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INTRODUCTION

The adjustment of economic and social time series for
seasonal variation has been and continues to be a subject
of much attention. Numerous strategies and procedures
have been developed, their underlying assumptions and
properties scrutinized, and their effects on other aspects
of the series so adjusted both theoretically and empirically
explored. Debate continues on how best to model season-
ality, what constraints (information) should be imposed
(utilized) in seasonally adjusting series, and whether one
should attempt seasonal adjustment at all. Against this
background, most procedures currently in use take rela-
tively little account of such issues as the origin of
seasonality, the series’ relationship to other seasonal
series, or (at least explicitly) the purpose of the seasonal
adjustment. As such, these procedures are descriptive or
empirical procedures, univariate in nature and oriented
toward the statistical characteristics either of the particular
series or of a group of series that experience has found to
possess similar seasonal characteristics.

The development of procedures more explicitly oriented
toward the causes of seasonality and the purposes of
seasonal adjustment should be the ultimate aim of seasonal
adjustment research. However, it is felt that, for many
series, there are likely to be sufficient difficulties with
structural approaches that empirical or unstructured pro-
cedures will doubtless remain important; thus, this paper
is concerned primarily with methodology for seasonally
adjusting a series, based on little additional information
beyond that contained within the series, although the
framework can often be extended in a straightforward
manner.

Current descriptive seasonal adjustment procedures tend
to fall into one or the other of two categories, the (ratio
to) moving average methods and the regression methods.
It will be seen in the second section that the latter are
optimal for series where seasonality is deterministic, i.e.,
capable of prediction without error from previous months’
and years’ seasonal, and the former are appropriate for
series where seasonality is stochastic, i.e., representable
as a stationary or nonstationary stochastic process. Thus,
virtually all of the procedures in current use explicitly or
implicitly assume that a series’ seasonality is either deter-
ministic or stochastic, but seldom both. In addition, the
specific filters in the moving average procedures are
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generally chosen with, at best, a limited examination of
the stochastic properties of the series; thus, they are
frequently suboptimal, even for stochastic seasonality.

This paper represents an attempt to synthesize these
two classes of approaches. The niext section develops the
general model combining those underlying the regression
and the moving average seasonal adjustment procedures.
Frequently, such a model is unidentified (several models
in this class are equally compatible with the data); the
third section sets forth some properties for seasonal
adjustment procedures, which are felt to be desirable ones
and which, in any event, remove this nonunique problem.

One of the problems in assessing a series’ seasonality is
how to handle other systematic effects, i.e., trend, and
the fourth section is devoted to this question. The fourth,
fifth, and sixth sections set forth the seasonal adjustment
procedure, including the identification of the deterministic/
stochastic model appropriate for the given series and the
estimation of its parameters. Tests of seasonality are also
presented, since the adjustment procedure is obviously
influenced by whether the empirical evidence is most
compatible with the hypothesis of no seasonality, deter-
ministic of stochastic seasonality only, or both.

The seventh, eighth, and ninth sections illustrate the
procedure, and the tenth section presents some further
discussion and conclusions. The development refers pri-
marily to monthly data, but extensions to seasonality of a
period other.than 12 are straightforward.

SEASONAL ADJUSTMENT MODELS

Underlying any seasonal adjustment procedure is, at
least implicitly, a set of assertions regarding the generation
of the seasonal and nonseasonal parts of the series to be
adjusted, i.e., a model for the series. What is represented
in such a model is a decomposition of the series into its
seasonal and nonseasonal constituents. Additionally, the
nonseasonal part is generally separated into trend (trend
cycle) and irregular. At the risk of oversimplification [2; 7;
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10; 18], the schemes for representing this decomposition
have been of two basic types. The multiplicative seasonal
model for a time series {Y} is

Y=P.SE; {1

where P, S, and E, are, respectively, the trend cycle,
seasonal, and irregular factors of Y,, all at time t. Many
economic series exhibit exponential growth, and, for these,
the multiplicative model is most appropriate. For other
series, however, an additive model may be more suitable.
In fact, the additive model may be derived from the
multiplicative model by taking logarithms. If y,=log Y,
p=log P, etc., then (1) becomes

Ye=pitsite: 2

which is the additive seasonal model. The term s, is-the
seasonal component of y,. Of course, in many cases, {y:}
will be the actual series, rather than the logarithm of a
multiplicatively generated series.

The seasonal adjustment process consists of obtaining
estimates § . or §; of the seasonal factors or components
and computing .

Y$#=Y /S, A3)
or
ygsm "—'}’1—5 t 4)

which are the seasonally adjusted series. Of course, the
crux of the matter is the first of these steps, after which
the second is trivial. This section first describes two
general classes of procedures currently in use for estimat-
ing the seasonal component s, (symmetric filtering and
regression) and the models (stochastic and deterministic)
for which each procedure is appropriate. Then, the two
are combined to form the seasonal adjustment model for
this paper.

Moving Average Procedures and Stochastic Seasonality

Perhaps the most common seasonal adjustment proce-
dures currently in use are those in which the seasonal
component (we adopt the additive framework with the
proviso that it applies tothe logarithms of a multiplica-
tively generated series) is estimated via a symmetric
moving average or filter

n

§¢= 2 VsYt—j v =v)
j=-n
= v(Bly, 5)
~where
v(B) = > vB

j=—n
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is a polynomial in positive and negative powers of the lag
operator B (defined by Biy,=y, ;). A simple example of
this would be

Et'—"‘vo. lyt—12+0-2}’t+0- 1}’t+12=0- 1(1 +B 12)(1 +B _12)}7‘
The seasonally adjusted series
=y, —§=[1-v(B)ly, : ©)

is also the result of a symmetric filter applied to the series.

The Census Bureau X-11 seasonal adjustment proce-
dure [36] is one of the most widely used procedures of
this type, although it possesses other features as well (e.g.,
for treating outliers).

The moving averages or filters in procedures, such as
X-11, have generally been designed to treat patterns of
seasonality and trend commonly observed, particularly to
handle changing seasonal patterns but apparently without
conscious reference to a model or class of models assumed
to represent the series. Nevertheless, it is probably more
than coincidence that seasonal adjustment procedures of
the form (6) are optimal ones (in the sense of minimizing
E§;—s.)?) for one of the most successfully employed
classes of models for analyzing and. forecasting economic
time series, the autoregressive-integrated moving average
(ARIMA) time series models ([4]; see also [34; 43; 44;
45))

The general ARIMA model is of the form

¢(B)A(B))’t=0(3)at
or

AB)y=¥(B)a, 9

where ¢(B) and 6(B) are polynomials of degree p and ¢ in
nonnegative powers of B with zeros outside the unit circle,
y(B)=¢"1(B)B), and a, is white noise. If AB)=1,
equation (7) represents the stationary autoregressive mov-
ing average (ARMA) model of order p, g—

P q
)’t=j2 bjy z—rjz 0sa,ta,
=1 =1

The polynomial A(B) is a difference operator, given most
generally by

AB)= I[ AR ®)
=1

where A,=1-B*". For example, a common seasonal model
[4] is obtained by setting $(B)=1, 6B)=(1-6B)(1-OB™2),
m=2, dy=d,=1, k=1, and k,=12, obtaining

AAzy =(1-B)(1-B )y =(1-6B)(1-OB *)a,

Assume that in (2) the trend and seasonal componenfs
are each generated by models of this form

A,B)p=v,B)E, Var(£)=0% ©
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AB)s={,B)e, Var(e)=0% (10)

with &, €, and e, white noise. Then, it is known [17] that
y. is of form (7). Suppose temporarily that y, is stationary,
i.e., all difference operators are unity; thus, y, has the
representation [17]

ye =P, Bt ¥;B)ete= Y(Ba (an

For this additive ARMA model, it is shown in [43] that
the estimate §, that minimizes E (5, — s )? is

” _O'%ll’s(B )l"s(F)
= S BWE) e

where F=B-! is the forward-shift operator (FJy;=Y:;)-
The numerator and denominator of (12) are the covariance
generating functions [4, p. 49] of the unobserved seasonal
component s, and the observable series y,. Result (12), in
fact, holds for any absolutely convergent y5,(8) and P (B),
i.e., for s, and p, stationary linear processes (not necessar-
ily ARMA).

This result has been generalized in [6] to nonstationary
ARIMA series, where AB)#1 in (7), i.e., series that are
stationary only after suitable differencing. If A,B) and
A,(B) are the minimal difference operators such that
A,(B)p, and A,(B)s, are stationary, then the minimal
difference operator A(B) that renders y, stationary is the
least common multiple of A,(8) and A,(B). The appropri-
ate version of the symmetric filter (12) may be viewed in
either of two ways. First, differencing y, gives, in place of

an,t
A(B))’FAJ:EIS )‘pp (B )§t+Ap(B )‘ps(B )6,

p(B)As €y
=y (B)a; 13)

The required ‘adjustment to (12) is, thus, to replace Yy(z)
by A,(z)Ws(z), where z represents B or F. This filter,
applied to A(B)y,, gives a minimum MSE estimate of
A(B)s,; applied to y,, it produces a corresponding estimate
of s,. Alternatively, this result can be thought of as arising
through a limiting process: If the differencing operators are
approximated by autoregressive operators with roots close
to 1, the autoregressive approximation to A, will cancel in
the covariance generating functions of s, and y,, resulting
in (12) (again with A, ), (z) replacing ¥;()).
As an illustration, assume that

11
A,B)=2 Biy,(B)=1

=0

A,(B)=(1-B)* ¢,B)=1

1 Equation (13) assumes that the least common multiple of A,(B)
and A, (B) is their product, i.e., they are relatively prime.” When this is
not the case, let A, (B) denote the common factors, let A} (B)=4, B)
A.(B), and A¥(B)=A, (B)/A.(B). Then, in (13), A,(B) and A, (B) contain
asterisks, and their product is replaced by A}(B)A}B)A.(B). In the
ensuing text, it is A3(), (z) that replaces ¥, (z).
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so that, noting (1-B)A;(B)=A,,,

AB)=A4AAy,, A,B)p =&, AsB)s=¢
whence
A,y =0B)a; (14)
where 0(B) is of order 13. Then (12) is

,_(I—B)Z (1-F)?
e FE)

It is important to note that equation (12) is a symmetric
linear filter, applied to the series y,; i.e., it is a special
case of equation (5) that, as noted, is the defining
characteristic of moving average seasonal adjustment pro-
cedures, such as X-11. It is, in this sense, that these
procedures are optimal adjustment procedures for stochas-
tic seasonality, i.e., for extracting seasonal components
generated by stochastic (ARIMA) models.

For such filtering procedures to be optimal, however,
their form (equation (5)) must correspond to the one
(equation (12)) implied by the model generating the series.
For example, in [5], it is found that the X-11 procedure is
consistent with a model for y, of form (14), with 6(B) a
moving average operator of degree 24 in B (though closely
approximated by an operator of degree 13). That economic
time series are often well represented by ARIMA models
of approximately this form is probably one reason that X—
11 has done quite well for numerous series. However,
series with a much different ARIMA representation have
been found to be poorly adjusted by X-11 [6; 29]. In
particular, series for which seasonal differencing is inap-
propriate (series where nonstationarity is deterministic and
not stochastic, so that the differenced series is not
invertible) can be overadjusted by X-11.

Regression Procedures and Deterministic Seasonality

The second major class of seasonal adjustment proce-
dures is the regression procedures in which the seasonal
and nonseasonal components are assumed explanable
through a linear regression model. In (2), if

, .
pe= 2 QiCy (15)
i=1
J
se=, Bidy (16)
=1

and e, is white noise, then s, and p, are estimated for a
sample series y=(y,, ..., y,)' through a model of the form

y=Ca+DB+e

obtained by substituting (15) and (16) into (2). The
elements {d;} of D are most often periodic variables
(sines and cosines or seasonal dummy variables) and
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interactions of those with powers of a time variable to
capture a changing seasonal pattern. The trend variables
{cs} are generally powers of the time variable, though any
nonseasonal influence can be included in this way.

Equation (16) defines deterministic seasonal (and trend)
components. The essential feature of such as component
is that, given knowledge of the model, it is predictable
without error; by contrast, the innovation € in the
stochastic seasonal (10) is not consistently estimable, even
with perfect knowledge of the model.

Ideally, C should be orthogonal to D; otherwise, an
ambiguity occurs concerning the definition of the seasonal.
(There are analogous problems with stochastic seasonal
models, and both sets of issues are taken up in the third
section.) The simplest example of a deterministic seasonal,
and one we shall find can go a long way toward seasonally
adjusting a series, is the fixed periodic function

12
se= Bdi=B: B=Biermo k=1,2, ..) (A7)
i=1

where dy, ..., dqg are seasonal dummy variables and

12

Y B;=0. For-any given year, the seasonal component for
i=1 :
January is 8, for February B,, etc. A flexible regression
method, which allows for changing deterministic seasonal-
ity, is that of Stephenson and Farr [35].

Regression methods of seasonal adjustment received an
impetus from the work of Lovell [22], who noted that they
possess a number of properties not enjoyed by the
symmetric filtering procedures currently in use. However,
some of this adverse comparison is due to the use of the
same symmetric filters for series with differing stochastic
properties; for example, the procedure of choosing an
optimal filter (in the sense discussed in the first subsection)
for the given series would dictate using the identity filter
for an already adjusted series; thus, such a procedure
would be idempotent. Indeed the only criterion for decid-
ing whether to use a regression or a moving average
procedure should be whether the seasonal component is
generated by (10) or by (16), and the raison d’étre of this
paper is that both may very well be involved.

Combined Procedures

If deterministic and stochastic trend and seasonality are
both present, the trend and seasonal components of the
observable series y, can be written

p=3 aicut by B=pictpa a8)
5= 2 Bidu+¥;BIe=s 1+ (19)
The operators ¥,(B) and ¥,(B), which satisfy
¥, B)AB)=y,B), ¥;B)AB)=Y,B)

are nonconvergent unless A,(B) or A,(B) are unity;
however, we may take them to be finite with suitable
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initial conditions on the p, and s, series. (See [4] for a
further discussion of this point.) The combined model is
then

y=2 aicut Y Bidit+ b, B+, (B)ete,
=putSutpatSaute; 20

This equation is the general model of this paper. The first
and second terms on the right-hand side of (20) are the
deterministic component (trend plus seasonal) of y,; the
remaining terms

Ur=DpotSote @1

are the stochastic component. A series displays determin-
istic seasonality if s, = B;d; is nonzero; it possesses
stochastic seasonality if s,=y,(B )¢, is nonzero.

It is often convenient to work with the differenced series
A(B)y,, which has a stochastic component that is station-
ary. We write this as

ABy=3% aici+X Bidi+y 3B,
+Y¥B)e+AB)e,
=pt+sttelf=pltsttu¥ (22)

where ¢=AB)cy, s =AB)s,=sk+s¥, etc. Of course,
differencing often changes the nature of the deterministic
trend and seasonal variables; in particular, seasonal differ-
encing eliminates a fixed. periodic mean.

Since it is important to estimate the deterministic trend
and seasonal components with a stationary residual, we
will frequently be working with the differenced form (22).
The recoverability of (20) from (22), particularly of s, from
s#, is investigated in the fourth section, but it first must be
ensured that a model of this form is identified.

SEASONAL MODEL IDENTIFICATION

The development leading up to the model in the third
subsection for determininistic and stochastic seasonality
assumed that the seasonal and trend component models
were uniquely determined; this is seldom possible to do,
given no information other than the time series {y,, —
<g<x}. Secondly, given only a finite segment y;, ..., y,
of this series, the model and its components (if determined)
are only estimable with a degree of error; thus, it is
impossible to discriminate between theoretically incompat-
ible models for the series. Both of these sources of
ambiguity reflect a failure of seasonal model identification,
identification in the economic sense [12] for the former
and in the sense of Box and Jenkins [4] for the latter.
Indeed, the difference between these two usages of the
term ‘‘identification” is, in practice, less clear-cut than,
conceptually, one emphasizing the class of models them-
selves and the other, their relation to the data for which
they are postulated.

It is necessary, in these situations, to restrict the class
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(20) of models so that the seasonal component of a series
can be determined, theoretically and empirically. Often,
restrictions are provided by the nature of the problem or
by specific information; special events or nonrecurring
changes can often be accounted for in this manner.

" Additionally, several authors [2; 11; 21; 31; 39; 41] have
examined multivariate approaches in which seasonality, in
one series, is identified through interrelationships. Cer-
tainly, available information should be used, and it can
often be incorporated into the present procedures in a
straightforward manner. The problem here, as elsewhere,
is that a consensus on this theory is lacking. One person
prefers to define trend or cyclic effects in one way,
another differently. In multivariate approaches, there are
probably as many varieties of variables y, z, . . . relevant
to seasonally adjusting a variable x, and as many varieties
of plausible specifications of relationships among and
between their components, all essentially compatible with
the data, since there are social scientists (economists,
statisticians, etc.) to specify these variables and relation-
ships. This situation is evidently a general one in econo-
metric modelling, where a variety of specifications, includ-
ing a purely autoregressive equation, are all compatible
with the data and all have comparable predictive power.
(See [28].)

What seems needed, therefore, is something of a
fallback position, a principle of insufficient reason; thus,
in the absence of (1) a clear, unequivocal consensus
concerning prior knowledge of the series—its decomposi-
tion, its relation to causal economic or physical phenom-
ena—and (2) of a clear indication in the data, we will take
the most direct and simple route possible, given only the
information on the series itself over a finite time span.
This is, in fact, done separately by the regression and
symmetric filtering procedures discussed in the second
section. By adopting a few principles that, we will argue,
are reasonable ones for any seasonal adjustment procedure
to possess, the identifiability problems are resolved in a
unique manner. These assumptions or properties of the
procedures are stated and briefly discussed in this section
and, in some cases, returned to later in this paper.

Assumption 1

Assumption 1 is that a zero-mean, fixed, periodic
function where the period of 1 year is part of the seasonal
component. The essence of seasonality would seem to
include, at least, those phenomena that recur regularly
year after year. This is a deterministic seasonal effect,
one captured by 12 monthly dummy variables as in
equation (17) or, equivalently, a linear combination of
sines and cosines at the seasonal frequencies. It is not
intended to preclude the awareness of other influences in

2 This rationale, vis-a-vis structural seasonal models, is, in several
respects, analogous to the rationale for final equations vis-a-vis
structural econometric models. (For example, see {28; 31; 32; 41; 46].)
The correspondence is discussed further in the tenth section.

SECTION V

special situations; e.g., if one knows that, in five succes-
sive Januarys, the money supply would have been $500
million higher, except for a policy of restraint, then, in
effect, one can take this into account. Otherwise, however,
the presumption is that if a phenomenon is periodic
(annual, including annual harmonics), then it is seasonal.
One consequence of this is that a deterministic trend is
orthogonal to this deterministic seasonal component; this
is in line with [22] but not [20] or [35].

Assumption 2

Assumption 2 is that a changing seasonal pattern is
stochastic. This is the most arbitrary of our assumptions,
since a sufficiently flexible regression method, such as
[38], can probably cope with many changing seasonal
patterns about as well as symmetric filtering procedures.
It is in the area of moving seasonality that the identifica-
tion problem is at its worst, and our choice is based on
the proven effectiveness of moving average procedures
such as X-11 and stochastic (ARIMA) models for repre-
senting economic series in many applications. This restric-
tion could probably be relaxed somewhat with a suffi-
ciently long-time series available.

Assumption 3

Assumption 3 is that the seasonal component is pre-
served under a nonseasonal linear filter. For example, if
s, is the seasonal component of y,, then (1-vB)s, is the
seasonal component of (1-vB)y,. This property, which
enables us to handle adequately the stochastic trend of
most series (see the following section), seems basic to
moving average seasonal adjustment procedures, although
it evidently has not received much attention. We would
want, for example, the change in a seasonally adjusted
series to be the seasonally adjusted change in the series.
This is actually an extension of the sum-preserving prop-
erty [22] to certain linear combinations of lagged values of
the series. Specifically excluded are seasonal filters, such
as (1-vB1?), that intrinsically change the nature of the series
seasonality.

Assumption 4

Assumption 4 is that, among all decompositions into
stochastic seasonal and nonseasonal components satisfy
the previous assumptions, the decomposition chosen is the
one that minimizes the variance of the seasonal compo-
nent. The goal is to extract no more than necessary from
the series in order to remove its seasonality.

The adjustment procedure will be examined in the next
three sections. By way of preview, the first two assump-
tions allow us to regress a suitable transformation of the
series on seasonal dummies plus deterministic trend varia-
bles, thus, estimating the deterministic (fixed) seasonal.
The residuals from this regression are consistent estimates
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of the (possibly differenced) stochastic component of the
series. The third -assumption enables us to filter this
component into a form that is seasonal plus white noise,
the filter (of low order) eliminating the stochastic trend.
Thus, we have a two-, rather than a three-, component
additive ARMA model, which can be decomposed by
(12), having specified the seasonal component model using
the fourth assumption.

DETRENDING

Frequently, whenever seasonality has been mentioned,
trend has also; e.g.. the model for the series to be
adjusted contains trend as well as seasonal terms in both
its deterministic and its stochastic components. The reason
is that the influence of trend on seasonality can be very
strong. This influence is twofold: Methods of estimation
of a given seasonal component can be strongly affected
by unaccounted-for trend, and, often, the specification of
the seasonal component itself changes as a result of trend
specification.

The subject of detrending has, therefore, received prom-
inence in virtually all treatments of seasonal adjustment,
and the present one is no exception. However, our point
of departure from some such treatments is that we are
interested only in eliminating the undesirable effects of
trend on the definition and extraction of the seasonal
component. In particular, it will be seen to be unnecessary
to separate the stochastic trend from the irregular compo-
nent in order to seasonally adjust a series. The treatment
of stochastic trend in this section is. therefore, fundamen-
tally different from the usual one, symmetric filtering
(which can actually: induce strong low-order autocorrela-
tion—properly considered as trend). On the other hand,
the deterministic detrending is. in principle, similar to the
usual regression approaches, though, in practice, the
stochastic detrending procedure (often involving first dif-
‘ferencing the series or its logarithm) frequently eliminates
deterministic trend as well. This effect is discussed in
greater detail in the first subsection, following which the
stochastic detrending (based on the filter-preserving prop-
erty) is considered. This section concludes with a critique
of detrending via symmetric filters.

First (Logarithmic) Differencing

A characteristic of many U.S. postwar economic time
series is exponential growth; the rates of change of series,
such as GNP, price indices, and many other measures of
economic activity, tend to be more stable than the series
themselves. Moreover, or perhaps, therefore, seasonality
and trend have been most effectively measured as percent-
ages or factors of the series, leading to multiplicative
seasonal adjustment models. The additive model of this
paper is appropriate for the logarithms of such series,
seasonal factors being derived as exponentiated logarith-
mic seasonal components.

An additional characteristic of most U.S. economic
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series is high first-order autocorrelation, even after re-
moval of a deterministic linear or exponential time trend,
in the majority of cases consistent with the hypothesis of
homogeneous nonstationarity [4] in the series levels (or
logs). Series differencing is, thus, appropriate to achieve
stability in the series, i.e., to achieve stationarity in the
stochastic component of the series. When logging and
differencing are both appropriate, the result is a close
approximation to the monthly rate of change of the series.

While the decision to difference a series is based on the
nature of its stochastic trend, differencing also eliminates
a deterministic linear or exponential time trend. Moreover,
the only deterministic component apparent in the logarith-
mic differences of many economic time series is a periodic
mean (seasonal component plus constant mean). That is,
if Y, is the original series, (22) very often becomes

12

Ay=Alog Y =a+ Y, Bidhi+uf (23)
=1
12

=a+ 2 8,d1¢+“7 (24)
i=1

where u is the (differenced) stochastic component of the
series, as in (22), and d} is the first difference of the
seasonal dummy variable dj; .

8=Br-Bi-1, j=2, ..., 12
8,=B1B1 (25)

Note that a is the slope of a linear time trend in y, = log
Y, and that e represents a multiplicative trend factor of
Y, itself. More complex trend variables can certainly be
employed, e.g.. higher order time trend, other economic
variables or variables to capture the effects of special
events. Other differencing patterns will also occur, and,
of course, some series are stable in level form. But,
logarithmic first differencing and the model (24) are the
procedure and model that we have found appropriate for
the majority of economic time series.?

Relationship Between Levels and Changes of a
Deterministic Seasonal Component

Equation (25) gives {§;} readily from {B;}: however,
the inverse transformation is required in order to season-
ally adjust the series levels, having estimated a seasonal

3 This includes the ones analyzed in the seventh, eighth, and ninth
sections and other series in [29]. However as noted previously a more
general analysis would include formal investigations of whether
another power transformation was appropriate to achieve homogene-
ity, e.g., as in [7], and whether stochastic trend in the homogeneous
series is nonstationary. Quenouille [33, pp. 54-57] discusses the latter
point in one of the earliest references to the concept of stochastic
trend, ‘and a test of the null hypothesis of nonstationarity in the form
of a unit autoregressive root has been recently given by Dickey [9].
(See aiso [13].)
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component such as in equation (24). The desired relation-
ship is given by the following theorem.

Theorem 1—If a series of changes {Ay.} is given by
(24) then the series {y.} itself has the representation '

12

y¢=u,,+at+ 2 ﬁjdjt‘Hzlt (26)
=1
where
-1
Au=ut, u=2, ut
i=0
and
j l 12 12
Bi=Y dt— > i, 2 B=0 @7

i=1 1235 =1

That is, if Ay, can be represented as the sum of a
constant plus a fixed seasonal plus a stationary error
term. then y, itself can be represented as the sum of a
constant, a linear time trend, a fixed seasonal, and an
integrated error term.

The proof of the relationship between Ay~ 8;d; and
yi—3 Bidy is shown in [4, ch. 4]; it, therefore, suffices to
investigate the relationship between Y, 8;d; and ¥ Bidj. A
general solution to (25) is of the form

B1=8,+c¢

Be=8,+38,+c¢

612=81+82+. e +812+C

where ¢ is an arbitrary constant. But, the presence of a
constant term in (26) means that we can impose the
constraint Y, 8;=0. Thus, the constant ¢ is uniquely
determined, since

0=125,+118,+... 48,5+ 12¢

so that
12

1 & 1
=13 >Yas —l)3i=ﬁ > i8;

i=1 i=1

This gives 8; as in (27) and the theorem is proved. Higher
order nonseasonal differences can be treated iteratively in
this manner.

Stochastic Detrending: Preservation of the Seasonal
Adjustment Under Nonseasonal Filters

The stochastic component of equation (22), e.g., of
equation (24), is of the form

uf=pltsitef (28)

where the 2-subscript denotes the stochastic trend and
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seasonal and the asterisk denotes the respective compo-
nent after differencing or stationarity inducing transforma-
tion. Noting that seasonal differencing is rarely necessary
to remove seasonal nonstationarity [30], once a periodic
mean is included in (24), the differencing operator A(B)
[most often A(B)=1-B] is in general a nonseasonal filter.
(When this filter does involve seasonal differencing, a
decomposition, such as equation (14), seems most appro-
priate; see [3; 5] for further discussion of this situation.)
Thus, assumption 3 (see the second section) is that s is
the seasonal component of u¥, as s, is the seasonal
component of i, in (21). Moreover, p§ and e} are nonsea-
sonal, so that, with n¥=p#+ef, u} is the sum

uf=s¥+nf 29)

of two components, seasonal (signal) and nonseasonal
(noise).

Now, the stochastic properties of the stationary series
u¥ can be assessed via its sample autocorrelation function.
In general, there will be a nonseasonal filter that will
eliminate whatever low-order autocorrelation (trend) from
u¥ that was not eliminated previously from differencing
the series; thus, only autocorrelation at seasonal lags
(generally lags 12, 24, . . .; see the sixth section for further
discussion) remains. If this filter is #(B), i.e., d=h(Bu}¥,
etc., the relation

H=Sg+Hn, (30$)

will be such that 7, is white noise and §,, is autocorrelated
only at seasonal lags.
If the models for & and §, are

§2=9B)er, 1, =P (B,

then §,, is estimated by (12), using these models and with
i1, replacing y,. The seasonal component of u} is then

s5i=h~Y(B)Sz €3))

Alternatively, the symmetric filter

2

G;‘PS(BW_’.:(F) (32)
s (B W, (F)
may be applied directly to u* (rather than i) to estimate
K}/

The final application of the filter-preserving principle is
to recover the stochastic seasonal component s, for the
levels from the component s¥ for the series changes. The
procedure is the same as for the fixed deterministic
seasonal, theorem 1, except that it is no longer true that
the seasonal component sums to zero over a 12-month
period. Instead, following usual practice, we assume that
the seasonal component sums to zero over a calendar
year. This constraint suffices to determine s, uniquely
from s (hence, s, from s#), as in (27), provided thats3; is
first adjusted by a constant each year in order to sum to
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zero over that year. Alternatively, if ¢ indexes December
of any given year, one may simply compute preliminary
quantities

§21=0, sty=s%y1+s% +(25/=<12)

whereupon

l 12 .
Saus=sty=T5 2 St(15=12) (33)
=1
is the seasonal component for the series levels. From
equations (27) and (33), the combined seasonal component
of y, is

Se+i=BitSs, oy (34

i.e-, for anyt, S¢=B¢+32t.

Detrending Via Symmetric Filters

We have seen that differencing in order to detrend a
series introduces changes in the seasonal component so
that further work is needed to recover the seasonal for
the series levels. By contrast, the usual approach to
detrending has been to seek symmetric filters of the form

wB)=Z usB’ (35

such that
rB)s=0, uB)p=p. (36)
so that | ’
(1-pB))y=DB)y=scte: 37N

giving a simpler decomposition of the series (compare with
equation (29)), thus, facilitating the seasonal adjustment
process. Most frequently (35) is a centered moving average

k
[J.(B)=h—14- > B, M=2k+1 (38)

=k

of its operand (appropriate modifications ‘are required if
the period M is even, as it is for monthly data).

The problem with such approaches is that the filters
«(B) have been chosen with deterministic effects in mind,
e.g., (38) produces (36) if s, is a periodic mean and y, is a
linear or quadratic time trend; whereas the second section
has shown that stochastic effects are best handled by
symmetric filters. Depending on the stochastic structure of
the series, it is entirely possible that ef=D(B)e, in (37)
will be more trendlike (very highly autocorrelated) than
the original trend p, itself. To see how this can arise for
(38) (other detrending filters, such as described and used
in [36], can be expected to exert similar effects), note that
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1 k

> Biy,

D(lf?)}’z=(l—————2k+l 2

1

k
=5k jz] [0 +0 ey s

1 & .
=§,'H__lj§=:l[(l-3j)+(l—p Ny,

1 k
=%+l [<1~B»>(1ﬂF ) 2 SiBXSHEye

-1 k
=57 (& g FIIS )Py (39)

i-1

where S;(z)=, zi and F=B-'. Thus, it is interesting that

i=0

D(B), as it contains the factor A%, or equivalently
(1-B)(1-F), eliminates homogeneous (stochastic) nonsta-
tionarity of order 2, which includes the type of nonstation-
arity (of order 1) that is evidently displayed by many
economic time series. It does what it should in this
respect; but it does not stop here. The remaining factor of
D(B) (other than A?) is a complicated polynomial of high
degree in B; thus, for the many series that are not
strongly autocorrelated (except for seasonality) after differ-
encing, a great deal of inappropriate smoothing is done by
this operation. The result is the injection, rather than the
elimination, of trend in the form of low-order autocorrela-
tion. Additionally, the result of applying D(B) is generally
a noninvertible series (4 series without an autoregressive
representation or a positive spectrum).

In view of this drawback, and of the demonstrated
recoverability of seasonally adjusted levels from seasonally
adjusted changes of a series, it is recommended that
differences replace symmetric moving averages as the
primary detrending device in symmetric filtering proce-
dures, such as X~11. As stated at the beginning of this
section, there is no necessary reason to separate trend
and irregular elements if the purpose is seasonal adjust-
ment.

ADJUSTMENT FOR DETERMINISTIC SEASONALITY

In this section and the next, the seasonal adjustment
procedure per se is presented, including the estimation of
the models for seasonality and tests for deterministic or
stochastic seasonality.

For deterministic seasonality, the assumptions in the
third section essentially restricted the component s,, in
the general model (20) to a fixed seasonal component, so
that the {d,} in this equation can be monthly dummy .
variables, as in (26). In the fourth section, relationships
between the periodic components

s1=2, Bydu=PB:
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and
sf= Z Bid%= Z 8;d;1=9,

were established. (See theorem (1).) What remains is
estimating s,, and testing for its presence.

Estimation of the Deterministic Component

The equation for a fixed seasonal component (plus
trend), e.g., equation (24) or (26), is a linear model for
which regression procedures are generally appropriate.
Usually efficient estimates of the coefficients of the model
require that the stochastic component of the series be
serially independent or that an appropriate version of
generalized least squares be employed. However, for
certain regression functions—including fixed periodic
means polynomial time trends, and interactions of the
two—ordinary least squares is asymptotically efficient,
provided that the regression residual is stationary; e.g.,
see [1]. Thus, while it is often important to compute
series first differences to ensure stationarity of the stochas-
tic component, having done this ordinary least squares
generally suffices.

In practice, therefore, often the procedure is simply to
regress the logarithmic first differences on a set of 12
seasonal dummy variables, thus, estimating the quantities

in equation (24). Then,

A~

S Ay, 8=N-é 41)

L1
12
are estimates of the constant term and seasonal compo-
nent, and theorem (23) is used to get {B;} from {6;}. If the
series does not need differencing, then the seasonal
component is estimated directly from a regression of the
(logged) series levels. That is, referring to equation (26), if
{\;, j=1, ..., 12} are again used to denote the coefficients
of the seasonal dummies, (41) is employed with B;
replacing 8; and the constant term u, (now a parameter
rather than an initial condition) replacing «. Procedures
for other patterns of differencing can also be formulated.
The series adjusted for deterministic seasonality is y;— B
orYe® ify=logY,.

Tests of Deterministic Seasonality

Given model (20) or (26), deterministic seasonality
exists if Tiot all the B; are zero, which is equivalent to not
all the §; in (22) or (24) being zero. Thus, if the hypothesis

Hy:By=...=B1=0 42)

cannot be rejected at a suitable significance level, one
could conclude that adjustment for deterministic seasonal-
ity is unnecessary.

SECTION V

While the deterministic trend and seasonality are very
often efficiently estimated by ordinary least squares, the
sampling distribution of the estimated coefficients depends
on the covariance matrix of the regression residual, i.e.,
on the autocovariance function of the stochastic compo-
nent of the series. There are several approaches to this
problem that are all asymptotically equivalent to general-
ized least squares. The simplest one is to note that if the
stochastic model for the residual process u, is

mBlui=a, 43)

then one may regress y;==(B)y, on seasonal dummies,
and the coefficients A{, ..., A}, in this equation are equal
to each other under (and only under) the null hypothesis
(42). Moreover, the sample autocovariances. of the regres-
sion residuals {ii,} are known [27] to have the same
asymptotic distribution as those of the true stochastic
component {u}; thus, w(B) in (43) may be effectively
estimated after the regression of the untransformed varia-
bles.

After transformation, the regression residual is approxi-
mately white noise; thus, the general linear hypothesis
tests are asymptotically valid. Thus, the test of H, in (42)
may be carried out by—

1. Estimating A,, ..., Ay, as in the fifth section.

2. Forming estimates 7#(B) and 4, of the quantities in
equation (43).

3. Forming

b="B)yy) @4)

where b, is a, under H,, since y is the estimate of
the common value o (more generally, b, are the
residuals from the regression under H,), and

4. Computing

S b2-3 a1
F= 2 1.22 ap (45)
Y a¥(n-12)
that, under H,, has an F-distribution with 11 and
n-12 degrees of freedom.

Several variants of this, which have the same asymp-
totic properties, are possible; e.g., after (43), the regres-
sions may be rerun. Whatever is done, however, it is
important to take account of autocorrelation in these tests.
Particularly if the fixed seasonal component is estimated
from the undifferenced series, a strong bias in purported
significance levels could result. In this regard, the test
carried out in X-11 [36, p. 591 could be improved by
procedures such as those given in this paper. The current
X-11 test is carried out with series detrended by symme-
tric filters, virtually guaranteeing a highly autocorrelated
series. (See the subsection on detrending via symmetric
filters in the fourth section.)
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ADJUSTMENT FOR STOCHASTIC SEASONALITY

Having estimated the deterministic components (trend
and seasonal) of the time series, the remaining problem
for seasonal adjustment is the estimation of the stochastic
seasonal component sy, in

U=patsate: (46)

Additionally, this section presents tests for the existence
of stochastic seasonality. i.e., of the hypothesis Var(sy) = 0
in (46). If such a component is absent, the procedure in
the previous section is all that is required.

Decomposition of Stochastic Seasonal Series: The Minimal
Extraction Principle

In the fourth section, it was seen that the decomposition
problem was simplified by the filter-preserving property,
so that we could essentially reduce (46) to

l;t=§2t+;lt (47)

in which 7, is white noise and 3, has no autocorrelation
at lags other than seasonal. (In the terminology of Granger
[14], 5, is a “‘strongly seasonal™ process.)

But. even with the simplification of (46) into the form
(47), the procedure for estimating the seasonal component
can be rather complicated, and, moreover, a decomposi-
tion. such as (47), is not, in general, uniquely determined
from the overall model, i.e., the model for i,. While a
completely general treatment still awaits development, we
have used a principle of minimal extraction, i.e., assump-
tion 4 in the third section, to solve the problem for a
group of models that, while simple, seem to cover the
great majority of cases encountered. These are the 12th-
order ARMA models

(1—pB 2)ii ,=(1 -6B )a, (48)
for which the admissible models for §,, are of the form
(1-¢B 12)5,=(1-OB )€, Var(e)=0% 49)

with 7, white noise with variance o%. (We will discuss a
quarterly-annual multiplicative model in the ninth section.)
The relationship between the parameters of the overall
model and the components model may be seen by
multiplying i =55+, by 1-$B2, obtaining

(1-6B 2)a = (1-OB ?) e+ (1-pB )i, (50)

and noting that the variance and lag 1 autocovariance of
each side of (50) must be equal. Thus,

(]+02)0'?,=(1+@2)0'§+(1+¢2)0'?;
002=002+da} (5D

1 A valuable extension of this procedure and class of models is
provided by Wecker in the accompanying discussion.
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Since the model for @, is determined by the three
parameters (¢, 6, o2). whereas the components model
involves four parameters (¢, ©, o2, 0%), the model for §,
and 7, is unidentified.

Given a value of, e.g.. ©, the equations (51) could be
used to determine o2 and o2 from o2 and 6 (and ¢,
common to both models). Frequently, it is simply assumed
that ®=0, since this model is one of autoregressive signal
(seasonal) plus white noise, which is uniquely determined
from (48). Certainly, if there is a theory to suggest that
®=0, i.e., that the seasonal is a pure autoregression, this
is what should be done. (For an example of this approach,
see [23].)
~ However, for most situations the assumption ®=0 in
(50) is probably arbitrary, and there is a need for resolving
the identification problem when no such a priori informa-
tion exists. The approach taken here is to leave the series
intact, insofar as possible, to‘remove as little as possible
and still remove the series’ seasonality. This would imply
that the variance of the seasonal component be chosen as
small as possible, consistent with the equation system
(51). Ordinarily, ¢ > ©® > 0 in (48), and, in this case, it
can be shown that choosing ®=— 1 minimizes the variance
of the seasonal §,. Any other value results in more than
necessary being removed from the series in the seasonal
adjustment process.

Estimation of the Model Parameters and the Seasonal
Component

Having identified the model for §, and 7, by assigning a
value to @, asymptotically efficient estimates are obtained
for the remaining parameters (¢. o2, o2) in this model by
substituting estimates for (¢, 6, 0%) into (51), since this
equation system defines a nonsingular linear transforma-
tion between (0. ¢2) and (02,02%), ¢ being common to
both. Estimation of parameters for ARMA models is
discussed in numerous sources, e.g., [3; 17; 26], and all
such procedures are asymptotically equivalent to maxi-
mum likelihood estimates, as are, therefore, the estimates
of o2 and o2 obtained from (51). Conditional on these
values.s the minimum mean square estimate of the sto-
chastic seasonal component is, from (2),

L _ 6HB) s (F)
§5=v(B )uf—m uf (52)
_ G2(1+B ) (1+F %) u (53)

&2(1-6B2)(1-0F )

equation (53) reflecting the cancellation of the common
autoregressive operator in the numerator and denominator
of (52). The procedure in the subsection on stochastic

5 This also refers to conditional on the parameter estimates in the
ARMA model used in the stochastic detrending. When these two sets
of estimates are not independent, one should properly estimate both
sets jointly in a multiplicative ARMA model, a point brought to my
attention by Engle.
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detrending in the fourth section is then used to estimate
54 the stochastic seasonal component of the undifferenced
time series.

‘Tests of Stochastic Seasonality

Given the relatively greater difficulty in determining the
stochastic seasonal model specification and in estimating
the resulting seasonal component, it would be of particular
importance to identify those series for which little or no
evidence exists for such seasonality (i.e., for a changing
seasonal pattern); the seasonal adjustment procedure
would then involve only a regression on seasonal dummies
and the recovery of the seasonal component or factor for
the observed series from this regression.

The test proposed for the presence of seasonality is
. based on the autocorrelations of the residuals from the
seasonal dummy regression, after detrending, as in the
fourth section, i.e., of {ir,}. If the detrending is adequate
and if there is no (remaining) seasonality, then the {i}
should be a white-noise series. Thus, evidence of season-
ality is revealed by (1) large individual autocorrelations at
the seasonal lags, e.g.., lags 12, 24, ..., and possibly 3, 6,
.... or (2) by unusually large values of such statistics as

mnz

mms
fi, Qs=n 2 ’:gk, Qe=n 2 ffzk (54)
‘ k=1

k=1

I\ZE]

Q,=n

k

1

where m is generally a low-order multiple of 12. The
asymptotic distribution of Q;, under the null hypothesis
that &, is white noise, is given for some cases in [27]. If
no stochastic detrending is performed (&, = u}). then Q;
is x2 with m/i degrees of freedom; otherwise. while Q, is
asymptotically x2(m —r), where r is the number of esti-
mated ARMA parameters in the detrending filter, the
precise large-sample distribution of Q; and Q,, is not
known, though. on the assumption of a low-order detrend-
ing filter, it can be shown to lie between the x*m/i) and
X2(m/i —r) distributions, probably closer to x*n/), since
the effects of the ARMA estimation are concentrated on
the low-order sample autocorrelations.

It should be noted that, for stationary series, frequency-
domain criteria [16; 24] for seasonality have also been put
forth, which generally relate to the occurrence of average
power (rather than autocorrelation) at the seasonal fre-
N
12
lags). The two approaches are closely related, as, of
course, they should be; e.g.. the seasonal autoregressive
model

quencies 2w <, j=1, ..., 6 (rather than at the seasonal

s=ds, 1ot € (55)

has no autocorrelation other than at lags 12, 24, ..., and
strong peaks at all six seasonal frequencies. And, the
distinction between (55) and seasonal models with a first-
order MA component appended, considered by [14; 24]
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and others, is immaterial in view of the filter-preservation
property. (See assumption 3 in the third section.)

CONSUMER PRICE INDEX AND HOUSING STARTS

In the next three sections, we exemplify the procedures
developed in this paper using several monthly economic
time series. The analysis presented here is based on
computations performed in [29], in which empirical com-
parisons were made between several adjustment proce-
dures, including X-I1 and the present one. This section
examines two series that were found in [29] to require at
most a deterministic seasonal adjustment, as described in
the fifth section, and the following two sections analyze
series foundsto possess stochastic seasonality as well.

Tests of Seasonality in the CPI

Table | shows the autocorrelations of various functions
of the Consumer Price Index from 1947 to 1975, as in the
Survey of Current Business, U.S. Department of Com-
merce. It is a highly trending and autocorrelated series,
and both first and second differences of the logarithms
(the first of which is essentially the monthly inflation-rate
series) are shown in parts (a) and (b) of this table. It is
clear, from examining these autocorrelations, that any
seasonality in this series is quite mild; e.g.. the lag-12
autocorrelation ry, is scarcely larger than ry, or ry, for
either series difference.

To estimate a fixed deterministic seasonal component,
a regression of y, = Alog CPl, on seasonal dummies was
run, as in equation (24). The value of R? was only 0.03
(0.02 adjusted), confirming the above observation concern-
ing weak seasonality. The autocorrelations of the residuals
from the regression are shown in part (c) of table I;
except for some small changes, e.g.. ry, is reduced from
0.18 to 0.15, they are virtually indistinguishable from
those in part (a).

We wish to exemplify the seasonality tests in the fifth
and sixth sections to see if there is in fact statistically
significant seasonality in the CPI. While the pronounced
low-order autocorrelation in the residuals from the regres-
sion (table Ic) does not impair the asymptotic efficiency of
the least squares estimates (see the fifth section), it does
affect both the F-test and the autocorrelation tests for
seasonality. Thus, the first step was to detrend this
residual series. The. autocorrelation pattern suggests an
ARMA (1, 1) model, and the fitted model

(l—-O.8|B)u;"=(l—0.47B)z?, .(56)

was obtained. The autocorrelations of the residuals {a}
are in table le.

To see if the fixed monthly seasonal components are
significantly different from each other, ;he procedure
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, Table 1. AUTOCORRELATIONS, CONSUMER PRICE INDEX
Lags 1 2 3 4 5 6 7 8 9 0
a.Alog (NSA) {Variance = 0.0*29)
1-10 ..... 0.43 0.32 0.36 0.35 0.08 0.12 0.13 0.24 0.20 0.18
11-20 .15 .18 .15 .18 .08 .08 .09 .02 -.07 .03
21-30 .10 .04 .03 .01 -.03 -.05 -.08 -10 -.08 .01
31-40 .05 .05 .04 .00 .00 .02 .04 .04 .00 .07
41-50 .01 .00 .01 .03 .07 .09 12 .16 A3 14
51-60 13 .09 .09 .13 .10 .05 .06 .07 .02 .06
b. A2log (NSA) (Variance = 0.0°33)
110 ..... -0.41 0.12 0.04 0.13 -0.08 -0.05 -0.09 0.12 -0.02 0.03
11-20 .... -.06 .05 .05 12 .09 .02 .03 A2 -22 .03
21-30 .... 1 -.05 .01 .02 -03 .02 -.01 -.04 -.03 .09
31-40 .... -.13 1 .01 -03 -02 .00 .02 .03 -.08 A1
4150 .... -.05 .01 -.05 .01 .02 -.02 -.00 07} -.04 .03
51-60 .... .02 -.03 -.04 .06 .02 -.06 .00 .05 -.08 .07
c. 2log {Regression SA)—Regression Residuals (Variance = 00°28)
1-10 ..... 0.43 0.33 0.37 0.37 0.23 0.15 0.17 0.25 0.20 0.19
11-20 .... 14 .15 .16 .18 .08 .09 A2 .10 -.05 .04
21-30 .... .09 .03 .02 -.02 -04 -.05 -.09 -.10 -.06 -.00
3140 .... -.04 .06 .03 -.00 -01 -.00 .04 .04 .00 .08
41-50 . .03 .01 -.00 .03 .07 .09 12 14 A3 .15
51-60 . .13 .10 12 14 .12 .05 .06 .06 .01 .04
d. 8log (X-11 SA) (Variance = 0.0* 14)
1-10 ..... 0.53 0.42 0.41 0.35 0.36 0.36 0.35 0.32 0.35 0.35
11-20 .... .20 .06 1 .10 .09 14 .10 .03 .01 .02
21-30 .... .02 .01 -.02 -.07 -.02 -.00 .01 -.01 .08 .10
3140 .... A3 19 1 .06 .06 .10 .15 .15 .16 .19
41-80 .... 17 .10 .05 .02 .06 12 .16 .16 .09 .09
61-60 .... .09 .03 .06 .09 .13 .10 .11 .09 .06 .06
e. Detrended Regression Residuals (Variance = 0.0*19)
10 ..... -0.02 0.08 0.01 -0.04 -0.02 -0.12 -0.05 0.09 0.04 0.05
11-20 .... .00 -.01 .02 .08 -.01 .03 .05 .05 -13 -.00
21-30 .... .09 .00 .09 -.03 -.01 -.04 -.07 -.09 -.03! .05
3140 .... -.02 A3 .04 -.03 .01 -.07 .05 .04 -.02 11
41-50 .... -.01 -.03 -.05 -.05 .03 -.00 .07 .06 .06 .06
51-60 .... .03 -.01 .06 .05 .09 -.04 .00 -.02 -.07 -.01
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developed in the fifth section is to compute a series b,
given by

(1-0.81B)(y~5)=(1-0.47B)b, 7

where y, = Alog CPl,. Note that, under the null hypothe-
sis, {y, -y} has the same asymptotic djstribution as ul;
their innovations (estimated by 4, and b,) are both white
noise with the same variance. The result of the calculation
(45) gave

F=2.92

which is significant at the I-percent level. Thus, although
the seasonal variables explain less than 3 percent of the
variation in the inflation-rate series, they are significantly
nonzero.

The second test is for the existence of remaining
seasonality after the regression, i.e., of seasonality in uf.
From the filter-preserving property, we may equivalently
examine the series d,=i, for seasonality. From table Ic,
there is very little evidence of seasonality in this series.
For example. in (54),

Q35=336(0.01240.122+0.042)=5.4
01,=336(0.0124+0.032+0.072)=2.0

whereas the upper.10-percent point of the x* (3) distribu-
tion is 6.2. In fact, the value

20
Q=336 > ri=24.5

k=1

compared with x3.,, (18) = 26.0, does not allow rejection
of the hypothesis that this is a white-noise series.

The conclusion is that the fixed seasonal model is
evidently adequate, and, as noted, even this seasonal
effect is slight. By contrast, the officially adjusted CPI
series is a series adjusted by changing seasonal factors,
which are displayed in table A-1 in the appendix. Two
main effects of this seasonal adjustment can be noted
from the autocorrelations of the seasonally adjusted infla-
tion rates in table Id: There is overadjustment, as evi-
denced by the dip in ry, (the twice-differenced series gave
rie=—0.19, r;;=—0.02, and r43=0.07), and the variance of
the series is cut in half, suggesting an unnecessary amount
of smoothing of the series.

Seasonal Adjustment of Hoﬁsing Starts

A series that exhibits stronger seasonality than the
Consumer Price Index is the series of total new housing
units started, taken from 1959 to 1975. The autocorrela-
tions in table 2a clearly reveal seasonality in this series,
and as the Alog series appears stationary in other respects,
the regression (24) was run to extract that part of the
series explainable by a fixed periodic effect. The autocor-
relations of the residual series {i,} are given in table 2d;
the regression R? was 0.72.
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The F-test described in the fifth section showed very
strong evidence of seasonality, and no further seasonality
was revealed by tests on the autocorrelation of u, (or
the detrended series i, which was estimated by
i4,=(1+031B)i,). Consequently, a fixed seasonal adjust-
ment of housing starts is evidently adequate, and the
adjusted series and seasonal factors are shown in appendix
table A-2. By contrast, the seasonal factors for the
published X—11 adjusted series, also shown in this table,
are quite variable. (Note, however, that the variances of
the two seasonally adjusted housing starts series, in Alog
form, are comparable, in contrast, with the situation for
the CPI.) The housing starts series, thus, provides a good
illustration of the identifiability problems discussed in the
third section. (See [29] for other illustrations as well.)
Evidently, the data often do not contain sufficient infor-
mation to enable a discrimination between theoretically
incompatible seasonal adjustment models.®

UNEMPLOYMENT RATE

Table 3 presents autocorrelation data on the series of
U.S. unemployment for 1947-75. As with the CPI and
housing start series, the Alog-unemployment series appears
stationary, except for seasonality; thus, this series was
regressed on seasonal dummies as described in the fifth
section. Unlike the two previous series, however, there is
in table 3d clear evidence of remaining seasonality. The
autocorrelations of the regression residuals i, at lags 12,
24, ..., while small, are very persistent; they remained
unchanged (to the second decimal place) as a result of the
estimated detrending transformation

1,=(1-0.03B-0.18B %)l (58)
after which the statistic

0Q15=312(0.182+0.182+0.17%)=29.2

is off the x? (3) tables. Clearly, stochastic seasonality is
also present in the unemployment series.

The second autocorrelation pattern for #,, in table 3d,
that, as noted, is also the pattern exhibited by 4, is
suggestive of the seasonal ARMA process in the subsec-
tion on tests of stochastic seasonality in the sixth section,
with 0 < 6 < ¢ < 1 but ¢ and 8 both close to 1. Two
approaches to the estimation of ¢ and 6 were attempted.
The first was nonlinear least squares, which is asymptoti-

6 The situation regarding seasonality is, in many respects. analogous
to a phenomenon noted in [28] for econometric models. In that study.
it was found that, while such models are often centered around
structural relationships with strong apparent associations, essentially
equal explanatory power was very often obtainable by modeling an
endogenous variable in terms of its past history alone. Thus, in either
situation, the data provide some, but not enough, information. Certain
obviously inappropriate models can always be rejected; there remain
logically incompatible or contradictory sets of models, whether
econometric models or seasonal adjustment models. all empirically
compatible with the same data.



PIERCE 255
Table 2. AUTOCORRELATIONS, HOUSING STARTS
Lags 1 2 3 4 5 6 7 8 9 0
a.Alog (NSA) (Variance = 0.0277)
110 ..... 0.26 -0.01 -0.21 -0.29 -0.06 -0.09 -0.09 -0.33 -0.24 -0.05
11-20 .... .34 .66 .32 .04 -24 -.32 -.02 -.08 -.08 -.26
21-30 .... -.28 -.02 32 .65 24 .01 -22 -.26 -.05 -.09
3140 .... -.04 -.26 -.26 -.01 31 .57 27 -.02 -24 -.22
41-50 .... -.03 -.10 -.04 -.24 .22 -.00 27 .56 24 -.01
51-60 .... -.22 =21 -.06 -.04 -.04 -.26 -.20 .02 .26 .51
b. 82, ,log (NSA) (Variance = 0.0174)
110 ..... -0.32 -0.04 0.10 0.11 -0.01 0.02 -0.01 -0.09 0.08 -0.06
11-20 .... .19 -.50 .18 12 -.09 -.16 11 .02 -.06 .09
21-30 .... -.08 .00 -.02 .07 -.10 -.02 .04 .04 -.10 -.00
3140 .... .03 -.02 -.08 .00 .05 -.09 .08 -.03 -.02 .03
4150 .... .09 -.10 -.00 .03 .06 -.01 -.06 .04 -.05 .06
51-60 .... -.05 .02 -.08 .10 -.01 -.06 .05 -.0t .05 -.01
c. Alog (X-11 SA) (Variance = 0.0068)
1-10 ..... -0.28 -0.02 0.05 0.10 0.05 0.01 0.00 -0.07 0.08 -0.04
11-20 .... .08 -.22 .08 .08 -.04 -.09 .06 .02 -.06 .07
21-30 .... -.08 .03 -.03 -.07 -.01 -.01 -.03 .06 -.10 -.02
3140 .... .01 -.01 -.08 .05 .01 -.06 .01 -.04 .04 -.00
4150 .... .00 -.02 -.05 -.01 A7 -.06 -.08 .07 -.08 .08
51-60 . -.03 -.02 -.04 .08 .01 -.06 .03 -.00 .04 02
d. Alog (Regression SA) (Variance = 0.0077)
1410 ..... -0.28).  -0.06 0.14 0.00 0.02 0.09 -0.06 -0.05 0.10 -0.15
11-20 .... 12 -.10 .02 .10 -.01 -.18 .09 .09 -13 .10
21-30 .... -.08 -.07 0.6 -.02 -1 .04 -.00 -.00 -.04 -.03
3140 .... -.01 .04 -.09 -.02 .10 -.15 .04 -.01 -.04 .05
41-50 .... .06 -.09 -.01 .02 .05 .02 -.03 -.03 -.01 .02
51-60 .... -.05 .07 -.07 .07 -.00 -.056 .03 .03 .04 -.03




256 SECTION V
Table 3. AUTOCORRELATIONS, UNEMPLOYMENT RATE
Lags 1 2 3 4 5 6 7 8 9 0
a. Alog (NSA) (Variance = 0.0130)
110 ..... 0.03 -0.07 -0.23 -0.13 0.23 -0.15 0.20 -0.13 -0.26 -0.12
11-20 .01 .73 -.03 -13 -.26 -.16 A7 -17 19 -14
21-30 -.256 -.10 -.02 71 .01 -.10 -.22 -.13 17 -13
31-40 .18 -17 -.24 -10 -.00 .68 .00 -.09 -.23 -.15
41-50 .15 -.13 14 -.14 -.22 -.07 .04 .65 .03 -.07
51-60 -.20 -1 .20 -13 .19 -.14 -.20 -.07 .00 .58
b, 84, ,log (NSA) (Variance = 0.0062)
1-10 ..... 0.17 0.29 0.18 0.10 0.17 0.06 -0.04 0.01 -0.03 -0.16
11-20 .... -.00 -.46 -17 -.19 -.15 -12 -.13 -.12 .02 .04
21-30 .... -.04 .04 -.06 .01 .08 .08 .07 .08 .05 .06
3140 .... .03 -.09 -.00 -.05 -.08 -.03 -.07 -07 -.09 -10
41-50 .... -12 -.02 -.18 .01 -.01 .04 12 .07 .10 11
51-60 .... .07 .15 .18 -.03 .15 -.00 .05 .02 -.06 -.05
c. 8log (X-11 SA) (Variance = 0.0025)
1-10 ..... 0.18 0.27 0.19 0.156 0.19 0.08 0.02 0.05 -0.01 -0.13
11-20 .... .00 =21 -.10 -.05 - 11 -.09 -1 -.09 -.02 .02
21-30 .... -12 -.03 -.08 -13 .02 -.04 .05 .04 -.04 -.01
3140 .... -.04 -.07 .00 -.02. -.10 -.06 -.06 -.06 -.02 -.08
41-50 .... -.05 .00 -.09 -.02 -.02 .05 .08 .05 .05 1.0
51-60 .... .07 14 .18 .07 11 .01 .08 .06 .01 .02
d. 2log (Regression SA) (Variance = 0.0039)
1-10 ..... 0.03 0.18 0.10 0.10 0.04 -0.08 -0.07 0.09 -0.04 -0.06
11-20 .... -.04 .18 -13 -.06 -.10 -.00 -.16 -.16 -.06 .04
21-30 .... -.08 .00 -13 .18 .01 .03 .01 .07 -1 -.03
31-40 .... -.08 -.04 -.05 .02 -11 A7 -.03 -.01 -.02 -.01
41-50 .... -12 -.04 -.16 .02 -.056 .09 .03 .16 .04 .08
5160 .... .05 .10 .05 -.04 .07 .03 -.03 .12 -.06 .07
e. Alog (Regression-Moving Average SA) (Variance = 0.0030)
110 ..... 0.10 0.20 0.15 0.10 0.12 -0.02 -0.01 0.08 -0.02 -0.11
11-20 .... -.01 -.04 -1 -10 -12 -.04 -13 -.13 -.01 .02
21-30 .... -.06 -.03 -.13 -.00 .04 .02 .01 .06 -.06 .01
3140 .... -.04 -.08 -03 -.01 -.10 .02 -.01 -.01 -.04 -.04
4150 .... -.08 -.01 -.16 -.00 -.01 .08 .07 .05 .07 A2
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cally equivalent to maximum likelihood. (See the sixth
section.) The fitted model

(1-0.747B ) i1,=(1-0.546B %) 4, 59

was obtained.

As noted in the sixth section, the models for decompos-
ing ii=§,+n, into seasonal and white-noise components
are those for which §, is the seasonal ARMA process
given by equation (49), and our principle of removing no
more than necessary from the series implies taking the
MA parameter in this model to be —1. In terms of the
estimated coefficients in (59); therefore, the equation
system (51) becomes

1.298 6%=262%+1.5576%
0.546 02=—G%+0.746 6% (60)

For the symmetric filter in (53), the ratio of variances of
the § and & innovations is needed, for which the solution
of (60) is

Thus the filter in (53) becomes

(14+B')(1+F1?)
(1-0.547B 12)(1-0.547F '?)

v(B)=0.039 ©1)

Writing this as
»(B)=0.039(B +2+F)w(B)

table 4 illustrates the calculation of the {v}, utilizing the
fact that, for w(B)=(1-6B)* (1-6F)™,

1

o wlk|=00k-1|, k+0

Wy=

Table 4. CALCULATION OF FILTER WEIGHTS
FOR UNEMPLOYMENT STOCHASTIC

SEASONAL COMPONENT
K W, 0.039cw, vy v .
(0 1.424 0.0554 0.171 0.067
12........ {X) .0303 133 .062
24........ (X) .0166 .073 .053
36........ {X) .0090 040 .046
48........ (X) .0049 .022 .038
60........ (X} .0027 012 .033
72........ {(X) .0015 .006 .027

X Not applicable.
1 Based on overall model ¢=0.95, §=0.85.
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The resulting estimate of the stochastic seasonal compo-
nent for AlogU, is, therefore,

s5=0.17T1uF+0.133 (¥ 1ot fir2)
+...+0.006(u¥ 15 + ukizg) (62)

To obtain s¥ near the beginning and end of the sample
period, the u}-series was forecasted and backcasted 6
years according to the combined trend/seasonal model (58)
and (59), a procedure that, incidentally, would probably
benefit any moving-average seasonal adjustment proce-
dure.”

The combined seasonal component

for the Alog series is then obtained by adding §3; in (62) to
the appropriate deterministic coefficient. The seasonal
adjustment procedure is completed by obtaining §, for the
log U, series, as described in the subsection on stochastic
detrending in the fourth section, the seasonal factors S, =
e*, and the seasonally adjusted series

Us»=U, IS, (63)

However, before this procedure was carried out, it was
noticed that the series A=i}¥-§% which is the same as
Alog U$4, contained a negative seasonal autocorrelation
rup=—0.23, reflecting an overadjustment of the series of
the sort also done by X-I1 for this series (r;=—0.21 in
part (c) of table 3). At least three explanations for this
seem possible: (1) Almost half of the seasonal variation in
u¥ can be attributed to a sequence of high-positive June
values, spanning from 1968 to 1971, so that a fixed-
parameter ARMA model for u, is perhaps inappropriate;
(2) the properties of the estimated seasonal §% necessarily
differ from those of the true seasonal component s3; [16;
43]; and (3) the nonlinear least squares estimates (59) of
the ARMA model may be suspect. We examine the third
of these here, saving the first two for the tenth section.

One reason to suspect the fitted model (59) is that the
autocorrelations ryg, res ..., in table 4d, are extremely
slow to die out, and, since the theoretical autocorrelations
for an ARMA model of this type are

Pi2k=bP1z k-1, k=2

we should expect a value ¢ much closer to 1 than the
value 0.747. If, indeed, ¢ and 6 are both quite close to 1
the finite-sample properties of the least squares procedure
may be poor [32]. Thus, while alternative methods may be
asymptotically inefficient, they are perhaps preferable
here. We thus chose values of ¢ near 1 (¢=0.9, 0.95,
0.98), computed the resulting 8§ required to give r;;=0.18,
solved the equation system (51), and determined ¥(B) in
(53) and the resulting seasonal component series. The

7 This also has recently been found by Dagum [8] for the case of X~
11 applied to many Canadian time series.
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value $=0.95 was the lowest value for which this problem
did not occur; for ¢$=0.95, the implied value of 8 is 0.85.
The set of equations

1.7220%=20%+1 902502
0.8502=—02+0.9502 (64)

gave 62/62=0.00506. The resulting values of vy, previ-
ously computed, are displayed in the right-hand column of
table 4. Beyond lag 72 (6 years), »(B) was truncated.

Table 3e shows the autocorrelations of Alog u, season-
ally adjusted as before except using v in place of vy. They
give no reason to doubt the adequacy of the seasonal
adjustment. Table A-3 in the appendix shows the resulting
seasonally adjusted unemployment series and the seasonal
factors.

DEMAND DEPOSITS

The essential features of (and some of the problems
with) the deterministic-stochastic seasonal adjustment pro-
cedure of this paper were illustrated with the unemploy-
ment rate. In analyzing the demand deposit component of
the money supply (published in the Federal Reserve
Bulletin), we will concentrate on two additional aspects of
the procedure, the possible effects of sample-period choice
and the simultaneous presence of stochastic quarterly and
annual patterns.

In [30] and [40] the demand deposit series for periods
since 1968 is analyzed, and it is found that the model (24),
with u¥=a,, i.e.,

Alog DD¢=a+ Zdeﬁ“"at (65)

is an adequate characterization of the series; thus, not
only is the assumption of fixed deterministic seasonality
adequate, but also the trend is a pure random walk with
drift. This is, in part, the basis for a recommendation in
[46] that the daily seasonal adjustment procedure, set forth
in [40], based on fixed factors apart from trading-day
variation, be given consideration as an alternative to the
Federal Reserve’s current procedure (X-11 plus judgmen-
tal review).

However, over earlier periods, particularly the 1960’s,
there are known to have occurred shifts in tax dates and
other events, and, indeed, the published seasonally ad-
justed series have reflected pronounced changes in the
estimated seasonal factors. It is, therefore, of interest to
examine how the present procedure performed from 1961
to 1975, including a period where changes are known to
have occurred.

Table 5 shows the autocorrelations of various series
related to demand deposits; note in part (a) of this table,
that quarterly, as well as annual, patterns are evident.
Moreover, after the regression on seasonal dummies both
quarterly and annual patterns, while reduced, are still
present. (See table 5d.) Since there is no further autocor-
relation evident in this residual series, apart from these
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stochastic seasonal affects, the tests for stochastic season-
ality can be made directly on this series (i.e., #,~i¥). We
find

0,=168(0.222+0.112+0.112)=12.2
0 ,,=168(0.312+0.102+0.00%)=17.8

both highly significant.
There are perhaps several ways to approach the problem

oof decomposing u, into seasonal and nonseasonal compo-

nents, as the seasonal pattern is more complex than the
ARMA model (48) that adequately represented the sto-
chastic component of the unemployment rate. The method
employed here is to treat the problem iteratively, i.e., to
assume that the annual and quarterly effects are multipli-
cative (in the sense of [4]) so that the overall model for
u¥ can be written

gBlaBlut=a, . (66)

‘where q(B) represents the quarterly pattern and a(B) the

annual pattern. In fact the usual identification procedure
[4], based on the autocorrelations in Table 5d, suggests a
model of the form (66) with

qB)=(1-6,B°)"'(1-6,B°)
a(B)=(1-8,,B"*)"'(1-¢;,B™*) (67

or a simplification thereof. Let

fi=aBut (68)
so that

a=qB)f: 69
and define

g=qBut (70)
whence also

a=aB)g, an

If the coefficient of B* in g(B) is essentially 0 for k = 12,
then one can reasonably hope to estimate (66) by estimat-
ing certain of these equations separately. The seasonal
decomposition of u¥, based on these models, requires
further that the filter-preservation property be extended to
include quarterly filters for an annual adjustment and vice
versa. For example, if the series fi, in (69), which
possesses a quarterly but not an annual pattern, is
represented as the sum of seasonal and noise components

fef O+ (72)

then the quarterly pattern in u? is

u®P=a"'B)f® (73)
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Table 5. AUTOCORRELATIONS, DEMAND DEPOSITS: 1961 TO 1975
Lags 1 2 3 4 5 6 7 8 9 0
a. Alog (NSA) (Variance = 0.0°348)
1-10 ..... -0.15 -0.33 0.37 0.27 -0.19 0.30 0.22 -0.23 0.34 -0.36
11-20 .... -13 .89 -.18 229 | .35 -.27 -.18 27 -20 -20
21-30 .... 31 .34 -10 .82 -.19 -.26 33 -.26 .17 .24
31-40 .... -.19 -17 .29 .32 -.08 .75 -.18 -22 31 -.24
4150 .... -.15 22 -17 -15 .25 -.30 -.06 .68 -17 -.19
51-60 .... .23 -.24 -13 .21 -14 -12 .22 .27 -.04 60 -
b. 22, ; log (NSA) (Variance = 0.0°37)
110 ..... 0.18 0.04 0.17 -0.03 0.09 0.07 0.21 -0.07 0.01 -0.06
11-20 .... -.03 -.34 -13 A1 -.02 .06 a2 -.00 .00 01
21-30 .... -.10 -15 .02 -.04 -16 -12 -.03 -.07 -03 -.05
3140 .... .00 .10 .08 .16 -03 -.07 .14 .02 -.04 06
4150 .... -.10 -.07 .08 -.06 .02 .01 .06 RE -.04 -.03
5160 .... .03 -.04 -.02 .08 -.03 -.01 .05 -.08 01 .08
c. Alog (X-11 SA) (Variance = 0.0% 16)
110 ..... 0.28 0.10 0.14 0.06 0.13 0.09 0.13 0.03 -0.03 0.02
11-20 .... .10 -.02 -.05 .05 .02 .14 13 .02 .00 .00
21-30 .... -.10 -.04 02 -.08 | -.15 -.10 -.04 -.03 -.06 .07
31-40 .... -.00 10 .05 .13 .00 -06 .07 06 .04 02
4150 ... -17 -.07 .03 .07 -.02 .04 .06 .15 .06 08
51-60 . 12 -01 -.07 .06 .02 -.01 -.05 -.08 02 04
d. blog (Regression SA) (Variance = 0.0°31)
110 ..... 0.07 0.07 0.22 -0.10 -0.01 0.11 -0.17 -0.04 0.11 -0.19
11-20 .... .09 31 -13 -.01 .09 -.04 .06 .02 .08 .01
21-30 .... -.01 -.16 13 .10 -14 -.05 -.01 -.08 -.06 -.08
31-40 .... .01 .09 -.00 .00 A1 .00 .04 .03 .00 02
4150 .. .. -13 -.10 .06 -.02 -.04 -.00 12 .07 03 04
51-60 .... .06 -.01 -.07 .03 .05 .00 -.04 -.06 05 .02
e. Alog (Regression-Moving Average SA) (Variance = 0.0° 21)
110 ..... 0.20 .003| -0.07 .0.03 0.03 0.12 -0.15 -0.06 -0.07 -0.07
11-20 .... .02 -1 -.07 .01 -.00 .13 .08 .00 .05 .04
21-30 .... -.07 -1 .10 .09 12 -13 -.01 -.06 -07 -.04
31-40 .... .03 12 .08 .07 .04 -.03 .08 05 .01 02
4150 .... -14 -12 .03 -.06 -.06 -.03 13 .09 -.00 02
51-60 .... .06 -.03 -.07 .04 .06 -01 -.01 -06 .00 .01
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since a~'B)f/=u¥ from (68). Therefore, if v (B) is the
filter (12) or (54) for estimating f{? in (72), based on a
components model derived from (69), i.e., f P =v,B)f,
then also

UP=vyBut ' 74)
The stochastic series adjusted for quarterly pattern is then
u=[1-vyB)lut 75

Similarly, we may derive a common filter »,(B) to
estimate the annual seasonal pattern either in u# or g,.
The seasonal adjustment process then consists of removing
the quarterly and annual effects in sequence. If

ur=si+n,
then
ne=[1-v,B)}i,
=[1-v,B)][1-vB)u? (76)
and the estimated seasonal component itself is
§t=t-n=[v.B)+vB)-v.B) B)lit an

The multiplicative model (66), thus, implies that the
seasonal component is the sum of the quarterly and annual
effects less an interaction effect (and, hence, the seasonal
factor does not itself factor into annual and quarterly
factors).

To apply this adjustment procedure to the residual from
the demand deposit regression, estimating (66) gave

1-0.8368*
3 = " " 4 — 12)—1
4B) =15 emaps 4BI=(1+0.2478")

the pure MA specification being adopted for the annual
pattern after ¢,,=0.036 was computed in the mixed
ARMA specification. The weights for the quarterly adjust-
ment, i.e., the coefficients in v (B), are derived from (69),
just as the coefficients in v(B) were derived in the eighth
section for the unemployment stochastic adjustment, and
the coefficients in v,(B) are derived from (71), also in this
manner. These coefficients are displayed in table 6. When
this adjustment was applied to the u} series, however, the
quarterly pattern appeared to be satisfactorily handled but
not the annual pattern; the lag-12 autocorrelation of (76)
was negative, and the lag-24 autocorrelation was positive
and higher than before (evidently related to the fact that
the coefficient v{% is negative in table 6). The latter
problem was handled in a purely ad hoc manner, setting
v{®=0. The former problem is similar to that encountered
in the unemployment series, and, also as a largely ad hoc
procedure, the coefficient v, was set equal to v.,,, thus,
obtaining a 3 x 1 filter. (Note that most seasonal extraction
filters used by X-11, e.g. the 3xS5 filter, are such that the
center weight is equal to several of the adjacent weights
on either side.)
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The amended »®-weights, denoted v/, are shown in the
righthand column of table 6, and the autocorrelations of
the resulting i, series (Alog of the seasonally adjusted
series) are in table Se. The seasonally adjusted demand
deposit series is given in table A-4 along with the seasonal
factors both for the deterministic-stochastic -adjustment
from 1961 to 1975 and for the deterministic only (fixed-
factor) adjustment over the more recent period.

Table 6. FILTER WEIGHTS FOR DEMAND
DEPOSIT STOCHASTIC COMPONENT

Quarterly Annual
P yK(q) X ’ VK(a) VK(a)l
0...... 0.128 e 0.396 0.149
3...... .108 12 .149 149
6...... .074 24 .037 S
9..... .050 (X) (X) (X}
12..... .033 (X) (X) {(X)
15..... .021 (X) (X) (X)
18..... .013 (X) {(X) (X)

- Entry represents zero.
X Not applicable,

DISCUSSION AND CONCLUSIONS

This paper has presented and illustrated a seasonal
adjustment procedure with the following features vis-a-vis
procedures currently in use:

. It can allow for stochastic effects in regression
(deterministic) procedures, and for deterministic ef-
fects in ratio-to-moving average (stochastic) proce-
dures.

2. The symmetric filters or moving averages can be
chosen in accordance with the stochastic properties
of the individual series to be adjusted.

3. The detrending procedure recognizes the stochastic
as well as the deterministic nature of trend, and
preserves seasonal adjustment under such stochastic-
detrending transformations, as series differencing.

This has been done while staying within the empirical or
descriptive framework. recognizing that while structural or
causal approaches undoubtedly are potentially more effec-
tive, there will remain many series for which, given the
present state of knowledge and consensus concerning the
required causal or structural system. univariate and un-
structured procedures probably will continue to be used.
It, thus, behooves us to continue the search for the best
procedures that current statistical methodology can pro-
duce, the current paper being but one attempt at this.
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In the remainder of the paper, we wish to cover some
problems with the current procedurc and some suggested
improvements or extensions.
to consider

An Alternative to Overadjustment

Both X—11 and the stochastic seasonal adjustment of
this paper have tended to produce adjusted series with
negative autocorrelation at the seasonal lags or spectral
dips at the seasonal frequencies. Both this and the failure
of the orthogonality property are necessary consequences
of the seasonal adjustment model and procedure em-
ployed. (See Grether and Nerlove [16].) Intuitively, one
cannot hope to transform n independent random variables
{a;} into 2n independent rv's {e}. {n}. Yet, what this
state of affairs implies is that, e.g., a lower-than-expected
unemployment rate this September will tend to be followed
by a higher-than-(otherwise) expected value next Septem-
ber; this is precisely the sort of effect that seasonal
adjustment is intended to eliminate.

Given that the procedures employed are optimal, with
respect to the class of additive, stochastic, or unobserved-
components models, perhaps alternatives to the overad-
justment phenomenon should be sought through alterna-
tive models, i.e., alternative definitions of the stochastic
seasonal component. Notice, e.g., concerning the present
definition, that the innovations of s, i.e., the white-noise
series €, in (49), as irregular a series as exists, is currently
considered seasonal. This is related to the prominence
given to the center weight of moving average filters of the
form (12).

Having transformed the series (via estimating determin-
istic components and stochastic detrending) to the form
(30), i.e., to a series with no autocorrelation other than
seasonal, an alternative way to approach the decomposi-
tion problem would be to regard the seasonal component
at time ¢t as the part of the series that could have been
predicted (and postdicted), given other series values; i.e.,
to consider

Si=E@ |ty ez ..\ Uprp . 2)

as an alternative to §,. This explicitly eliminates the
contribution of the current value of &, to the seasonal
component, the rationale being that only that part of a
series which is related to- values of the series at seasonal
distances (e.g.. a year, a quarter ago, etc.) is to be
considered as seasonal. For example, if 1, were génerated
by

U=u,ota,
then

o _¢(llt—12+“t+12)
N P

Moreover, §; and u~§; are now orthogonal; and the center
weight is 0. so that pure noise (€) is not part of the
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seasonal component. Additionally, the component §; will
generally have smaller variance than §. in line with our
minimum extraction principle. It is hoped to explore
similar approaches with a zero-center weight more fully in
the future.

Alternative Stochastic Models

Throughout, it has been assumed that the stochastic
component of the series is, after differencing, a stationary
linear process. Several alternatives to this are possible;
e.g., Hannan et al. [18] and others have considered
seasonal models, where the coefficients are stochastic
rather than fixed: Swamy and Tinsley [38] have presented
a class of such models of which the ARIMA ones are a
very special case.

Another generalization of stationarity concerns the class
of periodically correlated processes, in which, e.g., mar-
ginally, the December values are stationary over time but
other months might have different autocovariances than
the Decembers. We noticed in the eighth section that the
unemployment series was strongly affected by a series of
Junes; similarly, the lag 12 autocorrelation in a series,
such as retail sales, may be dominated by December,
and, perhaps, the symmetric filter applied to other months
should be different. In other words, our basic definition of
(stochastic) seasonality has been connected with the lag
12 autocorrelation, which measures year over year associ-
ation averaged over the 12 months and assumes, as a
consequence of both within- and between-year stationar-
ity, that the true year-over-year association is the same
for each month. When this is not the case, the stochastic
models of this paper may not adequately capture the
seasonality.

Standard Errors of Seasonal Factors and Adjusted Data

An important subject in seasonal adjustment concerns
the accuracy of the seasonally adjusted data, given that
the true seasonal is never known. There are two sources
of error, one from specification and estimation of the
model and the other (relevant only for stochastic season-
ality) from estimation of the seasonal component, given
the model. The mean square error for some simple
examples of the latter is given in Whittle [43]. We have
not investigated the analogous situation for stochastic
seasonal models, such as employed in this paper, that
would be complicated further by parameter estimation
error. However, some idea of the magnitudes involved
may be obtained from a consideration of the simplest
case, where only deterministic seasonality is present and
the regression residual is white noise, the situation evi-
dently exhibited, e.g., by demand deposits for the post-
1968 period [29; 30]. For this case, the variance of the
seasonal component, 8, in (24), is approximately
o%/M ., where o2 is the residual variance (uf=a,) and M is
the number of years in the sample. As the seasonally
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adjusted Alog series is (y~5,). 02/M is also the MSE of a
seasonally adjusted series value. Noting that y,=Alog x, is
essentially the rate of change of the observed series x,. we
may derive corresponding MSE’s for the seasonal factors
and the seasonally adjusted series.

To illustrate, the Alog demand deposit regression for the
sample period, 1969-75 (M =7),gave 6,=0.0051 [29); thus,
the root mean square error of a given seasonal factor is
approximately

Ta _0.002
7

This translates into a RMSE for the seasonally adjusted
demand deposit figure for a given month of over $400
million, since 1973 demand deposits have been over $200
billion. It is likely that a lower RMSE would be obtained
for a longer series or for a procedure (if appropriate to
the series) that does more averaging (smoothing); but
even halving this interval would still give 95-percent
confidence intervals of about $1 billion for current monthly
seasonally adjusted demand deposit data. Such intervals
would, for most months, contain all three seasonally
adjusted figures: (1) The deterministic adjustment from
1969 to 1975, (2) the deterministic-stochastic adjustment
discussed in the ninth section, and (3) the published
seasonal adjustment. This situation of uncertainty is evi-
dently characteristic of numerous series, as mentioned at
the end of the seventh section, and more attention to the
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standard errors of estimated seasonal components and
seasonally adjusted data is needed.

Incorporating Special Effects or Other Procedures

A limitation in the procedure as developed and exempli-
fied here is that little provision was made for phenomena.
such as outliers, trading-day variation, etc.. whose the
importance is widely recognized. The trading-day regres-
sion can probably be combined with regression on monthly
dummy variables. the definition of the deterministic sea-
sonal component being extended to include both effects.
Special effects. such as outliers. strikes. changing holiday
dates. etc., can be allowed for independently of the
operation of the aspects for the procedure discussed.

Other forms of prior knowledge, e.g., policy effects on
seasonality or even structural or causal seasonal models
involving relationships with other variables, can also be
employed a priori or a posteriori, and the procedure herein
described applied to the series after or before such
modification. Such approaches would be analogous either
to fitting autoregressive or ARIMA models to residuals
from structural econometric ‘models or to building struc-
tural models, based-on interrelating ARIMA residuals,
both of which are frequently recommended [15: 19; 28].
or, more generally, to synthesizing structural and empirical
approaches [31; 32; 41; 46].
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COMMENTS ON “SEASONAL ADJUSTMENT WHEN BOTH DETERMINISTIC AND
STOCHASTIC SEASONALITY ARE PRESENT” BY DAVID A. PIERCE

Larry D. Haugh
University of Vermont

INTRODUCTION

Seasonal adjustment has always appeared to me as one
of the more perplexing areas of statistics, and so 1 was
quite happy, upon reading this paper (as well as others
presented herein), to see some deviation from Anderson’s
Law. Perhaps, not as well known as° Murphy’s series of
laws, it nevertheless is often applicable to statistical
treatments of real-world data problems. Anderson’s Law
(slightly revised) states:

There is no problem, no matter how complex, which
upon careful (statistical) analysis does not become more
complex.

Quite to the contrary, this paper emphasizes clearly a
number of points that should advance our understanding
of how seasonal adjustment could be done. In fact, it
sketches an outline of a method to compute seasonally
adjusted series, together with case studies of the method’s
application. Along the way, it suggests a few improve-
ments that could be made in the Census Bureau seasonal
adjustment program and also suggests that taking moving
averages is not the way to detrend series.

This paper does not propose, however, the X-1 variant
of the Pierce method-1 seasonal adjustment program (as
an alternative to the X-11 variant of the Census method-
I1 seasonal adjustment program). That is because—

1. A number of relatively minor details are left to the
reader, since not all situations that could arise in his
model’s framework are discussed in detail. This
would include, for example, a multiplicity of possible
differencing schemes, together with a variety of
possible trend models. In addition, some aspects of
real series, such as trading-day variation, were not
intended to be presented in this paper.

2. The method, as we see it now, is still under
development. As pointed out, some issues that arose
in the case studies deserve future work.

3. Most importantly, by the nature of the method
proposed, it has not been programed for automatic
application to all economic time series. The strategy
being proposed is much akin to a modeling strategy,
since those aspects of the model that are important
at various points in the procedure must be identified
from the data at hand. And, these identifications are
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made through judgmental decisions on the part of
the analyst, not by a programable algorithm.

The task set by the author is the seasonal adjustment of
a given time series, using only the information contained
in that series. It is made clear that if any strong a priori
model conceptions are held or if the interrelationship with
other series is to be used, then the proposed procedure
should be modified.

The first point to be made is that if a particular model
fits the data series well, then the seasonal adjustment
procedure should be geared to that model. With this
desirable assumption, the remaining issues to be consid-
ered are—

1.- What general class of models is to be entertained?

2. How is the right model in this class to be identified
(selected)? '

3. What is the optimal seasonal adjustment for such a
model?

The major points made in the paper are the emphasis
he gives to the distinction between stochastic and deter-
ministic models and the fact that he wants both stochastic
and deterministic elements to be considered for possible
inclusion in the model.!

The general form of the model considered is then

Y=D1tSutPortSate,

where y, has been initially transformed (most often by
taking logarithms and then first differencing). The deter-
ministic components, trend and seasonal, are given by py
and s, while the stochastic trend and seasonal compo-
nents are p, and s, with e, representing the irregular
noise component. Of course, certain series may have only
one deterministic or stochastic trend or seasonal compo-
nent, but the choice of which components are to be
considered in defining the optimal adjustment should be
based on empirical model identification techniques.

A very brief outline of the methodology, after initial
transformation to stationarity of any stochastic compo-
nents, would be to—

1. Estimate the deterministic components by ordinary
least squares regression methods. Here, the author’s
general experience has been that deterministic trend
terms are trivial, once the usual first differencing

! See, e.g., [2] where Granger argues that it is essential for seasonal
models to include stochastic components.
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that is required has been performed. Therefore, little
indication is given on how the form of trend and
order of differencing are to be simultaneously identi-
fied in-general. He mentions that an F-test could be
performed to check the overall significance of any
deterministic terms to be included.

2. Identify the stochastic trend and seasonal compo-
nents from the residuals of the regression, a more
difficult feat than (1). Actually, as is discussed by
the author, the remaining stochastic components
may be usefully represented as

ur=s¥+n¥

where the trend-cycle irregular components are
lumped into the stochastic nonseasonal component
n}. The identification problems existing here with
the separation of seasonal from nonseasonal compo-
nents are related to the usual ones that exist when-
ever unobservable components have to be identified.

In the following section, attention will be directed to an
implication about the form of the proposed stochastic
model and to a generalization of it.

IDENTIFICATION OF STOCHASTIC COMPONENTS

Given that the stochastic residuals are to be represented
as (s¥+ny¥), the author’s approach is to initially focus on
the nonseasonal part n}¥. Roughly, he suggests looking at
the autocorrelation function of the residuals and using the
pattern appearing at the low-order lags to identify the form
of n¥. This pattern is identified in the form of a polynom-
inal A (B), which then represents the autoregressive part of
u} orn}, since

hBut=5y+n,

with 7, being white noise and 5, strongly seasonal, i.e.,
having autocorrelation only at seasonal lags.

I think there is a useful way to look at what the author
is doing at this stochastic modeling stage in a different
manner. A filter #(B) is desired that will give a strongly
seasonal output when applied to the residuals u¥. Note
that the §,, series will be strongly seasonal if, and only if,
(§y+n,) is strongly seasonal, and, thus, the white noise
component is not initially an important aspect of the
problem.

it turns out that, to find such-a filter #(B), one must
essentially model the residuals as a multiplicative seasonal
model [1]

uf=NB)S(B)e

where N(B) and S(B) represent the nonseasonal and
strongly seasonal parts of u#, and €, is white noise. That
is, one should identify from the ACF (or otherwise) and
then efficiently estimate, a multiplicative seasonal model
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in which N(B) and S(B) could be rational functions of B in
general. Assuming this is done, 4 (B) may then be taken as
h(B)=N(B)'. Note that there would seem to be no reason
why h(B) could not be generalized to a rational function of
B instead of being restricted to a polynominal in B. The
residuals #} are then filtered by h(B), actually by its
estimate, to obtain the strongly seasonal output S(B)e;.

Next, to accomplish the additive separation into sea-
sonal and nonseasonal components that is desired, one
can think of the problem in terms of extracting as much
white noise as is possible from S(B)e; to obtain

S'(B)ei+n,

This maximum extraction of white noise corresponds to a
minimum extraction of seasonal components—coined the
“‘minimum extraction principle” by the author.? See the
discussion by W. Wecker [5] concerning this extraction.
Finally, the desired decomposition of u¥ is achieved as

uf=NB)S'(B)e;+NB)A,

Seasonal adjustment of the stochastic component is ac-
complished by a symmetric moving average filtering of
the residuals, where the filter depends on the estimated
filters N(B), S(B) and S'(B).

SEASONALITY OF ARMA MODELS

One of the inherent problems in seasonal time series
analysis is defining what ‘‘seasonality,”” or *‘strong season-
ality,” is, contrasted to trend, cycle, or irregular move-
ments. (See, e.g., [2; 3].) It would seem imperative that
time series analysts should be able to say whether
particular time series models (as opposed to real data) are
seasonal, strongly seasonal, or not seasonal. In particular,
I wonder whether it is clear to everyone concerned how
ARMA models should be classified?

It would seem that (1-¢B) and (1-¢,,B%) would be
termed ‘‘nonseasonal’ and ‘‘strongly seasonal” factors.
Unfortunately, as is well known, a series with an autore-
gressive factor (1-¢,B—-¢,B?), appearing to be nonsea-
sonal on the face of it, can have a seasonal or periodic
appearance for certain parameter values.

The classification confusion seems worse when seasonal
and nonseasonal lags both appear, either in the same
factor or in factors being multiplied together, e.g., (I1-
¢ B—-¢,B'%) or (I-¢B)(1-¢;,B12). Note that Granger [2]
classifies the combination of nonseasonal and strongly
seasonal factors, e.g., (1-6B)(1-¢,,B'2)"! as strongly
seasonal. Additionally, the distinction between seasonal
and strongly seasonal models needs to be clarified.

2 The phrase ‘‘minimal extraction principle’ is reminiscent of the
long-standing principle adopted by dentists to take a tooth out only if
absolutely necessary.
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Note that an implication of the author’s assumption 3,
i.e., the seasonal component of a filtered series is the
filtered version of the original series’ seasonal component,
is that the seasonal components of series can easily
involve factors with nonseasonal lags. For example, the

" seasonal component of u} involves the nonseasonal factor

N@B).

CONCLUDING REMARKS

Realizing, from the section on the identification of
stochastic components in this paper, thai the stochastic
component of the proposed general time series model is
really of the multiplicative seasonal type, then we have
the transformed version of y represented as a sum of
deterministic trend and seasonal terms plus a multiplicative
seasonal stochastic component. For the purpose of sea-

SECTION V

sonal adjustment, the multiplicative component is addi-
tively broken into unobservable components using the
minimum extraction principle.

It is important, for practical work, to have a class of
models broad enough to mimic most real series well, and
there is high hope that the model proposed here will be
adequate in that regard.

Concerning the estimation of the model parameters, the
author proposes a stagewise approach, estimating the
deterministic components’ parameters first and then esti-
mating the stochastic component parameters at.a later
stage. 1 wonder if a more reasonable approach would not
be to estimate the regression and time series parameters
simultaneously once the components have been identified
in the present stagewise manner. The properties of such
parameter estimates are well known, even in the some-
what generalized model discussed in these comments [4].
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COMMENTS ON “SEASONAL ADJUSTMENT WHEN BOTH DETERMINISTIC AND
STOCHASTIC SEASONALITY ARE PRESENT” BY DAVID A. PIERCE

William E. Wecker
University of Chicago

INTRODUCTION

The paper by Pierce offers a comprehensive approach
to seasonal adjustment that considers both deterministic
and stochastic seasonal components. The deterministic
seasonal component is removed using ordinary least
squares regression on dummy variables. Any remaining
seasonality is extracted with a symmetric linear filter. The
method is illustrated nicely with four examples.

While the approach is, in principle, quite general,
Pierce’s development of the symmetric linear filter (used
to extract the stochastic seasonal component) is carried
out under rather restrictive assumptions, and 1 would like
to offer suggestions for broadening the approach while
retaining, 1 think, the spirit and intent of Pierce’s method.

STOCHASTIC SEASONALITY: A SPECIAL CASE

After the deterministic seasonality has been removed
from the time series (using ordinary least squares regres-
sion on dummy variables) it will be the case, in general,
that the residuals u, of that regression will be marked by
correlation at seasonal lags. To estimate this remaining
seasonality, Pierce first constructs a (nonseasonal) linear
filter to remove the low frequency component from the
residuals. The filtered residuals i, are then represented as

ﬂt=§¢+ﬁ,

where §, is a purely seasonal stationary random sequence
(having correlation only at seasonal lags) and A, is a
white-noise sequence. The components 3, and 7, are taken
to be orthogonal. It is at this point that Pierce imposes
the restriction that i, has the univariate representation

_(1-6B™)
~ieEm “

U

where B is the backshift operator, a, is a white-noise
sequence, and the parameters ¢ and © satisfy the relation
0<O<od<l.

For this special case, Pierce develops the signal extrac-
tion filter, his equation (53), for estimating the seasonal
component of i,

__oi(1-B®)(-B7®)
ST (1-6B®)(1-0B ) '
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STOCHASTIC SEASONALITY: A MORE GENERAL
APPROACH

When the filtered residuals i, are not well represented
by the simple model

. _(1-6B™®)
“eBm)

a more general approach to seasonal adjustment is neces-
sary. Here, we extend Pierce’s work by allowing i, to be
represented by the more general expression

a=¥B"?a, M

where W (B™) is a rational function of the seasonal lag
operator B2 and a, is a white-noise sequence. We denote
the spectrum of &, by

F)=0% ¥YEZ*)V(Z?)

—T=EANS=ST

where Z =ei*.

To determine the filter for estimating 3, in the compo-
nents model

=5+,

we require f,(A), the spectrum of §. Unfortunately, the
seasonal component spectrum f,(A) cannot be uniquely
determined from the overall model (1) alone. We resolve
this ambiguity using Pierce’s ‘principle of *‘minimal extrac-
tion” that says “‘to remove as little as possible yet still
remove the series seasonality’” [3]. More precisely, the
principle of minimal extraction requires that the variance
of the seasonal component be chosen as small as possible,
or equivalently, that the variance of 7, be as large as
possible. The magnitude of o3 is limited by the restriction
that the seasonal component spectrum (as any spectrum)
must be nonnegative for all A(-m < A =< 7). Since the
components §, and 7, are taken to be orthogonal, we have
F=F(\)=fN), which fixes the (constant) value of fa(\)
at f,.(h)=mjn f(\) and the seasonal component spectrum at

f)=fA)-min f(0)

Once the spectrum of § has been determined, the sym-
metric filter

£ Q)
fo)
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can be constructed and the stochastic seasonal component
estimated [S; 6]
§= s (A)
o

We illustrate the more general approach by applying it

to Pierce’s special case where the overall model is taken
to be

_a- OB“)
Ta-¢5™)

We first form the spectrum of &, which is
, (1-0Z21%)(1-6Z-1)
C(1-9Z2)(1-$Z-12)

, 1-0[2 cos (120)]+02
1—¢[2 cos(120)]+¢?2

SfQ)=0o Z=e'l

The spectrum of i, is shown graphically in figure 1.! In
the case studied by Pierce where 0 <O < ¢ < I, f(A)
will have a minimum of

mmf(}\) (11:2) a?

so that, by the minimal extraction principle, the spectrum
of the white-noise sequence #, can be taken to be

1+0
ror={122)

The spectrum of the seasonal component §, (shown in fig.
2) is, therefore,

FsM)=f Q) =fa )

{(1-9212)(1-92 12) (1+e)2}
“C N T ezH -9z \T7o

This results in the signal extraction filter

) (I—BZ”)(I—BZ'“)—(]‘:d)) (1 Z'2)(19Z-12)

f) (1-621?)(1-6Z-2)

[¢(:_:g)=_e] [( 1 +zu)(1+z—'=)]
= (1-0Z7)(1-0Z-5) 2)

where Z is interpreted as the backward shift operator.
For this same case using a different approach Pierce
obtains the filter

o(1+Z?)(1+Z-12)

o%(1-0Z%)(1-6Z2-7) £

! Parameter values for the figs. are taken from Pierce's CPI
example.
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where o2 is determined from his equation (51)
(1+0?2) o%=(1+0%) o2+(1 +¢?) 0%
O02=002+¢o?
O=-1 4)

To show that Pierce’s filter (3) is the same as the filter (2),
we first solve equation (4) for o2, yielding

oo (ow] o

Pierce’s filter (3), stated in terms of the parameters ¢, O,
and o2, then becomes, by substituting (5) in (3),

%[(HG’) (' 2) (|+¢2)}(1+z'2)(|+z 12)

(1-8Z2%)(1-6Z-%?)

which reduces to

I+e z 12 —~12
(9]

(I-6Z%) (1-6Z %)

showing that filters (2) and (3) are identical.

OVERADJUSTMENT

Pierce observed that, in two of his examples where
stochastic seasonality was present, his method had ‘‘a
tendency to overadjust™ in the sense that the seasonally
adjusted series had negative correlation at the seasonal
lags (or dips in the spectrum at the seasonal frequencies).
Ad hoc adjustments were made by Pierce to counter this
tendency. We will show that these dips are not an
inadequacy of this method. At least, they are not as
conjectured by Pierce—an artifact of the sampling proper-
ties of his estimation procedures. The dips would persist
even if the spectra, f(A) and f, (A), were exactly known.

To show this, we denote the spectra of §,, #,, and i, by
[, faA), and fFA\)=f,(A\)+f(A). Using a theorem on the
spectrum of a linear transform of a stationary time series
[1], the spectrum of the seasonally adjusted series is
determined to be

Su-t)= [ 1—‘)’(2)] [l—Y(Z“)]f(A) ()]
where Z=¢™ and y(Z )—f"( ) . Equation (6) reduces to
oy
fn()\))
w—t )= (A 7
f()f()(f(h) (D

Unless the white-noise component #, has zero power at
the seasonal frequencies, the spectrum of the seasonally
adjusted series will have dips at the seasonal frequencies,
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fa®)
f)
(7). Should these dips be viewed as a discrepancy?
Apparently not, if the mean square error criterion for
signal extraction has been accepted. It may be of help to
the intuition of some (and a further burden on the intuition
of others) to recall that, in prediction, the sequence of
(mean square error criterion) estimates of future values
will ordinarily bear little resemblance to the actual se-
quence of values. We illustrate this point in figure 3,
where an (artificially generated) random walk is shown
with predictions. The autocovariance properties of data x,
and of predictions £, are different. Are the predictions to
be considered inadequate because of this difference?
Certainly not. The predictions £, are perfectly respectable
mean square estimates of future values of the time series,
just as the estimates §, are perfectly respectable mean
square error estimates of the values of the seasonal
component (despite the fact that the autocovariance prop-
erties of 5, and of §, are different).

Perhaps the reason Pierce finds this difference unsettling
is that he has, in the back of his mind, the intent to use
the seasonally adjusted series to make statements about
path properties of the time series, such as turning points.
If that is the objective of the analysis, an entirely different
approach may be appropriate—an approach determined

due to the factor on the righthand side of equation
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by explicit consideration of the requirement to estimate,
e.g., the timing of a turning point. It is not at all clear, for
example, that a seasonally adjusted time series constructed
according to the criterion of mean square error estimation
can be used (in any simple way) to estimate the timing of
a turning point. (See [4]).

THE LOGARITHMIC TRANSFORMATION

Finally, I would like to briefly comment on Pierce’s use
of the logarithmic transformation of the original time
series as the starting point for his analyses. I am reminded
of the case study reported by Chatfield and Prothero [2]
where the results of an analysis of a seasonal time series
‘were criticially dependent on the choice of transformation
and, in particular, were grossly unsatisfactory when a
logarithmic transformation was used. The analysis of
transformations for time series is, of course, an open
area, and Pierce has simply adopted an opening move
that has become as common as pawn-to-king four. Still, it
may be that the choice of transformation is a crucial
determinant of the seasonal adjustment results (as was the
case in [2]), making the subject of transformations worthy
of further attention.
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This is a very illuminating paper, giving full practical
details of seasonal signal extraction, using a particular
ARIMA model. '

The model (1, 0, 1),, used for the seasonal operator is
different from the example in (1). But, both come within
the framework of the partial fraction technique, described
in the appendix of my discussion on Kuiper. An improve-
ment, suggested by Pierce, is the extraction of any
deterministic seasonal component (seasonal mean correc-
tion) from the differenced series.

He removes the trend by differencing and a nonseasonal
autoregressive filter, instead of including this in a single

seasonal ARIMA model; this makes for computational
simplicity in finding the minimum of the spectrum of the
seasonal component and also the weights of the signal
extraction filter. But, if there is any interaction between
the seasonal and nonseasonal parts of the model, this may
not be the optimal procedure.

Another difference from (1) is that Pierce includes the
positive real root of (1-®B%2) in the seasonal model,
although it is usually close to 1 and, thus, generates a
spike in the spectrum at zero frequency. For example, for
U.S. unemployment, Pierce finds ®=0.547, and its 12th
root is 0.95. ‘



