i..,
1/n§ﬂ|eu|, i=1,2,...12.

The results from the Wilcoxon-signed-rank test in-
dicated that the seasonal factor forecasts obtained from
X-11 ARIMA were superior to those produced by cen-
sus method IT X-11 variant [4]. The same conclusions
applied to the current seasonal factors S‘ Statistics
Canada X-11 ARIMA was officially adopted by Sta-
tistics Canada in January 1975 for the seasonal ad-
justment of the main labour force series.

In its present versions, this new method is not fully
mechanized. The user should be able to identify, for
each series, an ARIMA model that fits the data well
and produces reasonable forecasts according to the
general guidelines mentioned in section (2). The iden-
tified model is checked only once a year and usually
not changed for at least 3 years.

Since there is a class of simple ARIMA models that
fit and forecast well a large number of series. I am
presently working on the selections of a limited num-
ber of ARIMA models to be able to fully automate this
procedure.



COMMENTS ON “A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS METHODS OF
SEASONAL ADJUSTMENT”’ BY JOHN KUIPER

Dennis Farley and Stephen Zeller
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INTRODUCTION

One method of seasonal adjustment, examined by
Kuiper in his paper, is X-11 ARIMA, now being em-
ployed by Statistics Canada on labor force data.! This
intuitively appealing method, described in the following,
has not been examined at the Board of Governors until
now. Our comment evaluates the performance of this
method of seasonal adjustment for one time series of
particular interest—monthly observations on the narrowly
defined money stock, M1.

The difficulty with X-11, or with any other method that
employs symmetric moving averages, is that symmetry
cannot be preserved at the end points of the sample of
data. For example, X-11 estimates trends with a 12-month
moving average and also smooths the seasonal component
across years with a 3X5-moving average. Thus, symmetry
is lost for data within 3 years of the end of the sample.
Instead, asymmetric filters are applied, resulting in phase
shifts in the adjusted data. What the X-11 ARIMA
approach does is to provide X-11 with an augmented
sample of data so that all, or most, of the actual data are
smoothed with symmetric averages. ARIMA models are,
of course, employed in generating the extra observations.
The choice of an ARIMA model to generate forecasts is
merely one of convenience. Structural models that incor-
porate seasonality could also be used, although the distinc-
tion between these two approaches is somewhat artificial.
Under most conditions, there exists a correspondence
between the structural and time series representations of
an endogenous variable.?

We have selected M1 as an example of a series having
current seasonally adjusted levels that receive a great deal
of attention from the public and press. In addition, these
data are used as an input to policy decisions by the
Federal Open Market Committee (FOMC). Furthermore,
it is well known that these data, as first published by the
Board of Governors, Federal Reserve System, often revise
substantially as the seasonal factors are reevaluated in
light of additional data.? Seasonal factors reestimated with

1See [3].

tSee (8].

3The current practice is to reestimate seasonal factors for M1 once

a year. Some judgmental review does take place before publication.
For a description of this process, see [7].
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several additional years of data lead to a much smoother
series than that derived from the first published factors.*
Accepting these later estimates as correct implies that the
current seasonally adjusted data are not providing policy-
makers with good information about short-run movements
in the money stock. In this comment, the major emphasis
is on seasonal factors in the current year and those
projected for the following year.

There are serious problems in the application of any
seasonal adjustment method to the money stock. For
example, since M1 is composed of currency and demand
deposits, having structural equations that would be speci-
fied differently, we probably should use a multivariate
approach.® Furthermore, for a series -that is at least
partially controllable, the policymaker’s reaction function
must be introduced before we can begin to make any
meaningful statements about seasonality in these data.
Investigation of these issues is clearly beyond the scope of
this comment. Instead, we assume that seasonal factors
obtained with X—-11 from the interior of a data sample are
correct seasonal factors.

In the next section monthly ARIMA models for the
currency and demand deposit components of M1 are
identified. These models are then used to generate fore-
casts with 1-, 2-, and 3-year horizons. In the third section,
seasonal factor estimates based on samples, augmented
with forecasts, are compared to those obtained without the
forecasts.

THE MODELS

The current Board of Governors’ staff procedure is to
seasonally adjust the currency and demand deposit com-
ponents of M1 individually and then to add them together

“See {2].
5See [4].
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to get seasonally adjusted M1. For each component, we
find that first and seasonal differencing are necessary for
stationarity but that a logarithmic transformation is not
required. Inte; moving average models of the follow-
ing general form are then estimated:®

V1V, =60(B)a, m

where x, is either the currency or demand deposit compo-
nent of M1, V, is the first difference operator (V. =x—
X)), Vy is the seasonal difference operator (V,px,=x—
X¢-12), O(B) is a polynomial in the backshift operator,
B(B*a;=a,_x), and a, is white noise. The first estimation
period for the currency component of Ml is from July
1953 through June 1965 and for the demand deposit
component, from July 1950 through June 1965. These
equations are then reestimated, changing the specification
slightly, by *‘rolling up”’ the sample—adding a year at the
end and dropping a year at the beginning. This process is
continued nine times until June 1973, so that 3 years of
actual data are left outside the last estimation sample.’
Each equation is then used to generate a 36-month
forecast. In general, this forecast reproduces the seasonal
pattern quite well, although the level of the forecast after
36 months is often quite different from the actual level.

RESULTS

In assessing the results of the X—-11 ARIMA method,
we ask the following question: Do the conclusions reached
by Statistics Canada with respect to their labor force data,
namely increased stability of current and forecasted sea-
sonal factors, also hold for the U.S. money stock? To
answer it, we employ a measure of seasonal factor
stability, used by Dagum and Kuiper, which will be
described. Following Dagum (3] final seasonal factors are
those from X-11 when there are available 3 additional
years of data. For ordinary X-11, the current-year sea-
sonal factors are just those for the last year in the sample,
but we compute current seasonal factors in three additional
ways—by augmenting the sample with 1, 2, and 3 years of
forecasted data.® Recalling that the end point of the first
sample of actual data is June 1965 and that this sample is
‘“‘rolled up”’ nine times to reach June 1973, there are now
108 (9x12) observations on final and current seasonal
factors. Note that there are four sets of current seasonal
factors—one from ordinary X-11, one from X-11 ARIMA
(1 year), one from X—-11 ARIMA (2 years), and one from

sFor a discussion of ARIMA model fitting, see {1, especially chs.
6-9].

7Coefficient estimates and summary statistics for these models are
available on request.

*In all of these adjustments, the total sample size is restricted to 10
years. Options, in effect, are: Standard multiplicative run, with 1.5- to
2.5-sigma range for graduation of extremes, 9-term Henderson average
for the trend cycle, 3x3- and 3x5-moving average smoothing of
seasonal irregular ratios, and no preliminary trading-day adjustments.
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X-11 ARIMA (3 years)—all referring to the same months
and years. The Dagum-Kuiper measure of stability is

11219
7252

m=1 7 k=1

SWE =S mx @

where S denotes a seasonal factor—either current or
forecasted, and the subscripts m and k denote month and
year, respectively. The lower this statistic is, the less the
current or forecasted seasonal factors are revising.®

In addition to current factors, policymakers are inter-
ested in forecasted seasonal factors, usually 1 year ahead.
In fact, first-published data are seasonally adjusted with
forecasted seasonal factors, because X-11 is not rerun
until 12 new observations are obtained. These forecasted
factors are generated by X-11 as

Smk+1=S mat 12 (S ma=S ma-1), m=1,2, ...,12  (3)

In practice, consecutive differences between seasonal
factor estimates for a month are small so that these
forecasts are essentially equal to the current factors. One-
year-ahead forecasted seasonal factors for the X-11
ARIMA method are simply taken as end-year, next-to-
end-year, or third-from-end-year factors in each of the
augmented samples.

The results appear in the table. The first row presents
the Dagum-Kuiper statistic computed on the X-11 method
for the currency and demand deposit components of M1
for both the current and forecasted (1-year-ahead) seasonal
factors. The next three rows present these same measures
for the X-11 ARIMA method with 1-, 2-, and 3-year
forecast horizons. Looking down the columns for current
factors, we see that most of the improvement in stability
comes from augmenting the sample with just 1 year of
data. While the factors for currency are more stable than
those for demand deposits, the absolute reduction in the
measure of stability is roughly the same for each compo-
nent.

The table also illustrates the difficulty of obtaining good
forecasts of seasonal factors. For demand deposits, the
stability measure jumps by one-third for all seasonal factor
forecasts. The situation is slightly worse for currency,
where seasonal factor forecasts are half again as unstable
as current factors in all cases. As we read down the
columns for forecasted factors, there are overall gains in
stability, for both demand deposits and currency, of 20-25
percent, but they occur at different forecast horizons.
These results suggest that significant improvements may
be had for demand deposits by using X—-11 ARIMA (3
years), but, for currency, a 1- or 2-year horizon is best.

*Compared to other criteria, such as root-mean square revision, this
statistic does not give as much weight to large revisions. Since
policymakers are probably more sensitive to large, rather than small,
revisions in published data, we computed root-mean square revisions
as well, with no qualitative change in the results of the table.
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Table 1. SEASONAL FACTOR STABILITY:
RESULTS OF THE DAGUM-KUIPER STATISTICS
FOR CURRENT AND FORCASTED FACTORS,

BY PERCENT
Demand component | Currency component
Model
Current |Forecasted] Current |Forecasted
X11...... 0.174 0.231 0.091 0.131
X-11 ARIMA
(1year). .. .165 .208 .068 .105
X-11 ARIMA
(2 years) .. 149 202 076 .104
X-11 ARIMA
(3 vears) .. 142 .193 .072 114
CONCLUSIONS

This exercise has shown that, on the average, increased
stability of current and forecasted seasonal factors is to be
derived from using X-11 ARIMA, rather than ordinary
X-11, to seasonally adjust U.S. moriey stock data.
However, there are a number of points to consider before
adopting the X—11 ARIMA procedure. First, the method
is not fully automatic—an important consideration for an
agency that must seasonally adjust hundreds of series. An
ARIMA model for the series must be obtained, usually
with a substantial investment of time for specifying, fitting,
and testing. Second, the model chosen must provide good
forecasts of the series. Forecast accuracy is needed so that

/ SECTION IX

/

X-11 is operating on a series that is consistent in terms of
its seasonal pattern. For an ysis ex post facto, there is
no problem, since forecasting performance may be
checked with actual data; but, for use ex ante, there are
no actual data against which to test the forecasts. One
must rely on goodness of fit within sample or on a
judgmental assessment of the forecasts as reasonable.
Third, the gain in seasonal factor stability (i.e., the amount
of revision) should be balanced against the cost of
achieving it. For instance, the greatest improvement in the
table for current factors for demand deposits comes from
using X-11 ARIMA with 3 years of forecasts. The
difference versus ordinary X-11 is 0.032 percent. This
means that, for a level of demand deposits of $230 billion,
the numbers adjusted by X-11 ARIMA are, on the
average, $74 million closer to the final numbers than are
those adjusted by ordinary X—11. In terms of levels, this
average improvement is not overwhelming. However, the
average is somewhat misleading, since improvements up
to 0.50 percent, or $1.2 billion, occur for particular
months.

In conclusion, the X—11 ARIMA approach is to be
recommended for those series for which reasonable
ARIMA models can be built and where the gain in stability
justifies the expenditure of resources. (Quite often, such
models will already have been estimated for other pur-
poses.) For series that are highly visible economic indica-
tors and where small changes assume political significance,
any gain in stability is probably worth the effort needed to
achieve it. X-11 ARIMA is also to be recommended to
individual researchers who want to seasonally adjust
relatively few series, while avoiding some of the asymme-
tries implicit in X-11.
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COMMENTS ON “A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS METHODS OF
SEASONAL ADJUSTMENT” BY JOHN KUIPER

Martin M. G. Fase
De Nederlandsche Bank N.V.

On the outset, I would like to emphasize that I found
Kuiper’s paper quite interesting and useful. This is partic-
ularly true, because practitioners need guidelines since so
many methods are available. It was for this Very reason
that, 5 years ago, we, at the special studies section of De
Nederlandsche Bank (i.e., the Dutch central bank), did a
similar study, as Kuiper has presented now. I believe
Kuiper's work is in the same spirit and follows the same
methodology as we applied. We compared nine different
methods, including the methods Kuiper compared.! How-
ever, keeping in mind our own results, I cannot believe
Kuiper’s main finding. This seems to be that it is not
possible to discriminate between different methods of

seasonal adjustment.

" Our analysis, based on five representative Dutch series,
employing the same criteria as Kuiper used, did suggest

[

that the X—-11 and the Burman methods perform well.
This was particularly so, because these two methods
produce stable seasonals. Stability, in this context, means
that the seasonals did not change very drastically when
new data became available. To study this property, it js
useful to add, to a particular series, observations over 12
months successively over a reasonable number of years,
(We took 5 years.) I think Kuiper did not follow this
procedure quite well. Therefore, his remark that significant
differences occurred for the recent period seems, to me,
unjustified.

Finally, I would like to add that, for an analysis to
employ the additive or multiplicative model, the search
procedure, referred to by Durbin and Kenny [1], which,
incidentally, is quite common in practice, is more appro-
priate and simpler than Kuiper's strategy on this point.
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RESPONSE TO DISCUSSANTS

John Kuiper
University of Ottawa

The main conclusion of my paper is that the sea-
sonal adjustment methods studied tend to give similar
results during the historical period but that significant
differences may occur during the current period (the
last 3 years) and especially during the last year.

Based on the performance for each criterion evalu-
ated, one can, thus, rank the methods. However, I did
not feel justified to make such a ranking, because it
would have required an aggregation over the various
measures used to evaluate the quality of seasonsl ad-
justment. In any case, a ranking based on two series
would be inappropriate but, in my opinion, so would a

ranking based on the 15 series made available for this

conference, as suggested by Burman.
One of the measures used to evaluate the quality of
the seasonal factors for the last year (i.e., the pre-

N

liminary factors) is the stability indicator. Farley and
Zeller used the indicator to measure dispersion. The
bias is measured by the statistic

7]&72[_]1?2 (8 ‘v,n,k—S,m,k) :l
where % indicates the year for which seasonal factor
differences are taken and m the month.

1t appears that Fase took differences between the pre-
liminary and first revised seasonal factors (calculated
with 12 additional observations), while I took differ-
ences over 3 years, because the seasonal factors tend
toward stability at that point. Also note that the bias
will be relatively more significant when moving sea-
sonality is present, which occurred in both series
studied during the recent period.
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