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SUMMARY

The signal extraction problem in time series is to estimate sy given
observations on z¢ = s¢ + n¢ (signal plus noise). The solution when s¢
and ny are stationary is well known, having been first obtained independ-
ently by Kolmogorov and Wiener in the 1940's. Their solution can be writ-
ten (assuming normajity and zero means) as E(stl{zt}) = YS(F)YZ(F)'IZt,
where y¢(F) and y,(F) are the autocovariance generating functions of sy
and z¢ and F is the forward-shift operator.

In this paper we allow either sy or ny or both to be nonstationary.

We consider homogeneous or explosive nonstationarity described by models of

the form &8(B)zy = wy, where 5(B), a polynomial in the backshift operator B = F'l,
has zeroes on or inside the unit circle and wy is stationary. Similarly, we

have &8¢(B)st = ut and 8p(B)ng = vy. The nonstatiomary analogue of the solu-
tion to the stationary signal extraction problem is Ry = 5;(8)6:(F)YU(F)YW(F)'izt,
where 6;(8) fs the product of the factors in &,(B) that are not also in 85(B).

Rt has been shown to approximate E(stl{zt})‘in certain cases where s¢ and ng

are not both nonstationary by Hannan (1967), Sobel (1967), and Cleveland and

Tiao (1976). In this paper we obtain exact expressions for E(sy]{z4}), and

allow either or both of st and ny to be nonstationary.

Exact solutions to the nonstationary signal extraction problem require
that explicit assumptions be made regarding the generation of the time ser-
ies {z¢},{st}, and {nt}. The generation of these series is equivalent to the
generation of suitable sets of starting values, Zx, S*, and Nw, and the asso-
ciated stationary series {wy},{ut}, and {v¢}. We always assume {ut} and {vy}
are generated independently and that {wty} 1is then obtained from its relation
with them. Two alternative assumptions are made regarding the generation

of the starting values. Under Assumption A we assume zx is generated independ-



(i)

ently of {ug},{v¢}, and {wi}, and that sx and nx are then obtained
through the solution of the linear equation relating them to Zx. Under
Assumption B we assume sx and N« are generated independently of {ut},{v¢l},
and {wg}, that {sy} and {n¢} are then generated, and that {z;} is then
generated from zy = sy + n¢. The paper discusses the different consequences
of Assumptions A and B. |

In the main part of the paper exact expressions for E(s¢]|{z¢}) and
Var(sy|{z¢}) are obtained under Assumptions A and B. It is found that
E(s¢l{zt}) = Ry, the “classical® solution, under Assumption A with the
additional condition that §5(B) and 8,(B) have no common zeroes. For
the other cases E(st[{z¢}) can be viewed as Ry plus some adjustment terms.
Cv+ancinng of the results to the non-Gaussian case, to signal extraction
with a finite number of observations, and to the multivariate case are

discussed.



SIGNAL EXTRACTION FOR NONSTATIONARY TIME SERIES

1. Introduction

Suppose that

2y =5yt

where z, is an observable time series and Sy and n, are unobservable signal

and noise time series. The signal extraction problem is to find the best

t=0,+1,%2,... (1.1)

(e.g., minimum mean squared error) estimate of 54 for any fixed t given the
observed data, The problem for the case where St and ny are independent and
stationary was solved independently by Kolmogorov (1939,1941) and Wiener
(1949), This paper deals with the signal extraction problem when either Sy
or n, or both are nonstationary:
Notation

If y, is a time series we shall write {yt} for its entire doubly infinite
realization. The segment of the time series between and including any two

(1)

- '
time points i < j, shall be denoted by z(j) = (yi, yi+l,...,yj)',-where

i = LI 1 i =
prime denotes transpose, or by Y(3) (yl,....,yj Y ifi= 1, If Yy
is stationary with autocovariances yy(k) = Cov(yt,yt+k) that are absolut-
ely summable (_zlyy(k)[< ®) then the spectral density of y, is
£00 = (2n) By (e ™ = amly (7, (1.2)

where Yy(C) =_Zyy(k);k is the covariance generating function (CGF) of Yi and

denotes a dummy complex variable. It will be convenient to let [Yy](m)

(t)

(t+m)® of the stationary

represent the variance matrix of any segment, y

series Y of length m:



s

™ 7
) (t) ) Yy(O) e Yy(m-l)
[Yy] (m) ~ var (Z(t+m)) - o

Yy(m-l). . -Yy(O)

= ond
If we apply an absolutely summable linear filter a(B) = _zﬁjBJ , where B
is the béckshift operator , to Yo the resulting time series has auto-
covariances a(B)a(F)yy(k), and we write [a(B)a(F)yy ] (m) for the

variance matrix of m successive observations on a(B)yt.

AésumEtions

For convenience, all random variables in this paper will be assumed
to have zero mean. We shall initially deal only with univariate time
series that, except where stated otherwise, are jointly normal. Exten-
sions of the results to multivariate and nonnormal time series are dis-
cussed in Section 8.
With respect to the decomposition (1.l), we assume that while st“and ne

can be nonstationary,

65(8)5t = Uy and (Sn(B)nt = (1.3)

Ve
are stationary time series independent of each other, where

- ds
GS(B) =1 - ésle...-Gs,dsB

operator B, and Gn(B) is a similar polynomial of degree dn in B. We assume

is a polynomial of degree ds in the backshift

all the zeroes of és(c) and Sn(c) lie on or inside the unit circle 2 _ if
Ss(c) has a zero outside the unit circle it corresponds to a factor of SS(B)
that can be inverted and incorporated on the right hand side with Uy s and

similarly for Sn(c)- We let

* *
§(8) = §,(B)S, (8)5 " (B) (1.4)



where SC(B) is the product of the common factors in 65(8) and Sn(B),
»* *
65 (B) = 55(8)/50(8), and én (B) = én(B)/éc(B). We let d denote the

degree of §(B). Define w

G(B)zt, which from (1.3) and (l.4) is given by

t
* *
8(B) z, =W, = Gn (B)ut + 65 (B) Vi oo (1.5)
SO W, is a stationary time series with CGF -
: * S * * -1
v, (&) = 8 (08 (277)v (@) + 8, (£)s (g7 )y, (2). (1.6)

We assume that We is purely nondeterministic so it has an infinite

moving average (Wold) representation

w, = Y(B) a, = é yjat-j' (1.7)

We further assume the Yw(k) are absolutely summable, and that yw(g) has no
- -ix

zeroes on the unit circle (which means fw(k) = (2m) lYw(e l‘),the spectral

density of Wes is never zero). Then (Brillinger 1975, pp. 78-79) Wy has an

infinite autoregressive representation(invertibility)

= T r.8l)w =
I(B)w, = (1- 2 T8 )w, = (1.8)

a
1 t

with H(B) = W(B)'l. We also make these assumptions about uy and Vie These

assumptions will hold, in particular, if Ups Vs and w_ all follow stationary,

t
invertible, autoregressive - moving average (ARMA) models.

If §(z) and Yw(;) have a common zero, then Findley (1982) shows that
the model S(B)zt = W(B)at can be simplified by cancelling a factor from both
sides and adding to the right hand side a deterministic term that is anni-

hilated by the canceled factor. Thus, we assume there are no common zeroes

within the pairs {5(;),Yw(c)}, {SS(C),YU(C)}, and {Sn(z),yv(c)}-



Findley (1982) also shows that there is a minimal polynomial,

A(B) say, that renders z, stationary - minimal in that A(B) divides any

t

other polynomial which makes z,_ stationary. A question arises as to

t
whether §(B) = A(B). Findley (1982) notes that this is the case, as is

easily seen from the following argument. Suppose §(B) 6l(B)A(B) where

61(8) is not 1 and A(B)zt = r, is stationary. Then w

" G(B)zt = Sl(B)rt

t
has CGF yw(c) = él(g)él(c-l)yf(c), which has a zero in common with

8(z) = al(;) A(z), a contradiction. Hence, §,(B) = 1 and §(8) = A(B).

Previous Work

Signal extréction hés been used with nonstationary time series in such
areas as actuérial graduation (by Whittaker, see Whittaker and Robinson 1944,
pp. 303-316), smoothing (Tiao and Hillmer 1975), and seasonal adjustment
(Burman 1980). Typically, the solution for the stationary case has been bor-
rowed and used in the nonstationary case. It sg and n, are both stationary,
normal, and independent of each other, and the entire realization {zt} is

available, the solution of Kolmogorov and Wiener may be written (Fuller 1976,

p. 170)

-1 :
E(s, [{z 1) = v (F)y(F) ™"z, _ (1.9)

where v(Z) is the CGF of z, (we will not sﬁbscript qdéntities referring to
Zt)' In the nonstationary case ys(g)vand v(z) will not exist, but proceed-
ing formally from (1.3) and (l.4) we are led to consider using Rt defined
by

KK Fye (Fy-L
R, = on(B)Gn(F)YU( )YW( ) z, . (1.10)



There has been work done on the properties of Rt in the nonstationary

is

case. Hannan (1967) and Sobel (1967) considered the case where Ny

stationary and 65(8) has all its zeroes on the unit circle. Hannan (1967)
showed that Rt minimizes the mean squared error in the class of linear
estimators that perfectly predict any sequence Py that is annihilated by
65(8) (i.e., GS(B) Py = 0). Sobel (1967) established that R, asymptotically
approaches (as t + ®) the best linear estimator. Cleveland and Tiac (1976)
obtained an approximation tO‘E(stlzm,...,zm+N) for large m > O when s, and |
n, follow ARMA models, and §(B) is allowed to have factors (l-B)dl(l-Bc)dz.
They then noted their approximation approaches Rt as the number of observa-
tions, N, grow5 large, for t not near m or m+N.

The main results of this paper are in Section 5 where we give
E(stl{zt}), and in Section 6 where we give Var(st|{zt}), under two sets of
assumptions about starting values: These aésumptions are important and are
discussed in Section 3. Prior to this we discuss generation of nonstation-

ary time series in Section 2.

2. Generation of Nonstationary Time Series

A purely nondeterministic stationary time series W, may be viewed as
arising for all t from the Wold decomposition (1.7), given a white noise
series {at}. If the zeroes of &(B) were outside the unit circle (so z,

would be stationary) then we could write

z, = (1+E8 + gZBZ R (2.1)

where é(B) = (1 + élB + gZBZ - - =) = 6(8)-1. The éi's can be obtained
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e . 0 ol /2 sn (5 . S 2
by equating coefficients of B~, B, B, «.. in (Eo + EIB + EZB ++---)8(B)= 1,
‘so that

min(d,i)

Z 8 & ik

o=t BT k=1

i>1 . (2.2)

Unfortﬁnately, when §(B) contéins zeroes that lie on or inside the unit
circle (2;15 will not converge, and z, cannot be viewed as being generated
this wéy.

To prodﬁce {zt} in the nonstationéry case we need, in addition to {wt},
a suitable set of starting values for z,. Since §(B) is of order d we need d
starting véers, which we will assume are (zl, coey zd)' = z,. Given z, and

~

{wt}, the remaining zt's are easily generated recursively from .

z § 4 vee + 6dzt-d + Wy t>d (2.3)

t = %1%t-1

- 8.2 - 200 = 8§

el
2y = 8y (2o = $1%teg-1 d-1%641 ~ Meeg) 0.2

(Notice 6;1 # 0 or §(B) would not be of degree d.) In the stationary case
there is é one to one correspondence between the collections of random vari-
ables {zt} and {wt} throdgh G(B)zt = W, and (2.1), while in the nonstationary
case there is a one to one correspondence between {z,} and {z,, {w,}} through
S(B)zt =W, and (2.3) and (2.4)

We now obtain a representation of z, for t>O in the nonstationary case
that is analogous to (2.1), Notice the E.'s can still be defined by (2.2).

For our representation we need the following quantities Aj ! defined for t>1
2

by (using £; = 0 for 1<0)

Ave = Bpr ~ Be2f - ot Beedbaar

*

’ (2.5)

.

Adel,t = Stedsl = Bt-db1

Ag,t = g
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From (é +E.B+¢ B2 +e.+)8(B) = 1 we see &§(B)E, =0 for i2l. Using this
0 1 2 i

fact, it can be shown that for t=1,...,d, Aj ¢
b

. Also, S(B)Ei = 0 for i>1 immediately shows Aj,t = SlAj,t-l

= 1 when t=j and is 0 otherwise,

and As 4i1 = Cdel-g

400+ GdAj,t-d for t>d, so the Aj,t

ing the ii's. These results allow us to prove the following theorem.

's may be computed directly without comput-

Theorem 1. Let S(B)zt = w, where §(B) is of degree d and z

{wt} and starting values z = (zl,...,zd)'. Then, for t>d
t-d-1

— 1
Ze S AL Ze v T Egwe
i=0

& is generated from

where A! = (A 's are giVen by (2.5).

+ Ad,t) and the A.’

1,7 i,t

Proof. Since Aj,d+l = 5d+l-j the result holds for t = d+1. We proceed by

induction. Assuming the result holds through some t>d, for t+l we get

8,2, + +ce+ 8 .z + W

Zeel 1%t d%t+1-d

t+l

t ,- » a e : ]
S IALZe + Wy + Eywe gt ST ILIT

- + S lALaZet Werg t EWeg * ottt Sl W
The coefficient of Weil-i for i=l,...,t+1l-d is 5151-1 + 5251_2 + ores 4 6dgi-d
= g, from (2.2), and the coefficient of w is £ = 1. The row vector coeffi-
i t+l 0 tl-d
3 i ' 4 8 v /;' = ! . = ! Z r" 7 M
cient of 2z, 1s §;A¢ » =+ Oqltog T Bparr TNYS» Zap = RepZet 2 SiMeelo

QED.
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As solutions to 6(B)Ajt = 0, the behavior of the Ajt's as t increases will
depend on the zeroes of &8(z). If an; lie inside the unit circle the Ajt's will
exhibit explosive behaQior, while if they éll lie on the unit circle the Ajt's

will either remain bound

(13

d (all zeroes distinct) or grow in polynomial fashion
(repeated zeroes). The same comments apply to £i as i increases. Lemma 1 in

Section 4 gives a result relating the Ajt's and ii's.

We could obtain an analogous backward representation for z, for t<0 in-
volving the starting values z, and wj, jsd. The coefficients of the w.'s

would be obtained by formally inverting the operator 1 + (5d l/gd)F PR

(Slléd)Fd_l - (l/Sd)Fd'(see 2.4). An important special case cccurs when all
the zeroes of §(B) lie on the unit circle. In this case it can be shown that

§(8) = (-l)rBdS(F) where r is the number of times the factor (1-B) occurs in §(B).

= (-1)%w The A, .'s

From this relation we can write S(F)zt = ted” it

xt wherg Xt

and Si's that we need will thus be the same as above, and using the starting
values ZyyeensZy, NOW going backwards in time, we get the following backward

representation for z, for t<0:

-t

+ X

z, = (A 1,d+1-t)E* * iidgl tei *

& A

ddelat? ot (2.6)

3. Assumptions About Starting Values in Signal Extraction

In doing signal extraction we must make assumptions about the generation
of the three time series {zt},{st}, and {nt}. Generating these series is
equivalent to generating their starting values and the series {wt}, {ut},
and {vt} (see (1.3)). We shall always assume that the series {Qt} is gener-

ated independently of the series {vt}, and that each w_ is then obtained

t

from (1.5). The starting values we need are z, = (zl,...,zd)’, Sy = (sl,

~

v .0y

s, )"y and n, = (n_,..,n

1 2 »
ds dn) , where ds is the order of SS(B) and dn is

l’
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the order of én(B). There are thus d + ds + dn = 2d + dc starting values,

where dc, the order of SC(B), is the number of common factors in SS(B) and

6, (B).
Notice that Theorem 1 implies that
t-ds-1
s, =AS" s, + T £y t>ds
t ~t ¥ R i“t-1
i=0 .
(3.1)
n, = ANt n_ o+ t-dg-lgnv t>dn
IR foo b ot-i

where the éi and A® are obtained from SS(B) in the same way that ii and A

were obtained above from §(B), and similarly for the é; and A". From (3.1)

we get
u v
_ s ds+1 dn+l
Zy = [Hl Hz} [ﬁf] + Cl . + CZ ‘ (3.2)
~*] . Uy Vg
where
—Ids Idn
S _ n,
Hp =] Adse1 Ha = | Adna1
.S, hv
| Aa Nd
. Odsx(d-ds) r__n_ _OQn§(q-gnl
c gt T T T c = |7g
1 = o) 2 o
dx(d-ds) .o, dx (d-dn) .t
; ' s N *on
'-gz‘ds"l . . QC) — - E(j-(jr“l . . g() - ]

which relates the starting values for s_ and n_ (s, and n,) to those for z

~t t

(z,).
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We will assume the starting values are generated in one of two ways.

Assumption A: =z, is generated independently of {ut}, {vt} , and hence

{wt}. Then s, and n, are obtained by solving (3.2). When dc>0

the solution will not be unique (see comments below).

Assumption B: s, and p, are generated independently of each other and

*

of {ut}, {vt}, and hence {wt}. Then {St} and {nt} are generated
in the same way as (2.3) and (2.4), and z, is obtained through

Z, = S + n

t t t’ tzl’-o"d.

In section A.I. of the Appendix we show that the dx{(ds+dn) matrix [Hl HZ]
in (3.2) has rank d. Under Assumption A, if SS(B) and Sn(B) have no
common factors (dc=0), <then ds + dn = d and the solution to (3.2) is

unique. A simple case of this occurs whenn_ is stationary so it requires -

t

no starting values (dn = 0) and s_ = 2

L =2 - Ny t=l,.ode IF 5 (B) and

Gn(B) do have common factors (dc>0), then (3.2) has d equations and .

ds + dn = d + dc unknowns so multiple solutions exist. Each solution
corresponds to a particular choice of generalized inverse, [Hl H%’,

of [Hl Hé] , S0 in making Assumption A with dc>0, one must also make an
assumption as to which generalized inverse of [El HZ] is used in solving

(3.2).

Assumptions A and B have different implications. Assumption B implies

t

in signal extraction. This is not the case under Assumption A; for example,
t-2
if n is stationary and (lfB)st = Uyps then Sy =217y and S, =S ¢+ iéout’i

for t>1, and Cov(st,nj) = - Cov(nl,nj) for all 7, which need not be

that s, and nj are independent for all t and j, an éssﬁmption Qsﬁally made

zero for any j. Under Assumption A the stationary filtered series Qt = SS(B)st

and Ve = Gn(B)nt are still independent, but correlation between St and n, can

be gererated through their starting values.
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However, Assumption A has one advantage over Assumption B. Under Assﬂmp-
tion A z, is assumed independent of {wt}, so it is independent of any a =
H(B)wt. Since ap,.g s independent of Wiy W

from the expression for z

EEREE for any 2>0, it follows

¢ in Theorem 1 that, for t>0, z, and 3,,p are inde-

pendent for any 2>0. This is typically assumed in modeling énd forecasting

the observed series Zs but it does not generally hold under Assumption B.

For example, under Assumption B suppose (l-B)st = uy and n, are both white

noise, so w_ = + (l-B)nt is moving average of order one, i.e.

t = Yt
t-2
=2y + )X Wy with Z) =8y + Ny and

we = (1 - GB)at . Then =z .
i=0

t

a

x
-1 -1 i-1 i
ted = (1 - 8B) We,g = (1 - &B) Up,g * [l - (1-8) = 8 B } Neog !

i=1
, - (1-e) 2t

implying Cov(zt,at+2) = Cov(nl, n
i=1

t+ tegei ) T

- (1-8) 8%F2 5 (o).

It should be noted that it does not seem possible in general to

make assumptions so that Z, and CI (2>0) are independent for all t.

Under Assumption A here we get this only for t>0. There is an analogous
result using a backward representation for z, (such as (2.6)), which states

that, under Assumption A, for t<0 z, is independent of the backward in-

t

noQétion at time t-2 for >0 (at-l = H(F)Xt-l in (2.6)). These results re-

flect the fact that our arbitrary assumption that the starting values for
z, oceur at time points 1,...,d is important. This situation is disturbing,

but we obviously must make some assumption of this sort.

A choice between Assumptions A and B for any given problem will depend

on the problem. If there is reason to believe that z_ was actually generated

t

by two independent components St and Nyo

On the other hand, if the components Sy and n, are really just artificial

then Assumption B may be preferred.
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constructs (as in seasonal adjustment), then Assumption A may have more
appeal. Of course, assumptions other than A or B could be used. In Section

5 we will obtain signal extraction results under both Assumptions A and B.

4, Preliminary Results

Before proceeding to the signal extraction results in Section 5, we give

some preliminary results that will be needed there.

Lemma 1. Given §(B) ieﬁ the éi be as defined in (2.2) and the Ait as
defined in (2.5). Then for t>d
( .2 &iB 18(B) =1 - I Ai tB - .
i=0 i=1 ™’
Proof. On the left hand side above, the coefficient of g° is 1 and that
of 89, for j=l,...,t-d-1, is 3(B)E; = 0 (using gi=o for i<0). The co-
efficient of B*™" for i=l,...,d is

S -8

Sabtad-i d+1-15t-d-1 = “Od-18td” T “O18eogir * Bgop = Agge CED
Lemma 2. Let Yt and Xt be jointly stationary Gaussian time series with

cross covariances ny(k) = E(tht+k)’ Then

-1
E(Ytl{Xt}) = ny(F)Yx(F) X

where yyx(;) =~§&yx(k)gk.

This result is given in Brillinger (1975, theorems 8.3.1 and 8.3.2). Notice
that in the stationary signal extraction problem (with {st} independent:of
{nt})yzs(k) = Ys(k) so that Lemma 2 immediately gives the stationary signal

extraction result (1.9).
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For the next theorem let I be an arbitrary index set, countable or uncount-
able, and let Y and {Xi} = {Xi, icI} be elements of X, the Hilbert space of
zero mean, finite variance random variables over some given probability
space. We temporarily drop our assumption that they be normally distributed.
Let L{Xi} denote the closed linear subspace generated by the Xi's. We call
; a linear prediétor of Y (given the Xi's) if ?E 1{Xi}. The best linear pre-
dictor, Q, of Y is the almost surely (a.s.) unique element of i{Xi} that

minimizes E[(Y-Y)Z] ~- this is the projection of Y on i{Xi}.

Theorem 2. Let Ye i{Xi,ieI}. The following statements are equivalent.

Y, the (a.s.) unique best linear predictor of Y.

[
~< 1
1]

2. € = Y-Y is uncorrelated with Xi, for all ie Ii
3. Y = E(Y]{Xi,is I}) when Y and {Xi,isl} are jointly normally

distributed.

This theorem is essentially stated and proved in the book by Gikhman and
Skorokhed (1969, see their theorem 2, p.229, and section 3.3, pp.111-118).

We use this theorem to prove the next result.

Lemma 3. Assume Y, {Xi}, {Wj} (j in some index set J) are jointly normal

and in L. Then

E(Y] (X33, (933) = E(Y]OX P+ ECVIW, - EOL[OG DD,

Note. This result has been used by Sobel (1967) without proof. It is the in-
finite dimensional analogue to orthogonalizing the independent variables in

finite dimensional regression.
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Proof. We prove this by proving the analogous result for best linear

predictions and using Theorem 2. Let Y{Xi} be the projection of Y on

~

)

v . + i = / - {x‘l. .Ev-
I{Ai}, wj{xi} the projection of Wj on I{Xi}, and Uj = Wj Wj‘ (33

We first notice that

X1 )= 200G, (3, (U = 2 HULD, (4.1)

the first equality being true since wj{xi} € i{xi} implies Uj € 1({Xi},{wj})
for all j, and the second since Wj =‘Uj + wj{xi} s:i({Xi},{Uj}) for all j.

Now conﬁider e=Y - §{Xi} - ;{Uj}' By Theorem 2, Y-Q{Xi} is uncor-
related with Xi for all i, and Uj is uncorrelated with Xi for all i and j.
;{Uj}zzi{Uj}so it is either a linear combination of the Uj,Aor it is a
mean squared limit of such random variables (Robinson 1959, p.49). In
either case §{Uj} can be shown to be uncorrelated with Xi for all i. Thus,
€ is uncorrelated with Xi for all i. It follows in a similar fashion that
€ 1s uncorrelated with Uj for all j. Thus, by Theorém'Z‘g{Xi} + §{Uj} is the
projection of Y on i&{xi},{Uj}),hence by (4.1) the projection of Y on
i({xi}, {Wj}). By Theorem 2 again the result holds for conditional

expectations under normality. QED
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5. Signal Extraction for Nonstationary Time Series

We now return to the signal extraction problem and obtain a general expres-
sion for E(stl{zt}) in the nonstationéry case. In subsections 5.1 and 5.2 we
obtain specific results Qnder Assumptions A and B respectively. The results
are giQen for E(st[{ztD for t2l, but énélogous results for t<0 cculd be ob-

tained using a backward representation for s_ (see Section 2). In some cases

t
it may be easier to apply the results here to get E(nt[{zt}), which can be
done by relabelling, and then compute E(st{{zt})as z, - E(nt{{zt}).

From the discussion in Section 2, E(stl{zt}) = E(st|z*,{wt}), so by (3.1),

the lineérity of conditional expectétions, and Lemma 3
. s . .
CE(s [z, D) = AU [EGs, [{w}) + E(s,lz,-E(z, [w 1)) ]
t-ds-1

. .
.z 5 [Euy g 11+ oy Iz, - EG G ]

(5.1)

By Lemma 2

(F)y, (F)"hw (5.2)

E(Ut-i!{wt}) Yuw t-1

s *(F)y, (F)y, (F) 18 _(B)s *(®)z;

= GS(B) Rt-i )
The second eqﬂality in (5.2) uses (l.4) and the result yuw(c) = Gn*(g)yu(c),

which follows from (1.5). The last equality uses (1.10). Then, applying

Lemma 1

t-ds-l.s [ t-ds-1
 EE(u, . |{w.}) =( I
120 R A B o 120

soi
£58)8_ (BIR,

ds .
[1- I A} tat‘l]Rt
i=1 &’

- _ as
= R - AL B(ds) . (5.3)
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Using (5.3),(5.1) can be written as

Esy[{z D) = ATIEG, {2, 1) = R oy} + Ry (5.4)
t-ds-l,s
+ L EiE(ut_i!E* - E(E*{{wt})) .

i=0
Notice that (5.4) inclﬁdes Rt; the nonstationary analogue of the stationary
solution (see (1.10)). Rt has been rather widely used in nonstationary signal
extraction and has been shown (Sobel 1967, Cleveland and Tiao 1976) to approx-
imate E(st[{zt}) in certain cases. However, (5.4) also includes an adjustment

for the effect of the deviation of E(sj\{zt}) from Rj for j=1,...,ds,

t-ds-1,

s
plus an adjustment for what z, has to say about z giut-i beyond the
~ i=Q

information in {wt}. If it happens that Rj is correct at the 'starting values
sj (j=1,...,ds), and z, contains no information on the ut_i's beyond that in

{wt},>then R, will be E(st[{zt}).

Actually, the steps in (5.2) aone need to be justified. Specifi-
cally, we need to know that (i) Rt exists, in that when we compute the

filter én*(B)Gn*(F)YU(F)YW(F)°l and apply it to z,_ we get something

t
that converges in mean square, and (ii) we can interchange operators

like SS(B),YU(F),and YW(F)'l in (5.2) (this is not obvious since z  is
nonstationary.) Conditions under which these things hold are given in
section A.II. of the Appendix. Here we merely note that these conditions
will hold, in particular, if all the zeroes of &(z) are on the unit circle,
Yw(c) is nonzero on the unit circle (as we always assume), and Yu(k) and
yw(k) decrease exponentially to zero as k - = (such as when Ui Vi and

w, follow autoregressive-moving average models). If §(z) has zeroes

t
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inside the unit circle we must be more careful. For the rest of this
paper we will assﬁme the required conditions are satisfied so that we can
manipulate things as in (5.2). If these conditions are not satisfisd

all is not lost. We can still do nonstationary signal extraction by

s . * -1 . .
substituting & = (F)y, (F)y, (F) 7w directly for E(ut_ilﬁwt}) in (5.1)

t-i
and proceeding from there instead of from (5.4). This approach is used

in Section 6 when we obtain Var(s [{z, D.

5.1 Signal Extraction Under Assumption A

Under Assdmption A, when GS(B) and én(B) have no common zeroes, Rt
actﬁally is the solution to the nonstationary signal extraction problem, as

is established in the following theorem.

Theorem 3. Make Assumption A so that z, is independent of {wt}. Also
assume GS(B) and Sn(B) have no common zeroes so §(B) = GS(B)dn(B). Then
-1

E(s [{z, D) =Ry = § (B)S (F)y, (F)y, (F) "z, .
Proof. The signal extraction error is

% =S¢

-1
Sy - én(B)Gn(F)Yu(F)Yw(F) (sy +np)

-1 -1
GS(B)SS(F)YV(F)YW(F) Sy - Sn(B)Sn(F)YU(F)yw(F) n,

-Rt

-1 -1
85 (F)y, (F)y, (F)uy = 8 (F)y (F)y, (F)™v, (5.5)

using the fact that (from 1.6) Y, (F) = 6, (B)§ (F)y (F) + GS(B)GS(F)YV(F)

-ik)

in the second line. The cross spectral density of Uy with L is fu(k)Gn(e

and that of v, with w, is fu(x)ss(e'lx) (see 1.5), so from (5.5) the cross

spectral density of €t with LA is
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) “idy, -1 -ix
£, () = 8 (e VP, (N7 (8 (e

“ -iX -1 iy
-8 (e7TF OOF, OVTF (Vs (eT) =0 .

This shows e, is uncorrelated with every Wi and since z, is assumed independent

of {Qt} and {Q 1, €t is also uncorrelated with z Z, - Thus, £, is uneorraloted
with {zt}, and by Theorem 2 the proof is complete. QED

We now consider the case where SS(B) and 6n(B) have common zeroes So
§(B) = 65*(B)GC(B)Sn*(B), where SC(B) is the product of the factors in §(B).
that are in both SS(B) and dn(B). Returning to (5.4), we notice that the in-
dependence of z, and {wt}under Assumption A implies that E(E*l{wt}) = 9, so the
last term in (5.4) involves E(ut-ilf*)'s’ which are all zero since z, is inde-

pendent of {ut}. Hence, the last term in (5.4) drops out and we only need to

evaluate E(s,[{z.}) = E(f*lf*) + E(f*!{wt})' From (3.2) we see that

E(s*|{7_ b (ds+1) (dn+1)
[ H]LﬂnJ{z}J o = OBy WD) = CE(v gy W) o (5.6

Lt}) we would solve (5.6) in the same way we

assume (3.2) was solved in generating s, and n,, i.e., we make the same choice

of [Hl HZ] :
It remains for us to simplify the right hand side of (5.6). From (3.2)

we see that the jth element of C E(u§:§+l)|{wt}) is zero for j=1,...,ds, and

by (5.3) is
j-ds-1.

Zo ElE(u |{wt}) = R

Sy
57 25 Ras) 5.7)

for j=ds+l,...,d. The j*' element of C E(Vgg?+l)ﬂwt}) is also zero for j=1,

_ -1 .
...,dn. Analogous to (5.2) we have E(Vj-i‘{wt b = Gg(F)yv(F)Yﬁ(F) sn(B’G:(B)Zj-i’

and since (1.6) and (1.10) imply that
1 _
5;(5)6§(F)YV(F)YW(F) z, = z.-R, (5.8)

we get

j-dn-1.
z EiE(V l{w D= (z R ) - A
i=0

'@ gy R(an)) (5.9)
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for j=dn+l,...,d. We now have that

(ds+l (dn+l1)
ClE( (d !{~ }) +C E( vid) l{

0 0 R 0 o' z, -R

R )
ds+1 Nds+1 Zgnel Ranel] | fdnel

| Ry ﬁj’ | _ Zd;Rd 4 L ﬁgi
(R ] (2R
= Ty -0y Ogqamas®| |+ g - (M2 Oy (aman) ]!
_Rd_ _?d'Rd_
+ HJR (5.10)

= Ze - BRggy = HaZegny * BaRign)

Let m = max(ds,dn) and define

Bz by - [HZ odx(ds-dn)] ds>dn (5.11)
’[ 1 dx(dn-ds)] Hy ds<dn
We can now write (5.6) as
E(s,[{z, D)
[Hl Hz} | (2,1 =% Z(an) * MRm) - (5.12)

We summarize our results in the following theorem.

Theorem 4. Make Assumption A and assume SS(B) and én(B) have at least

one common zero. Jhen for t > ds

5 ~ A
E(s [{z, 1) = Al {E(s, {2, D) - R(ds) Poe Ry
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. . ) A
where Ry = & (B)S (F)y (Fly, (F) lzt. E(E*]{zt})is obtained by solving
(5.12) in the same way it is assumed that (3.2) is solved in generating Sy

and n, , i.e. we make the same choice of [ﬂl HZ] .

5.2 Signal Extraction Under Assumption B

Under Assumption B s, and {wt} are independent, so that

E(sg}{w,.}) = 0 and (5.4) becomes

~

, t-ds-1.
Ap (Bl 2Bz I D) Ry deRer 2 B[, [2e-8(z [In D]

(5.13)

E(st|{zt})

For the case where ny is stationary and GS(B) has no zeroes inside the unit

circle, Sobel (1967) establishes that Ry conQerges to E(st]{zt}) as toe,

(m)
{m+N)

m<t<m+N with m and N large and t not near m or m+N. We now show how to

Cleveland and Tiao (1976) similérly show that Rt approximates E(stlz ) for

evaluate (5.13) exactly by obtaining Z, - E(z*{{wt}), its variance matrix,

‘ t-ds-1,
and its covariances with s, and z Eiu
- i=0

To evaluate Zy ;.E(E*[{wt}) under Assumption B we notice Ny and s, are

t-i’

both independent of {w } so E([s, ny]i{w,}) = 0'. Then, by (3.2), (5.10), and
(5.11), we get

Ze = Bzt 1) = Hyz oo+ HR o (5.14)

To comete the Variance matrix of z, - E(z*i{wt}) we need a different
expression than (5.1%4). For t>ds, from (3.1l), (5.2), (1.5), and (1.6) we get
’ s t:-ds--l,S i
Sy~ Blsglinh) = Afts,e » (2 £;8 )[ut -
i=0
-1 |
S5 (F)Y, (Fy, (F) (51 (Bhu, =52 (B)v ) ]

s t—ds-ls i R
- y'se- Lo )83(8) [82(F )y, (F)y, (F)7huy
- A -1
- SE(F)(U(F)(W(F) Vi ] (5.15)

.

Similarly, for t > dn
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t-dn-1_ ..
n, npi -
n, - E(nt[{wt}) = ;i\t Ny + (on EiB )6:(5)[6:(F)~{U(F)YW(F) ‘lvt
. -1
- 2, Fry, 7l ] (5.16)
Both (5.13) and (5.1€) invelve the z-3%i-nary time series Xt defined by
- N o \'.‘;. R (T ;= "l
X = ¢§(F)YV\F)YW(F) ug - uh(r)yu(r)yw(F) Vi s (5.17)

which has spectral density

£ 0 = lsz(eik);va(k)fw(k)';fu(k)fw(k)';fv(k)

. lég(elx)lzfu(k)fw(k)'lfQ(x)fw(l)'lfu(k) .

This can be shown to be eqﬁal to

-1
fx(k) = fu(K)fw(k) fv(k).
The autocovariances, Yx(k), can be computed by Fourier transforming fx(k) or

by expanding the CGF

¥ (8) = v, @)y, () Ty, (2) (5.18)

If Ups Vs and hence Xt follow autoregressive-mo?ing average models the
techniques discussed in MclLeod (1975, 1977) for the univariate case and in
Nicholls and Hall (1979) for the multivariate case can be used to compute the
Y, (K).

For t<ds s, - E(s,|{w.}) =s,, and for t<dn n, - E(nt‘{wt}) = n.. Taking

t t
these results along with (5.15), (5.16), and (5.17) gives

Z, - E(z,[{w,}) = Hys, + Hony + GB_{(d) (5.19)

where C3 = Gl - C2 with the dxd lower triéngular matrices Gl and G2 defined as

follows. The first ds rows of G1 = (g§§)) consist of all zeroces. For t>ds

~ -~

. t-ds-1 _ . 4
a1 is the coefficient of B™™0 in (£ £38%)8_(8), which is a
t j=0 & s
polynomial in B of degree t-dc-1. So
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(1 |, L

t-d l i 5.20
it 9¢j s-1_ ( )

coefficient of BE™Y in (Z g5 °gt )6*(8) de<j<t.
i=0 *

{O j>t or j<dc

(2)

Similarly, the first dn rows of G2 = (g yconsist of all zeroes and for t > dn

oy | tednel (s 21)
coefficiant of BY™J in ( I g gt )8*(B) de<j<t
i=0

(2) 2) U j>t or j<dc
9eg =1 9y = ;
td

Let Q denote Var(z*-E(z*I{wt})). Since s, n,, and X(d) are independent, from

(5.19) we get
Var(z,-E(z,[{w.}D) = H Var(s, )H) + HVar(n,)H) + (5.22)

G5 [Yx](d)cé '

The independence of =, n,, and {X¢} yields that(from (5.19))
(5.23)

Q

Cov(s,,2,-E(z,[{w, 1)) = Var(s,)H]
Then, from (5.22), (5.23), (5.14), and the result that E(Y,|Y,) =

Y )Var(Y ) Y for zero mean normal random vectors (Brillinger 1975,

Cov(Y, Y,

l’

p. 292)
E(sy[24-E(2,[ {0, 1)) = Var(s,)H:0 l{H2 Zign) * PRt - (5.24)

If @ is singular we can use any generalized inverse of it in (5.24).

t-ds -1 t- ds-;
Finally, we consider E( Z 51 ‘. 1' E(z*l{w })) Notice Zoilut i
- is independent of s, and Ny SO by (5. l°) we only need consider its covariance

with X,,,. From (5.17) we see
2(d)

t—ds-ls t-ds- l -1
COV(iEO Eiut-i’)%) = Cov(( I EiB )ut, Gg(F)YV(F)Yw(F) uj)
= i=0
(5.25)
t-ds-1. i -1
= i§0 £y 5t )6*(F)Cov(ut,Yv(F)yw(F) Uj)

where F operates on j in (5.25). The cross spectral density between the time
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A i b
. A - i N -l - =
series u, and (V(F)YW(F) u, is fu(k)fw(k) VOO fx(k) so that
Cov(ut,yv(F)yw(F)-luj) = Yx(j-t). Using this and (5.20) we write (5.25) as
(F applies to j)

t-ds-1 t (15 t-i

s A ,
Cov ( i§0 giut-i’xj) = iid§+lgti F )YX(J-t)
) (5.26)
t ,
= I g;%)v (J-i)s
i=de+l Tt %

where for t>d, géi)is still defined by (5.20). Taking (5.26) for j=1,...,d we
obtain

yx(0> ey (deD)

.t-ds-1 _. A
~s _ (1) (L)
Cov( i§0 Eiut-i’ é(d)) = [O .- 0 9 desl 'gtt]
¥ (1-t) - - Y, (d-t)

z thus have
t-ds-1 s ; t-ds-l,s
EC 2 B0 g2z D) = Cov T B g X)) X
(5.28)
' -l{H z H.R, .}
Gy & "iHyz( 4y + HaRipy)

and use (5.27) in evaluating (5.28).

We summarize our results in a theorem.

Theorem 5. Make Assumption B so that s, and n_ are independent of each

other and of {wt}. Then, for t > ds
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s ! Ll
Elsp [z = Al LEf, |z -Blz [ D]- Ry )0
';-ds-l.S
R+ E[izo giut_ilz*-E(f*[{wt}ﬂ

. -1
where R = 6%(8)8*(F)y, (Fiy, (F) 'z, E[§*|E;-E(E;l{wt})]

t-ds-1.
is given by (5.24), and E[ z Eiut;i]z*- E(zg[{wt}i is given by (5.28),

i=0
using (5.27) and (5.20). The covariance generating function yx(;) given by

(5.18) may be used to compute the v, (k) needed.

If 63(8) and SH(B) have no common zeroes the above results simplify

somewhat. We first notice that 5:(8) = §éB) and 6:(8) = Sn(B), so by Lemma 1

t-ds-l o g s oty
( % £,-B7)8*(B)=1-~-2A_18
i=0 1 5 j.:llt
t-dn-1 n i dn _
(£ g B)8*B8)=1-1 Alg ™"
i=0 * i=1 *t
It then follows that (m = max(ds, dn))
0 0 7 0 t 0
";,° R D - ;,‘ T
GiX = A 11 - |-A by X = - H, X (5.29)
3% (4) dsel 7, Adnel | L, 2 350y
n' | n'
“Adn+l ;1 A | 1
and hence E; - E(E*fwt}) = Hlf* ¥ HZE* -»H3§(m).

We thus haQe
- - ! - . \ ! . t !
Q= Var(f* E(E*;{wt})) = HlVar(E*)Hl + HZVar(Q*)H2 + Hy [, J(m) Hy' (5.30)

in place of (5.22), and substitute -H3 for G3 in (5.28). In addition, (5.25)
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leads to
t-ds-1 ds .
t-1
Cov( 2 Elu, ., X,) = -1 ASF™h vy (3-t)
1=0 i "t-1 J i=1 it X
ds s
= YX(J-t) - i;lAith(J-l).
We thus replace (5.27) by
t-ds-l s
Covl T £ s, X)) = [yx(l-t) ... Yx(m-t)]
YX(O) e Yx(m-l) (5.31)
s' Lt :
- i\t . :
yx(l-ds). . Yx(m—ds) )
. 1:-ds-l,s
.. . Q
and use this in place of COV(iEo giut-i,§(d)) in (5.2,)}

6. Variances of Signal Extraction Errors

In many applications of signal extraction we want to compute not only
the estimate E(St| {Zt})’ but also the conditional variance, Var(stl{zt}).

This is the same as the variance of the signal extraction error,

€5 Sy¢- E(stl{zt}). One setting where this is important is in seasonal

t
adjustment by signal extraction; the results given here could: be used to

compute the conditional variance of the seasonally adjusted data.

When Rt is used instead of E(s {zt}), Hannan (1967) gives the variance

el

of the resulting error , Var (sﬁ - Rt),_for the case where ny is stationary,
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For this and other cases the properties of Sy - Rt have been more exten-
sively investiéated by Pierce (1979) (see Theorem 7 and the discussion
following it in the next sﬁbsection).

To obtain Var (st[{zt}) notice that by Lemma 3 we may write

St

€, + E(stl{zt}) (6.1)

e, + E(s |} + E[st!z* - E(’z*[{wt})]. (6.2)

By Theorem 2, the terms on the right hand side in (6.2) are independent
(and similarly for (6.1)). Therefore,

Var(s,) = var(e.) + Var(E(s [{w D) + Var(E[étIE* - E(E*I{Wt})]),
and ve may compute Var(st[{zt}) = Var(et) as

Var(s, [{z, }) Var(s,) - Var(E(st[{zt})) R (6.3)

Var(s,) - Var(E(s_|{w,}) - Var(E[st[E* ] E(f*!{wt})] ). (6.4)
(6.3) and (6.4) will still hold if we replace S¢ by a vector , say

(sl,...,st)' = S(gy so we can use (6.3) and (é6.4) to compute variances and
covariances of the s 's conditional on {zt}. We now show how to evaluate the

required terms in (6.3) and (6.4) Qnder Assdmptions A and B.

6.1 Variances Under Assumption A

Ye start with the general case under AssUmption A where SS(B) and Sn(B) may
have common zeroes. The case where 53(85'3“d-55(55 do not have common zeroes is
much simpler and will be discﬁssed later.

To begin, we notice from (3.1) that

H. s, + C,. ulds+l) (6.5)

Sty T ¢ Sk 1t Y(t)
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where

[ Lis | _ Jdsx(t-ds)_
H = s! C = Es
1t Ads+l 1t 0
¥ -

AS gs gs

L~t i L- t"dS"l. Q N
Notice Hld = Hl and Cld = Cl(see 3.2)). From (3.2)

—

twn

i* = [Ids Odsxdn} [

*
N

= [ ds Odsxdn] [Hl Hz]- 2 - 0wy - v
so that .
Sty T Kzt K Qg‘é‘;‘*” v (6.¢)
where

Ky = Mg [Ids Odsxdn ] [‘*1 Hz]

Ko = G - [chl Otx(t-d+ds)]

K3 = -Kl C2.
The terms on the right hand side of (6.6) are independent under Assumption A

S0
Var(s ) = Ky Var(z) K + K, [, ](t-ds) K+ ks [y Jideam K5 (67
To compute Var(E(s(t)l{z ¢ 1)) we notice from (6.6) that

(ds+1) (dn+1)
Es )l {zh) = K3 2o = Ko Py 7 K3 2(q) (6.8)
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where (see (5.2))

0
1]

Eu | iv D) = 8 T(F) v (F) v, (F)7hw, (6.9)

! . * P -1
Q= Elvi|iw.D) 8 (F) v, (F) v, (F) Tw,.

(We could use (6.8) and (6.9) in place of the result of Theorem & to do

the signal extraction, but the latter requires less compﬁtation.)

It can be shown that

1A * . ix
)fx(l)ss (e

. .,
) = f00 - 8P 00 () =8 (e )

P
) . * ine2 _
fQ(x) = f,(0) - lan (e”™) | f )5
so that auto- and cross-covariances may be computed as

* * ‘ * *
= . - - = 2 ~
Yp(k) = Yu(k) 55 (B) 55 (F) Yx(k) YP (k) = Sn (B) 3 (F§,X\k>

Q
k) - 8 (B) 8. (F) §_(K]
YQ(k) = Yv( ) -8 (B) & (F) x( ).
Under Assumption A 'z, is independent of'{Pt} and {Qt}, so from (6.8) we get

1

Var(E(f(t).l{zt})) = K1Var(f*) Kl + KZ [Yb ] (t;ds)KZ

+ K Y ] Ky'
3 [ Q J(d-dn)™3 (6.11)
Yﬁg(dn-ds) . e . YPQ(d-dS'l)
+ Ky . . Ky

YPQ(dh+l—t). .. YPQ(d-t)

ad -

- -
{PQ(dn-ds) .. (PQ(dn+l-t)

1

+ Ky : : %

(d-t)

YpQ(d-dS'l)- . YPQ
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Using (6.3), we obtain the following theorem.

Theorem 6. Under Assumption A when 65(8) and én(B) haQe at least one

common Zero.
'

* , * .
Var(f(t)l{zt}) = K2 [63 (B) 65 (F) Yy ](t-ds) K2 +

1

K3 [5n (B) 8, (F) v, ](d-dn) K3

i -ds) ... d-ds-
qu(dn ds) YPQ( ds-1)

(d-t)

YPQ(dn+l-t) ces YPQ

[ ypgldn-ds) ... Ypg(dn+1-t)]

YPQ(d-dS-l) see YPQ(d-t)

b
-

The v, (k) may be computed from (5.18)and the YPQ(k) from (6.10)_

. 1)
' Proof. When we subtract (6.11) from (é6.7) to apply (6.3) the KlVar(z*)Kl

term cancels. Also, by (6.10) the terms involving yu(k)'s and Yv(k)‘s cancel,

giving the result. QFD

When SS(B) and 6n(B) have no common zeroes there is a far simpler
approach to computing Var(s(t)[{zt}) than the aone. From Theorem 3, (5.5),

and (5.17) the signal extraction error in this case is

Sy - E(st{{zt}) = s, - Rt = Xt.



(Xt does not equal s_ - Rt'if 65(8) and én(B) have common zeroes.) Thus,

t

we have

Theorem 7. Under Assumption A, if 65(8) and 6n(8) ha?e no common zeroes,
. \ - - « .
then Var(f(t)l{zt}, = Var(é(t)) = [Yx](t)’ the elements of which may be

computed using (5.18).

This result has been given by Pierce (1972), who examines the behavior
of S - Rt when 65(8) and én(B) do and do not have common zeroes. However,
Pierce's statement that when 65(8) and Gn(B) have common zeroes the mean

squared signal extraction error does not exist (i.e. that it is infinite) is

- E(st[{zt}) will be nonstationary

incorrect. Although both Sp - Rt énd S,

when SS(B) and Sn(B) have common zeroes {che 1iotor . SlaEv L luite
stationary under Assumption B) they will both haQe finite mean square, as is
easy to see from the results in this paper (inclﬁding Theorems 6. and 8.).

It is interesting to note that under Assumption A Var(i(t)l{zt})does
not involve Var(z,). For that matter, neither does E(ft[{zt}) - see Theorems
3 and 4. This is true whether or not 5;(8) and én(B) have common zeroes.
Thus, when making Assumption A we need not concern ourselves with Var(E*).
The situation under Assumption B 1is different: there we must know Var(f*) and

var(n,) (see Theorems 5. and 8.).

6.2 Variances Under Assumption B.

Under Assumption B. s, and {Qt} are independent, so from (é.5)

- ! 1'1 ! 2
Var(f(t))- Hlt Var(i*) Hlt + Clt[ﬁJJ(t-ds)clt' | (6.12)

S

~

. is also independent of {w.}, so frem (5.5) and (5.9)

:\(dS"l)

E(E(t)‘{wt}) = Clt ;(t)



so that

Var (E(s )| e D)= Cp ¢ [Yp} (t-ds) C1t’

~3]1-

The remaining term we need is

Var(E [ f(t)lf* - E(E*i{wt})] ), which is

where Q = Var(z,- E(z*l{wt})) is gi?en by (5.22), or by (5.30) if §,(B) and

Covls (pys Ze - E(2, 109, 1) @7 Cov(s sz, -E(z, [ 00, 1))

Gn(B) have no common zeroes .

Cov{s
Now let G
L _Odsxt
Tg<1)
G, = : ds+l,dc-1 .
O(t-ds)xdcj .
|
| (1)
_ Igt,dc+l

where the g(l>s are defined in (5.20).

]

(6.13)

From (5.19) and (§.5) we find that

1t be the txt lower triangular matrix

. “ds+l,ds+l

Notice G =

1ti(t)

To(1)

.............. Iet

preceeding (5.20)). It may be seen from (4.5) and (5.27) that

so that

Cds+lf

Cov (Cyp ufy

X

7 L(d)

Yx(g) ot

) =Gy

‘\(x(l"t) .

- ¥y (d-1),

.

-

" (d-t)

X

, (ds+l
(97 Ze = E(z WD) = H) Var(s,) Hi + Cov(c) utds+h)

et

~ !
2d))C3

G1 (see discussion

(6.14)

{6.15)
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- E(z,[{w, })) = HltVar(f*) Hl' +

Covls () Z
[ ¥, (0) .+ .y, (d-1) (6.16)
RSN T : =
Y (1-8) oy (d-1) |

Ye Qse (6.156) to eQalQate (6.14).

Following (6.4) we subtract (6.13) and (é6.14 from (6.12) to obtain

our result.

Theorem 8. Under Assumption B

* < 1

var(s ., [{2, 1) = HyVar(s,) Hyp o+ Cpy [:ds (B)s, <F)YxJ(t-ds)C1t

- Cov( - E(z i {w 1)) Q'1C09(§(t), z -E(z, [{". 1))

S(t)? Z« ‘

where Q is given by (5.22) and CoQ(s(t), z, - E(z*i{wt})) by (6.18),

Proof. In subtracting (6.13) from (6.12) the terms involving yu's cancel

by (4.10). QED

If SS(B) and én(B) have no common zeroes then Q is given by (5.30) and

we can simplify (6.16). By (5.19) and (5.29) z, - E(z,|[{w.}) = Hs, +

H2 N - H3 é(m) so by (6.5)
! (ds+1) : )
Cov(siyys Zy = E(E*l{wt})) = Hy, Var(s,) Hy  -Cov(Cyuepy X y) Hy'
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Now by (5.31)

Odsxm odsxds o .
___________ —_—
Y (<ds) ... y_(m-ds-1)| |43 Yy (0) «v ¥y (m-1)
 (ds+1) X X ~ds+1
COV(Cltg(t) ,~(m)) = . . - . ) .
s! Yx(l-ds)..yx(m-ds)
;Yx(l-t) .o Yx(m-t) ] _ét 1
T}*(O) e e Yx(m-l)-1
dsxt i 0d5xt ] . : .
—————— == ;ST T El-ds) ' zm-ds)
0 | 1 ~ds+ll ) Yx co e Yy
= (t-ds)xds t-ds|{ - Y 1 4 ittt
| . |7 (t-ds)x(t-ds) Y, (-ds) . . .y, (m-ds-1)
t
| A 1 - -

szl-t) « o o n szm't)d

Combining these results and recalling the definition of H,, we now see that

1t
Covis s 24 - E(z [{w D)) = Hj Var(s,) H] -

YX(O) . .o . Yx(m-l)

Iy - [Hltl otx(t-ds)]} : - "3

szl-t) . . Yme-t)

when SS(B) and Gn(B) have no common zeroes.

7. Signal Extraction With a Finite Number of Observations

Suppose that a finite stretch of the time series, say Zn) = (zl,...,zN)',
is available instead of the complete realization {Zt}' Cleveland(1972) showed

that-E(st[z(N)) can be obtained by replacing unknown zj‘s in E(stl{zt}) by

E(zjlz(N)), which are forecasted (j>N) or backcasted (j<0) values.
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However, he did not consider whether this procedﬁre converges. Bell (1980)
established that as long as the expression for E(sti{zt}), which is linear
in the zt’s conVerges in mean square, then this procedure cohverges

' -1
pointwise to Cov(st, Z(N)) Var(E(N)) E(N) = E(s lZ(N))

-.To apply the.above result we need -to be able to compute E(z [z N)

for as many zj's as exert an appreciable effect on E(st[{zt}}. Notice
from S(B)z = Wy and Lemma 3 that
cet G E(z

E(z,,,12(,)) = §E(z

n+£-llE(N)) .

Z(n) Z 0 dlf(N)) (7.1)

d
+ E(w Q!W(N;l)) + E(w, l[z E(z lwég;l))),

there being a one - to - one correspondence between Z() and (z* , wgg;l)),

If the last term in (7.1) is zero, then computing (7.1) recursiQely for

9 =1,2,... leads to the usual forecasting procedufe discussed,‘for example,
in Box and Jenkins (1976). Under Assumption A Zy and {wt} are independent
so the last term in (7.1) is zero, but this is not the case Qnder

Assumption B, Thus, the usual forecasting procedure is correct under
Assumption A but is incorrect under Assumption B. This reflects the
problem noted earlier under Assumption B that 3.0 (L > 0) can be correlated
with z, through the starting Qalues Zy- Analogonly, the usual back-

casting procedure is correct under Assumption A and incorrect under

Assumption B.

A convenient means of obtaining E(stlz(N)) under Assumption B

when'st and ne follow autoregressive-moving average models, is to put the

signal plus noise model in state-space form and use the Kalman
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1lustrates how to do

LRV AL

.
filter/smoother (see Med

this for some particﬁlar models, and also briefly discusses the filter-
ing and smoothing procedure. To use the Kalman filter/smoother with
general ARMA models one must choose a state space representation cor-
responding to the model and compute the covariance matrix of the initial
state vector. Akaike (1974) gives a state space representation which
can be used (it can be extended to nonstationary models), although other
choices can be made. Some of our results given earlier should prove
useful in computing the covariance matrix of the initial state vector.
Along with E(stlE(N)), the Kalman filter/smoother directly produces

conditional variances, Var(stl ; conditional covariances, Cov(st,sjtz(N)),

Zeny)
can also be obtained. This is important since Var(stl{zt}) as given in
Section 6. will differ from Var(st{E(N)) for any t for which E(stl{zt}) is
appreciably affected by zj's outside of ZyseeesZy - typically for t near

1 or N.

The Kalman filter/smoother can also be used under Assumption A. In
doing so the properties of Sy and n, as solutions to (3.2) with E*’{ut}’
and {vt} independent must be taken into account. In particular, this will
affect the covariance matrix of the intital state vector. A word of
caution is in order here: to use the Kalman filter one must be sure that
the state vector at time t is independent of the process noise series in
the state equation at time t + 1 (which is not the same as nt+l)'

An alternative to the Kalman filter/smoother for producing
Var(stlE(N))under Assumption A when §S(B) and §_(B) have no common zeroes

is to use the results of Pierce(1979), who gives the spectral density of

S - E(st[zN,zN_l,...,zo,...) in this case. If the weights for Rt in (1.10)
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die out rapidly enough so that thE(st{{zt}) is not influenced much by
ZO’ Z_y v eee SAY for t > N/2, then Pierce's results can be used directly

for t > N/2, and can be turned around to be used for t < N/2.

8. Extensions of Results

8.1 Linear Projection Results for the Non-Gaussian Case

~

By Theorem 2. the resdlts of Section 5. broduce s,, the lineér

t’

function of the obserQed zt‘s which minimizes E [(st— st)z] , whether

or not the series involved are normél. The resﬁlts of Section 6.
produce variances and covariances for the time series Sy - ;t;note these
ére not the conditionél variénces and coQariances withoﬁt the normality
assumption. Similar reinterpretations apply to the other resﬁlts in

this waver.

8.2 The Case of Known Starting Values'

In some cases the starting values s, and n, might be known
quantities. Since the results in this paper assume all random variables
have zero mean, we must subtract the effect of the starting values from

to produce a new series, say ét.AFor t=1,...,d we-get

each‘zt

z, = (il,.}.,id)' =z, - Hys, - Hyn, by (3.2), and for t > d we

. 1

]
get z, =2, - éi Sy = é: Ny by (3.1). The effects of f* and Ny on z,

for t < 0 can be similarly removed by considering the generation of Sy

and Ny for t <.0. We now have the decomposition it = §t + ﬁt where
: 0 t=l,...,ds » 0 t=1,...dn
S, = Sk ! ’ n = n' !
t Si - ét Sk t > ds t ng - ét Ny t > dn

with analogous definitions for t < 0. MNotice that ;t and At have zero
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mean and known starting values é* = 0 and ﬂ* = 0. Since é* and ﬁ* are
degenerate random vectors they are independent of {ut}, {vt}, and
{w_}, so the decomposition it = ét + ﬁt falls under Assumption B with

Var (5*) = 0 and Var(ﬁ*) = 0. We apply the results of Section 5.2 to it

. v ' . -
to get E(st‘{zt}), to which we add Ai s, (for t > 0) to produce
E(st}{zt}). In this case Var(%* - E(é*l{wt})) may Qery well be singﬁlar,
so that we must use a generalized inQerse of it.

We can obviously use a similar approach when s, and n_ have (known)

nonzero means, but are not themselves known exactly (Var(s,) ‘and Varf{m,) nonzero).

8.3 Extensions to the Multivariate Case

In the multivariate case we have
t = O,fl,fz, . . .

where z

£ st,'and n, are k x 1 random vectors with

t

SBIzy = wy S Blsp =y B =Y

t t

jointly stationary k x 1 vector time series. An importént Speciél case
‘occurs when §(B), 65(8), énd Sn(B) remain EEEléE opefators, so that (1.4)

and (1.5) still hold. The results and proofs in this paper have been pre-
sented in a way that allows them to be used in this particular mﬁltivariate
case with little or no modification. For example, Theorem 3. is still correct
with YQ(F) and YW(F) the k x k matrix coQériance generéting fgnctions of

up and w,.

One aspect of the multivariate case that requires special consideration
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is the treatment of starting values. Define the vectors of stérting valyes

TN
[

. = vec (fl’ “ e Ed) =

Semvee(syy v+ e 3gg) M= Q“*"’(L‘l’ S Ngn)

The first equation in (3.1) becomes

= ds t-ds-1

=1 AD L B2 . t>ds

s . S,
~t 3=1 t,7 =] 1=0 i ~t-1

t-ds-1.

st _ s
= (AL ®L) S+ ifo 51 Yeog

wvhere [ denotes the Kronecker product. (3.2) becomes

w

z, = ([H, @1)~*+(c®1)3d5+1+(c®1)Zd“*l (8.1)
Zx 1 AN 1®L0 2 ®@ L) :
~* " -

“d Yd

Analogoﬁs to (5.12), under Assumption A we get

[E(S ] {z. 1) ‘ z Ry
([H, L,1®I) | ~ "V =W, EeD]|: p
) Zds Em

Since [Hl szl has rank d (see Appendix), the d-k x (d+dc)-k matrix [Hl H2]® I

has rank d-k and (8.2) can be solved. As before, we would solve it in the

same way as we assume (8.1) is solved for S, and M, that is, we make the
same choice of (Eﬁl HZ] ® I) = . Other expressions in the paper involving

starting values are easily modified in a similar fashion
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The general case where §(B), GS(B), and én(B) are kxk matrix operators
is more difficult and we have chosen not to treat it in this paper. In
this case the relationship between §(B), 65(8), and Gn(B) is not

clear - (1.4) need not hold. One may be able to obtéin resﬁlts in a
manner analoguous to that used here for certain special cases, sﬁch as

when n_ is stationary.

t

AEEendix
A.I. Rank of the Matrix[}ll HZ]

We show the matrix [Pl' HZ] has rank d.

Proof. Let r = ds + dn = d +dc and consider the augmented r x r matrix.

1 1
L | L
[le HZr] y A§s+l,l:"Acsis+l,ds : Agn+l,l:"Agn+l,dn
. ! .
_Ai,l......Af_’ds | A;‘,l. ..... AT dn |

We show this matrix has rank d. First consider the r x dn matrix

0 0 -8s,ds)
g 0 :
0 -6 .
- _a s,ds ., , , -8
As - '*Og,ds : i’l

. -8s,1 0
765,1 1 :

1 0 0

The dn columns of AS are linearly independent and, since
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GS(B) Aii =0 i=1,...,ds for t > ds'(see the discﬁssion following (2.5)),
the columns of As are orthogonal to the ds columns of le, which are also
linearly independent. Thus,‘X(As) =.$(le)L where 3(+) denotes the space
spanned by the colﬁmns of a matrix and,&(-j* denotes the orthogonél comple-
ment of 3(+¢) in r- dimensional Euclideén space.

Consider the homogeneous difference eqﬁation

85(Blay = oy - ss,lat-l_ e T CSs,dsat—ds = 0. (A.1)

Let the distinct zeroes of Gs(w) be wl,..gnk with multiplicities Mmyseesm

where My+eoosm = ds. It is well known (see Henrici 1974, pp. 584-587)
that the space of solutions to (A.l) has dimension ds, énd that the

sequences (t > 0)

i.-
t w2

provide a (linearly independent) basis for this space. Take the first r

}= O”°°7m2'l s L=1,..0,k

elements of each of these ds sequences to form the ds columns of an

ds .
r x ds matrix; call this matrix Q_ = (w? y., If & cw3 =0 for t = 1,..,r,
S it i=1 i'it
then since w3, = §_ ,w} Foeeot & w? for t >r , we easily
it s,l71i,t-1 s,ds ~i,t-ds =7

ds s .
see I ¢. w..=0 for all t , which implies ¢; =...= ¢, _=0. Hence, the

joi L it 1 ds

ds columns of QS are linearly independent. Also, the ds columns of Qs are.

. . L
orthogonal to the dn columns of As, S0 A(Qs) = X(As) = (Q(le) Yo o= (le).

-

We define Qn=(w2t) to be the rxdn matrix analogods to Qs whose

columns come from solutions to

- _ - _ ~ A.
6n(B) Mg = Mg 6n,lnt-l tot 6n,dn "t-dn =0. (A.2)
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Then X(Qn) = %(HZr) and i-[ﬂs Qn] = 3 [le H2r] . Since
5(8) = 5_(B) 5_(B) & (B)
* .3 .
GS(B) = SC(B)SS(B) Gn(B) = SC(B)Sn(B)

. * - . . . N . '
(where 6:(8) and én(B) have no common factors) any solution to (A.l) or (A.2)
is obviously a solution to &§(B) Bt = 0. It is.then easy to see that

the columns of [Qs Qn] come from the d lineérly independent soldtions

t

to §(B)R =O of the form th' j=0,..,u,~-1, % =1,...,h , where
t 2 ™9

cl,...,ch are the distinct zeroes of 6(;) with mﬁltiplicities

h
Hyseess My (z W o= d). Of these r = d+dc columns d will be distinct

and linearly independent, and the dc coldmns corresponding to SC(B)

will occur twice. Thﬁs, [Q Q ] has rank d, and so does [H H ].
n . Ir 2r

S

Finally, SS(B)Aij =0 for t > ds implies G(B)Aij = 0 for t > d, and

similarly §(B)AL, = 0 for t > d, so that

B I i 0 ]
oo d oy ldxde Hp  Hy
8o o o =8y 1 [le H2r] -
-84 .-62: -8 1 0 0
S P A
_ dd‘ | 6l i

This shows that rank [Hl HZ] =d. QED
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A. I1 Filtering Nonstationary Time Series

Although there has been considerable work on the linear filter-
ing of stationary time series (see Hannan 1970), little seems to have
been done on filtering nonstationary time series. We present two basic
results on this and apply them to the nonstationary signal extraction

problem.

Theorem 9. Suppose G(B)zt = W is stationary, and the distinct zeroes

of 8(g) =1 - 615-,..-6d;d (which are all on or inside the unit circle)

are Zy,...,0, of multiplicities uy,...,uy,- Let ‘Cminl = min({;ll,...,|chl)

and m = max(ul,...,uh). Then a(F)zt-= Z'aj zt+j converges in mean square

-0

under either of the following conditiops.

a. 'If all the zeroes of &(z) lie on the unit cirle ({;mini = 1),
2 |3|™o.l< ® (fa,} is m - summable) ,
o J J
b. If 6(;) has a zero inside the unit circle (i;min[< 1), a(z) = L.a.C
- J

analytic (i.e. converges absolutely) on some annulus

p < |zl < o~ with o < lz . | < 1.

min
Proof. We prove the theorem using two lemmas.

Lemma 4. Let {B be a Seqﬁence of real numbers and {Yk}i)a sequence

k}l

of zero mean random variables.

[a=] [ o)
m i 2m
a. If flsk{ k" < o and Var(Yk) <M k=" for some Ml,then % BkYk

converges in mean sguare.

J

is
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b, If I Bk ck converges absolutely (i.e. is analytic) for
1

' 2k
tz] < T, and Var(Y,) < M,1;" for some M, where 0 < T,<T,,

@
L BkYk converges in mean square,

1
_ n
Proof of Lemma 4. Consider I BkYk (0<2<n). By repeated application of
: 2

Minkowski's inequality (Rudin 1974, p. 65)

n n 1 2
Var(Z B, Y,) £ |Z[8| Var(Y )*( . (A.3)
2 '3
n o 2
For a. we see Var(i B Y < M ilBk[k ~ 0 as ,n > . For b,

=

2

. n n 7]
k|2 ,
we see Var(§~BkYk) E_MZ [Z Ble + 0 as 2,n - ©, QED

p—

Lemma 5. Consider Var(zt) for t > 0.

a. If all the zeroes of &§(z) lie on the unit circle, then
2m ;
Var(z,) < Mt for some M;, for all t > 0.

-

-1 Lt
b. For any T > Icminl , Var(z,) <M,7°" for some H,, for

all t > 0.

Proof of Lemma 5. By Theorem 1, for t > d

. t-d-1.
z, = A_z_+ T oW, . .
t P =0 it-1i
We know (see discussion following (2.5))
3(8) Ay =0 t>d §(B)gg =0 i>1.
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By results on solutions to difference equations (Henrici 1974,pp.584-587)

h N , h {
A, = Zp..(t), j=l,...,d £, = L p (i)z,
J£ T ik Tk kel KTk

for t > 0 and i > 0, where pk('), p j=1,...,d, k=1,...,h are

polynomials of degree uk-l.

Consider first the case where all zeroes of §(g) lie on the unit

circle. Then |cki =1, k=1,...,h , and since
Y, -1
. k
lpjk(t)l = pjkO + pjklt+...+ pjk,uk-lt ‘
Y, -1
k
_<. (lkao! + ‘pjkl|+"'+ lka’Uk"ll) t
we see that for t > 0
5 ‘R -t
Al <2 (t) -
h uk—l
< I M.t -1 M, = . cen .
* m_l *
< M.t M., = M., +...+M,
=" . ;70" ih

Therefore, using Minkowski's inequality

\ d ' 2 2
; 2 m-1)
Var(A, z,) j_[.Z lAjt] Var(zj) J <Mt
J=1
d 112 *.m-1
where M, =| I M. Var(z,) . Similarly |g. ] <M1 for i > 0 so
A j=1 J J i -

Var( T E.w ii
i=0 | i=0

t-d-1 . [t-d-1 112
i ' Yw(o)2
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2 o ft-d-1 2
M) v, (0)[ :. 'i""l]
i=

Mg = (M) v, (0)

A

A
=
ct
N
3

Finally, using Minkowski's inequality again

Ca o tedel L]z
Toy2
Var (z,) < |Var(A, z,)° « Var( I &.w. ()7
i=0
2
3 . m-1 3 .m| -
< [MA t + Mg t
2
. o 2m IV B ]
< Ml t M1 = [MA + ME .

Mow consider the case where 3(g) has.droot inside the Qnit circle.
Take any T, > |Z }'1>L Then, for j
) 1 min !

=1,...,d

1

-t n t * m-1_t

A, ) < 2 lp I 0l < 2l (B)]T < Mt

o= oIk Ki =gy 3 1
where M; is as before.

By a lemma given by Fuller (1976,p.91, problem 24)

-~

there exist constants M.

R ~
=1,...,d such that [Ajt[_i M, " Lt ’
> 1. Similarly 1851 <

var(A, : ALV 1] 2 M, 2t
var (A, z,) < -le'jt[ ar(zj) |2 M
3= '

~ d - L 2
where MA = jil Mj Var(zj) , and

for any Ty

M T; for some M. Now



-46-

t-d-1 . t-d-1 | ]2
Var( L. E,w, )_[ g lz;.ll v, (0)°

;) 2
i= i=0
~ t-d-1 i 2
[
< M yw(O) ‘:2, 7
i=0
y N L (t-d-1)2
< My (0) (E-d) 15
o 2t
< 'ME T,
for some Mg , using Fuller's lemma again. Therefore, for t>0
“» t cr ti2 2t
2 2 -~
Var(zt) < [MA T, 0t Mgrz] = MZ L)

_ 2 2
where M2 = [MA + ME:].. Our only requirements‘on T and T, are

-1
minl <71 T
-1

' [T <. <
such that |z . | Ty T,

. -1 .
1<z Then, for any T > {gmin‘ we can take T, and T,

5 ¢
. . 2t
< 1., and obtain Var(zt) < MZ -7, QED

We now establish that a(F)zt converges in mean square when either

of the conditions given in Theorem 9 is satisfied. Notice

x @

Y 0.z, . = L B,z where 8 = ¢ . First suppose all the zeroes
R t+] k"k k™ Tk-t
J:-t+l J k=1

of §{(z) lie on the unit circle and {aj} is m-summable. Then by

, . 2m
Lemma S5.a Variz < MK
\ z ) <M

for k > 0. It is easy to show that {Bk} is
m-summable, so by Lemma &4.a b Bk z, converges in mean square. Now

1
suppose §{(z) has a zero inside the unit circle and a(z) is analytic on

o < |z| < o~ with o <|lz_. | < 1. Tnen g By ck is analytiz on jz} < o7t

min 1
By Lemma 5.b Var(z,) E_MZTZk for any T such that p'l> T >‘%nint-l’
so by Lemma &.b ? Bkzk converges in mean square.
_ . . -t 0
To establish the mean square convergence of -i ajzt+j =_i Bk z, we
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must consider the representation of z, for t < 0, which uses the

relation (see (2.4))

. N R d
1+ (Sd_l/Sd)F +...+(0115d)F7 -(1/8F Nz = Wiy,

Using this we can obtain bounds on Var(zt), which will depend on the
zeroes of

- ’ 3 . d"l ! d

1 +(8y_1 /808 +eeux (8784027 - (1)L =

1 ie s d . | 1-d . _-d
(’l/éd)g [l‘olc -odn-sd-lc 'Odc ]

1

S -1 - e s
(z # 0) which are Ly reees Gy of multiplicities Hyeoeslye

1 ail lie on or outside the unit circle ; consequently, the

-1 -
Now Cl ,...,Ch
bounds on Var{z,) for t < 0 as a function of {t| are smaller, or at

least no larger, than the analogous bounds on Var(zt) for t > 0 given in

Lemma 5. Also {e } m-summable implies Z!Bk[[kfm <o, and a(g) analytic on
-0
o S RIS DU |
o< z| <0 ;mplles-i 3.5 = % B_, G is analytic on {z7 | < p 7.
-t 0
Thus, using the same type of argument as the above,_i ajzt+j =-i Bkzk is

readily seen to converge in mean square. QED

Theorem 10. Let Yt and X, be time series (stationary or nonstationary)

t
related by ¢(B)YE = Xt where ¢(B) = l-¢lB-..-¢po. Suppose a(F)Yt and

a(F)Xt converge in mean square (a(F) :_z aij). Then
5(8) [on(F) Yt]= [cb(B)oc(F) ] Y, = alF) X,

and these all converge in mean square.
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Proof. Let B(F) = ¢(B) a(F) =_§ Bka SO B = @ - 0Oy ymeeet ¢qu+p.
Then
N N
_g Sk Veak '_; T P1MRel ""‘¢p“k+p) ek
N .
=_E+pak(Yt+k - 0 V17 ®p Veekep)

w (o om 99 gm0 1% i) Yeon

* a-n+p-l Yt-n+p-l

(09, *oo0* ¢ 0‘Nﬂ:} Ve ~

- QpaN+l Yt+N+l—p
N .
=.Z a, X + other terms.

k" t+k
-n+p

alF) Yt converges in mean sgquare implies Cly Yt+k + (0 in mean square as

N
k - + © for any t. Therefore, as n,N +» <, -i Be Yeak ™ a(F) X, in mean

square (the "other terms" all go to zero). This establishes the second

 equality in the theorem. To get the first write
N N N N

#®) Lo Ve = ko Veue = 01 2 % Verco1™r "% & % Vesk-p

> a(F)Y, ;'¢la(F)Yt_l—....-¢pa(F)Yt_p

- 4(B) [a(F)Yt:l

in mean square, as n, N + =, QED
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An important application of Theorem 10 is to nonstationary Yt

when X, is stationary and ¢(z) has zeroes on or inside the unit circle.
In this case the convergence of «(F)Y,_ can e investigated using

A%
Theorem 9. Theorem 10 is a weak result here, in the sense that we would

— -

prefer not to need the conQergence of a(F) Yt to establish that L¢(B)a(F)J Yy

converges to af(F) [¢(B)Yt] = a(F)Xt. HoweQer, exémples can be given where
a(F)Xt conQerges but [(b(B)cx(F)]vYt does not, becéuse the "other terms" in
the proof do not go to zero. Looking for weaker conditions Qnder which
[¢(B)a(F)] Yt conVerges to a(F)Xt is a topic for future reseérch.

We can apply Theorems 9 énd lOl to the signél extréction problem.
The solutions to the signél extraction problem gi@en in Section 5 all

involve

* * =1
R, = 8. (B) 8 (F) v, (F) v, (F) 7z

If all the zeroes of §(g) lie on the Qnit circle we see from Theorem 2

that Rt will exist if {Yu(k)} and {Yw(k)}‘are m-summable, since this implies
(Brillinger 1975, p. 78) the coefficients in 5n*(5)5i(F)YQ(F)YW(F)-; are
m-summable. This will happen, for exémple, if Qt follows é stétionary,

and Wt follows a stationary and invertible, autoregressive-moving average

model .
If 8(z) has a zero inside the unit circle, but yu(c) is anélytic and

v,(%) is analytic and nonzero in 0 <|z| < o1 where o < Iz . |, so that

min
* -1 * ’ = .. -1
§ (¢ ) $. (;)YU(C)YW(C) © is analytic in 0 < |g| < 077, then by

Theorem 9 Rt exists. In this case, if ug and wt follow autoregressive-

moving average models we need the autoregressive polynomiél for uy and

the moving average polynomial for w, to have no zeroes in p < lz| < ot to
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apply Theorem 9 ., Assuming one of the conditions in Theorem 9 holds
so that Rt exists, we can use Theorem 10 to justify the interchanging

of operators that is done in (5.2) throdgh (5.45,
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2 Anderson(1971,pp.170-171) notes that factors corresponding to zeroes
inside the unit circle. can be reversed in time to factors with zeroes outside
the unit circle, thus becoming part of the stationary part of the model,
although operating. backwards. in time. We shall not allow this here since it
corresponds to assumptions about the generation of time series that are
different from those we shall use (which are discussed in Sections 2 and 3).
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