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1. INTRODUCTION

Work leading to currently used methods of seasonal adjust-
ment began with the link-relative method of Persons (1919).
His efforts motivated others in the 1920’s and 1930’s to con-
sider the problem of seasonal adjustment. Macauley’s (1931)
development of the ratio-to-moving-average method was par-
ticularly important because it is the basis for the current
Census X—11 method. Macauley and others borrowed the tool
of moving averages from actuaries to smooth their data, rather
than fit explicit functions to the data, because they felt that the
trend and cycle components varied smoothly over time but
they were, *f . not necessarily representable throughout
[their] length by any simple mathematical equation’” (Macau-
ley 1931, p. 32).

In 1954, Julius Shiskin started doing seasonal adjustment
on electronic computers at the U.S. Census Bureau. This per-
mitted the use of methods which involved elaborate calcula-
tions and led to experimentation with the ratio-to-moving-
average method. Improvements were made in the Census
adjustment methods over the next 10 years, culminating with
Census Method II, X—11 Variant (Shiskin, Young, and Mus-
grave 1967) which was adopted at the Census Bureau in 1965
and is today widely used. The X—11 procedure was developed
over a number of years from empirical experimentation,
rather than from theoretical considerations. In this paper, we
refer to X—11 and other seasonal adjustment procedures that
have evolved from similar considerations as empirical adjust-
ment methods. Since 1965, there have been other empirical
adjustment methods developed, including X—11 ARIMA
(Dagum 1975) and Bell Lab’s SABL (Cleveland, Dunn, and
Terpenning 1978).

Signal extraction. Seasonal adjustment can be viewed as
estimation of an (unobserved) nonseasonal component, N,, or
as estimation and removal of an (unobserved) seasonal com-
ponent, S, , from an observed time series Z, . If the decomposi-
tion can be viewed as additive, Z, = S, + N,, or additive for
some suitable transformation of Z, (such as In Z,, in which
case Z, = e e "), then it is natural to use signal extraction
theory to do seasonal adjustment. The signal extraction prob-
lem was solved for stationary time series by Kolmogorov and
Wiener in the 1940’s; their results were extended to nonsta-
tionary series by Hannan (1967), Sobel (1967), and Cleveland

and Tiao (1976). These results assume that the models for S,
and N, are known, but this assumption is unrealistic for
economic time series. We can model the observed data, Z,,
and this model will provide some information about the sto-
chastic structure of S, and N,; beyond this, models for S; and
N, have to be assumed in order to apply signal extraction
theory. This is not a weakness of the signal extraction
approach to seasonal adjustment; rather, it emphasizes the
arbitrariness inherent in any seasonal adjustment procedure,
including empirical methods.

Model-based procedures. In recent years, a number of
seasonal adjustment methods have been proposed which use
signal extraction theory with explicit statistical models for S,
and N, (e.g., Box, Hillmer, and Tiao 1978, Pierce 1978, Bur-
man 1980, and Hillmer and Tiao 1982). We call such pro-
cedures model-based methods. The publication of the book by
Box and Jenkins (1970) was an important factor in the
development of model-based approaches because it described
relatively simple techniques for modeling seasonal time
series. The work of Cleveland and Tiao (1976) represents an
early attempt to link empirical methods with a model-based
procedure. The recent research efforts into model-based
methods are further attempts to integrate desirable features of
empirical methods with statistical theory for the purposes of
better understanding the problem of seasonal adjustment and
of making improvements in procedures.

While we believe that model-based adjustment methods can
offer improvements over existing empirical approaches, such
as X—11, this is not the whole story. The X—11 procedure
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also deals with other important problems, including trading-
day and holiday variation and the treatment of outliers. Any
approach to seasonal adjustment must ultimately deal with
these problems. We think it sensible that all these issues be
addressed at the modeling stage.

Objectives of this paper. The primary objectives of this
paper are (i) to present a comprehensive model-based
approach to seasonal adjustment and (ii) to compare and con-
trast this approach with X—11 and related empirical methods.
Section 2 gives a summary of the statistical theory underlying
the model-based approach. Section 3 discusses modeling of
series with trading-day and holiday variation, and section 4
deals with the problem of outliers. In section 5, we provide
some theoretical and empirical comparisons of the X—11 and
the X—11 ARIMA procedures with our proposed procedure in
terms of revisions. Finally, section 6 discusses some issues in
seasonal adjustment as they relate to model-based and empiri-
cal methods.

2. AN ARIMA MODEL-BASED APPROACH TO
SEASONAL ADJUSTMENT

In this section, we summarize the theory behind the
ARIMA model-based seasonal adjustment method developed
in Hillmer and Tiao (1982). A similar treatment can be found
in Burman (1980). We assume that an observable time series
or some appropriate power transformation of the series, Z,,
can be represented as

Z, =S, +N, ‘ 2.1

where S, and N, are mutually independent seasonal and non-
seasonal components. If desired, N, can be further decom-
posed into trend and noise components; however, because the
usual practice in the United States is to publish estimates
of N,, we shall only consider decomposition into two
components.

If in (2.1) the stochastic structures of S, and N, are known,
then minimum mean squared error estimates of S, and N,
using the observed values of Z, are readily obtained from the
theory of signal extraction given in Whittle (1963) and Cleve-
land and Tiao (1976). In particular, suppose the models for
the components are

bs(B)S; = (B )b, (2.2)
ON(B)IN, = ny(B)c,

where the pairs of polynomials in the backshift operator B,
{b(B), n:(B)}, {bn(B), w(B)}, and {db;(B), by (B)} have

no common zeros, and b, and ¢, are mutually independent,
ii.d. N, o2 and N(O, o2), respectively. It follows from
(2.1) that the model for Z, is

&(B)Z, = 8(B)a, (2.3)

where (Cleveland 1972) &(B) = ¢,(B )dn(B), and 6(B) and
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o 2 are determined from the equation
o 2 DBRE) _ o s (B ) (F) o2 wB Iy (F)
S(B)O(F) s (B (F) b (B)dy(F)
(2.9)

with F = B 1. Furthermore, when all the zeros of ¢, (B ) and
&y (B) are on or outside the unit circle, the estimated seasonal
and nonseasonal components are

S, = W,(B)Z, and N, = Wy(B)Z, 2.5)
where
0 5OBIGF M (BIM,(F)
o 20B)0(F)ds(B)b,(F)
o f1,(B )y, (F)
o 20(B)O(F)

Wi(B) =

by (B)dy(F)

and

W) = ZEPBEMVBIIWE)
N o 20(B)O(F )by (B Yoy (F)
g B )

o 20(B)O(F)

b, (B )ds(F)

In practice, the S, and N, series are unobservable. Thus,
without additional information, the component models (2.2)
are unknown so that the weight functions W (B ) and Wy(B)
and, therefore, the estimates S, and N, cannot be computed.
However, an accurate estimate of the model (2.3) can be
obtained from the observable Z, series. Consequently, it is of
interest to investigate to what extent the component models
can be determined from the model for Z,, and to what extent
prior knowledge about the component models is required to
achieve a decomposition.

2.1. Prior Knowledge About S,

Because X—11 has been widely used for many years, some
of the characteristics it attributes to the seasonal component
must have been regarded as desirable by users of seasonally
adjusted data. In particular, additive X—11 produces estimates
of S, which aproximately repeat every year and approximately
sum to zero over any 12 consecutive months. Also, Young
(1968) shows that the X—11 procedure for estimating S; may
be approximated by a linear filter with weights that decrease
from the center toward the ends of the filter. This feature
implicitly assumes that S, evolves over time. Judging from
these considerations, it seems reasonable that S, should be a
(nondeterministic) stochastic process, but that locally a regu-
lar seasonal pattern should be preserved.

If it is sensible to require that the sum of S, over any 12
consecutive months should vary about zero, then the moving
sum U (B)S,, where U(B)=1+B +. .. + B!, should be
a stationary time series with mean zero. In this case, we can
write U (B)S, = m,(B)b,, where the b,’s are i.i.d. N(0, ad)
and m,(B) is as yet of unspecified degree. Notice that
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E[U®B)S,] = E[n(B)b] = 0. If we also require S; to
locally follow a fixed seasonal pattern, the forecasting func-
tion at a given time origin of the model for S, should follow a
fixed pattern of period 12 and should sum to zero over 12 con-
secutive months. In other words, the model for S, should not
allow for predictable changes in the seasonal pattern; such
changes should be part of the trend component. It is easy to
show that these requirements are equivalent to restricting
ms(B) to be of degree at most 11. Thus, we are led to the fol-
lowing model for the stochastic seasonal component S;

UB)S, = n;(B)b; (2.6)

where m,(B) is a polynomial in B of degree at most 11. Sea-
sonal components following (2.6) will locally follow a fixed
pattern, but as long as o2 > 0 the forecasting function of
(2.6) will be continually updated as the time origin advances,
thus the pattern in S, will evolve over time.

2.2. Restrictions Imposed by the Data

We shall investigate how information available from the
data embodied in a known model for Z,, together with the
additivity and independence assumptions (2.1), restrict the
possible models for S, and »,. From the discussion in the pre-
vious section, Z, will have a seasonal component if &(B)
contains the factor &b,(B) = U(B). The autoregressive poly-
nomial of N,, dy(B), must have no zeros in common with
U(B), otherwise N, would contain a seasonal component.
Thus,

$@B) = U(B)dn(B) @7

which determines ¢y (B) from &(B), and the relationship
(2.4) becomes

2 0B)B(F)

o L, Ms B (F)
* dB)F)

o , B )My (F)
UBHUFE)

T on B )by (F)

(2.8)

It remains to determine the moving average polynomials
7,(B) and my(B), and the innovation variances o ; and ol
Any choice of moving average polynomials and variances
satisfying (2.8), subject to the restriction that n;(B ) is at most
of degree 11, will be an acceptable decomposition.

To determine an acceptable decomposition, a partial frac-
tions expansion of the left-hand side of (2.8) may be per-
formed to yield

2 0(B)B(F) 0,B)

- - On(B)
* &B)GF) UBUF)

by (B )by (F)

2.9)

1 ) .
where Q,(B) = q¢s + ﬁ qjs(BY + F’) and Qy(B) may be
j=1
obtained by subtraction. The expansion (2.9) is unique
because the order of Q (B) is less than that of U(B)U (F ). In
the case where an acceptable decomposition exists, if we'set B
= ¢ 7' in (2.8), both terms on the right-hand side are nonneg-
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ative for 0 < w =< . Thus, to achieve an acceptable decom-
position from the partial fractions expansion (2.9), we may
need to modify the terms on the right-hand side so they are
nonnegative for 0 < ® < r, while their sum remains the
same. Because the degree of m;(B) is restricted to be at most
11, the only possible modifications are the addition of a
constant, v, to the first term and the sub-subtraction of -y from
the second term. It follows from (2.9) by letting

€, = min Qse ™) and €; = min Qvle™)
U7 swsn (U792 27 o<a=n byl i?))?
that an acceptable decomposition exists if and only if
€ te =0
If €, + €, > O, then the acceptable decomposition is not
unique because there is an interval for the constant vy such that

both

On(e™®)
dyle ™) 2

O,(e ) +
|U(e‘—iw) 2

are nonnegative. Thus, when €; + e; > 0, the prior
knowledge about S, used to this point and the restrictions
upon S, imposed by the model for Z, are not sufficient to
determine a unique model for S;. In this case, we must further
restrict the model for S, based upon additional a priori
assumptions about the seasonal component.

-y

2.3. Canonical Decomposition and Justifications

Following the ideas originally given in Tiao and Hillmer
(1978), Box, Hillmer, and Tiao (1978), Pierce (1978), and
Burman (1980), we define a canonical decomposition of Z,
into S, and N, as follows. Within the range of choices of
M:B), nw®B), o?, and o 2 satisfying (2.8), the canonical
decomposition is that one which minimizes o 2, the innova-
tion variance for the seasonal component. This defining prop-
erty is intuitively pleasing since the randomness of S; arises
from the sequence of b,’s. Thus, minimizing o 2 selects the
model for the seasonal component which is as deterministic as
possible while remaining consistent with the information in
the data.

"Some additional properties of the canonical decomposition
can be cited. (See Hillmer and Tiao 1982.) (i) Among the set
of all acceptable decompositions, the canonical decomposi-
tion minimizes Var[U (B)S,]. This is appealing since making
Var[U (B)S,] small, combined with the fact that E [U (B)S,]
= (, will ensure that the sum of S, over any 12 consecutive
months remains close to zero. (i) If S, denotes the canonical
seasonal component and S, denotes any other acceptable sea-
sonal component, then S, = S, + e, where ¢, is a white noise
series with variance o 2 > 0. In other words, every acceptable
seasonal component may be viewed as the sum of the canoni-
cal seasonal and white noise. To define the seasonal com-
ponent to be §; seems unreasonable, since S, is a highly
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predictable component which accounts for all the seasonality
in Z,, while ¢, is nonseasonal and completely unpredictable.
Therefore, in the absence of other information about S, , it is
reasonable to define the seasonal component to be S .

We believe that the canonical decomposition is an appropri-
ate choice. If, however, there was a priori knowledge about S,
leading to a different acceptable decomposition, that choice
could be justified. It is important to note that there is not
enough information in the data to uniquely determine the
model for S;, so that some additional defining assumptions
about the seasonal component must be made in order to carry
out the seascoal adjustment. It is a strength of the model-
based approach that this fact is emphasized and that the
assumptions being made are clearly specified.

2.4. Consideration of Some Special Problems

To be complete, we discuss some special problems that
may arise. First, we have defined the canonical components
only when ¢(B) can be written as U (B )by (B). While this
covers many cases, it does not include all models that might
be fit to seasonal data. One case that arises is where $(B) =
(1 — bBDd* (B) with ld1] < 1 and d* (B) nonseasonal.
In this case, we would not decompose Z; because, unless b,
is very near 1, the annual pattern of an estimate of S, that
might be produced will probably change very rapidly. This
behavior does not correspond well to the general idea of what
a seasonal component or its estimate should look like. Gen-
erally speaking, we would recommend seasonally adjusting a
series only when ¢(B) contains U (B ).

In practice, U (B) enters into the model through seasonal
differencing, i.e. 1 — B> = (1 — B\U(B). After applying
1 — B2, we have found it more appropriate to account for
remaining seasonality in the model through 6(B ), e.g. 6(B) =
(1 — 8158 '%) 0% (B) where 6* (B) is nonseasonal, rather than
with additional seasonal autoregressive terms. If 0, is small
(say =<0.4) this choice might be made for convenience since
we could well approximate (1 — .4B'%)™! with a seasonal
autoregressive operator of low order. However, 6, is typi-
cally much larger than 0.4. Thus, we have not found it neces-
sary to deal with seasonal autoregressive operators apart from
U(B).

A final consideration involves series for which the
seasonality is thought to be fixed, either from modeling the
data or from a priori considerations. In this case, it is easy to
estimate and remove S;. (See Pierce 1978.) One can fit
monthly means to Z;, or more frequently to (1 — B)Z,, con-
strain these to sum to zero, and subtract them out. We do not
advocate subtracting monthly means from all series being
adjusted, although this approach has been suggested by Pierce
(1978) and Cleveland, Dempster, and Stith (1980).

2.5. Example

As an example to illustrate the ARIMA model-based sea-
sonal adjustment approach, we consider the monthly time
series of employed males aged 16 to 19 in nonagricultural
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industries from January 1965 to August 1979. This series was
obtained from the Bureau of Labor Statistics and is given in
the appendix. The data are plotted in figure 2.1a. Judging
from this plot, it is evident that this series is seasonal, the
level of the series is changing over time, and the variability
over time is relatively stable. The sample autocorrelation
functions of the series and selected differences are plotted in
figures 2.2 through 2.5. Examination of the sample ACF’s
suggests regular and seasonal differences of the series to
achieve stationarity. The sample ACF of the differenced series
W, = (1 — B)(1 — B'%)Z, indicates that the model
(1-B)Y1—-B%zZ =01 —-6B)1 —0,8Pa  (2.10)
may be appropriate for this series. The parameters in model
(2.10) were estimated (using the TSPACK program of Liu
1979) and the estimates are reported in table 2.1. The residual
autocorrelations are plotted in figure 2.6 and the standardized
residuals are plotted in figure 2.7. These plots reveal no
model inadequacies. In addition, the Ljung-Box (1978) test
statistic for overall model fit based upon 36 lags equals 39.7.
This is less than 48.6, the level .05 chi-squared critical value
with 34 degrees of freedom. Thus, (2.10) appears to be an
adequate model for this data.

Table 2.1. PARAMETER ESTIMATES FOR

MODEL (2.10)
Parameter  Estimate  Standard error
6, 0.27 0.073

01, 82 037

Assuming that the parameter estimates reported in table 2.1
are the true values, the theory of section 2.3 can be applied to
estimate the canonical seasonal and nonseasonal components
for this example. The estimated canonical nonseasonal and
seasonal components are plotted in figures 2.1a and 2.1b. The
nonseasonal component captures the underlying movements
of the series and the seasonality in this series is relatively
stable.

3. TRADING-DAY AND HOLIDAY VARIATION

It is not unusual for monthly economic time series to be
affected by the composition of the calendar. The two primary
calendar influences are trading-day effects and holiday
effects. In this section, we summarize the results in Bell and
Hillmer (1981) on modeling series containing these effects.

3.1. Trading-Day Variation

Suppose the level of retail sales in a type of business (e.g.
grocery stores) is greater on Friday and Saturday than on other
days of the week. Over the years the same month, say Janu-
ary, will contain a different number of Fridays and Saturdays
so that the level of retail sales for January in a given year will
be affected by the number of Fridays and Saturdays in that
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Figures 2.1-2.7 EXAMPLE OF ARIMA MODEL-BASED SEASONAL ADJUSTMENT:
EMPLOYED MALES, 16-19, IN NONAGRICULTURAL INDUSTRIES

Figure 2.1a ORIGINAL AND ADJUSTED SERIES
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particular January. The variation in a monthly time series that
is related to the day-of-the-week composition of the calendar
is called trading-day variation. We might expect that
economic time series on sales, production, shipments, mone-
tary activity, and service activity may all be subject to
trading-day variation. Thus, it is important to be able to deal
with this in modeling and seasonally adjusting these time
series.

In modeling%series with trading-day variation, we suppose
that the trading-day effect can be approximated by a deter-
ministic model. Let 7D, denote the trading-day factor for
month #; then 7D, will be a function of the number of distinct
types of days in month ¢. In particular, we suppose that

3.1

where X, i = 1, ..., 7, are respectively the number of
Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Satur-
days, and Sundays in month ¢, and y;, i = 1, . .., 7, are
parameters. The model (3.1) is appropriate for flow series,
such as sales, where the monthly values can be thought of as
the accumulation of daily values. For stock series, other
approaches should be considered. (See, for example, Cleve-
land and Grupe 1982.)
The model (3.1) can be written as

I
il

7
O DX — X)) +T D X (B2
i=1

i

M- TMe

il

®
=

;
where ¥ = 1/7 Y i, B = vi =¥ and Ty = Xj, — X, for
i=1

7
i=1,...,6,B;=%,and Ty = 2 X, denotes the length
i=1

of month ¢. The parameterization (3.2) is more convenient
than (3.1) ‘because estimates of the +;’s tend to be highly
correlated while estimates of the B;’s are less correlated.

Also, when making inferences, the differential effects By, -

. . ., B¢ are of more interest than the vy;’s.

In addition to the trading-day variation characterized by
(3.2), we must also deal with autocorrelation, trends, and
seasonality. To do this, we assume that apart from trading-day
effects the series follows an ARIMA model. Thus, letting zZ
denote the value of an observed time series at month # includ-
ing trading-day effects, an additive model for Z," is

Z' =1D, + Z, 3.3)

where TD, is defined by (3.2) and Z, follows (2.3).

Modeling strategy. In building models of the form (3.3),
the following approach has been found effective.

@) Difect identification of the ARIMA model for Z, is often
difficult because of the confounding of the autocorrelation
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pattern of Z, with the influences of TD,. However, one can
typically determine the appropriate degree of differencing
(dand D of (1 — B) (1 — B'%? in the model for Z,) by
examining the sample autocorrelation function of Z; and its
differences in the usual way.

(i) Given d and D, the trading-day effects can be approxi-
mately removed by regressing (1 — B)? (1 — B%PZ on
(1—-BY(Q—-B%PT,,i=1,...,7.The model for Z,
can then be identified by examining the sample autocorrela-
tion function (SACF) and sample partial autocorrelation
function (SPACF) of the residuals from this regression.

(iii) Once a model for Z, has been tentatively identified,
maximum likelihood estimates of the trading-day and time
series parameters can be computed, and the results of
Pierce (1971) can be used to make inferences.

(iv) Standard diagnostic checks described in Box and Jen-
kins (1970) can be used to assess model inadequacy and
suggest directions of improvement.

Removal of estimated trading-day variation in seasonal
adjustment. Given a model for Z,, the estimated trading-day
effects are TD, = 2 Q,-T,-, where f.%,- i=1,...,7arethe

i=1

estimated trading-day parameters. For seasonal adjustment, it
is desirable that the long-run average of the trading-day
adjustment factors be zero. Now

6
2 BiTit =
1i=1

S

M

1
n :

(e = DIE 3, K —Xa)) 20
=1

t

It
uk

t

n
for large n since the 1/n 2 (X;; — X7,) are approximately
=1

7 .
constant while 2 (y; —7%) = 0. Furthermore, we can write
=1

T, = (T, — LF, — 30.4375) + LF, + 30.4375

where
.75 for a February in a leap year
LF, = {—.25 for a February in a nonleap year
0 otherwise
and
30.4375 = 2032

12

It can be easily seen that (T, — LF, — 30.4375) sums to zero
over any 12 consecutive months and LF, sums to zero over
any 48 consecutive months. Thus, from

6
D, =, BTy + BiLF, +
i=1

BT — LF, — 30.4375) + B4(30.4375) (3.4)
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we see the sum of the first two terms on the right-hand side of
(3.4) is the trading-day adjustment factor, while the third term
is part of the seasonal component and the fourth is part of the
nonseasonal component.

To seasonally adjust a series with trading-day effects, we

first form Z, = Z,'

Then we apply the results of section 2 by computing N, =
Wy (B )Z and S = W,B )Z When this is done, the deter-
ministic seasonal effect B7(T, — —30.4375) is automati-
cally assigned to S, since WN(B) + W,B) = 1 and
WyB)HT, — LF, —30.4375] = O because U (B)[T, — LF,
— 30.4375] = 0. (See (2.4) and (2.5) and recall db,(B) =
U(B).) Also, assuming &(B) contains 1 — B (in most appli-
(A:ations it contains the factor 1 — B2 = (1 — BYU(B)),
B(30.4375) is automatically assigned to N, since then by (B)
contains 1 — B and W (B)(30.4375) = O because
$n(B)(30.4375) = 0. An estimate of the combined trading-
day and seasonal component is 7D, + S,.

Trading-day example. To illustrate the ideas in this sec-
tion, we analyze the monthly series of U.S. wholesale sales of
hardware, plumbing, heating equipment, and supplies from
January 1967 through November 1979. The data were
obtained from the Census Bureau and are given in the appen-
dix. The data are plotted in figure 3.11a. From the plot of the
data, it is apparent that the series is seasonal, the level
increases over time, and the variability increases with the
level. To stabilize the variability we took logarithms of the
data; these are plotted in figure 3.1.

The SACF’s of the logged series and selected differences
are plotted in figures 3.2 to 3.5. We conclude that a first
difference and possibly a twelfth. difference are necessary to
induce stationarity. The SACF of the first and twelfth differ-
enced scries exhibits a complex pattern. Analysts at the
Census Bureau indicated that this series is influenced by
trading-day variation; consequently, the pattern in figure 3.5
may be due to confounding by the trading-day effects. To
approximately remove the trading-day variaton, the mode}

;
(- B)1 =Bz = 3 B,(1 —B)1 - BT, +N,
i=1

(3.5

was fit by least squares to the logged data, Z;". The SACF of
the residuals from (3.5) is plotted in figure 3.6. The most pro-
nounced feature is the negative spike at lag 12 suggesting the
model

(1 — 0,8
2 BiTu ————~——B)(1“ ma 69

Note that before allowing for trading-day effects, the auto-
correlation function (figure 3.3) does not necessarily indicate
that twelfth differencing is needed since the autocorrelations
at multiples of lag 12 die out relatively quickly. Assuming we

S —_— C: A
— TD, where TD, = E B:Ty + BoLF,.
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only need to first difference, the trading-day effects may be
approximately removed by consideration of the residuals from
the least squares fit of the model

,
(1 —=B)z' =3, Bi(l —B)T; +N, (3.7
i=1

The persistence of the autocorrelations of these residuals
(plotted in figure 3.7) at multiples of lag 12 now indicates that
a seasonal difference is required to obtain a stationary noise
model.

After estimation of the model (3.6), examination of the
SACEF of the residuals, plotted in figure 3.8, reveals a signifi-
cant negative spike at lag 1. Thus, we are led to consider the
model

— 0:B)(1 —~ 0,8
2 BiTx T Ha sn ¢ CY

We see from the parameter estimates and t-ratios for model
(3.8), reported in table 3.1, that by, 612, B,, B4, BG, and B7 are
all statistically significant. The estimated trading-day parame-
ters By, . . ., Pg indicate that sales are higher on Tuesdays
and Thursdays while lower on weekends. (The estimated
effect of Sunday, y; — ¥, is —.015.) However, note from
table 3.1 that the trading-day parameter estimates are not
independent, so that individual inferences about these param-
eters must be made with care. Since at least one of the 3;’s is
significantly different from zero, all of the trading-day param-
eters will be retained for the purpose of seasonal adjustment.

Table 3.1. PARAMETER ESTIMATES AND CORRELATION

MATRIX FOR (3.8)
Parameter " Estimate ¢-ratio
0, 0.22 2.6
01 75 12.1
B1 .001 3
B2 013 35
Bs .004 1.1
Ba 011 3.0
Bs .001 . 2
Bs -.015 —4.0
8, 026 2.0
Correlation Matrix

o, 1.00

0 07 100

B o4 03 1.0

B2 .02 oM —~57 1.00

Bs -03 -—-04 -~05 -.53 1.00

Bs 0 01 11 -0 —-55 100

Bs -.08 —-.02 02 09 -0 -5 100

Bs 04 -2 .2 02 09 01 ~56 100

B .05 .02 4 ~13 13 -3 .05 09 1.00

As diagnostic checks upon the adequacy of model (3.8), the
SACF of the residuals is given in figure 3.9 and the standard-
ized residuals are plotted figure 3.10. The only possible con-
cern is the series of negative residuals around the year 1975;
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for our purposes, these were ignored. The Ljung-Box test
statistic for overall model fit based upon 36 lags is 39.2,
which is less than 48.6, the .05 chi-squared value with 34
degrees of freedom. '

Assuming the model for the wholesale sales of hardware is
(3.8) and the parameter estimates in table 3.1 are the true
values, it is possible to compute estimates of the trading-day,
canonical seasopal, canonical nonseasonal, and combined
trading-day seasonal components. These are plotted in figures
3.11a to 3.11d, where the estimated nonseasonal component
has been transformed to the original metric of sales by

SECTION 2

exponentiation, and the estimates of the other components
have been exponentiated and multiplied by 100.

From figures 3.11c and 3.11d, we notice that the estimated
canonical seasonal component is fairly stable over time, and
the relative impact of the adjustment for the seasonal is
greater than that for the trading day. The trading-day factors
vary about 100 percent in an irregular fashion, which results
in the combined trading-day seasonal component (fig. 3.11b)
showing much more erratic behavior than the canonical sea-
sonal. Finally, the estimated nonseasonal component seems to
follow the underlying movements of the original data.

Figures 3.1-3.11 EXAMPLE OF SEASONAL AND TRADING-DAY ADJUSTMENT:
WHOLESALE SALES OF HARDWARE

Figure 3.1 LOG WHOLESALE SALES (Z,)
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Figure 3.4 SACF OF (1 — B1%)z,

AUTOCORRELATIONS

1
B
12

LAG

Figure 3.6 SACF OF RESIDUALS FROM MODEL (3.5)
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Figure 3.8 SACF OF RESIDUALS FROM MODEL (3.6)
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Figure 3.5 SACF OF (1 — B)(1 — Bz
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Figure 3.7 SACF OF RESIDUALS FROM MODEL (3.7)
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Figure 3.9 SACF OF RESIDUALS FROM MODEL (3.8)
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Figure 3.10 STANDARDIZED RESIDUALS FROM Figure 3.11a WHOLESALE SALES OF HARDWARE,
MODEL (3.8) ORIGINAL AND ADJUSTED SERIES
2784
Original Series
Adjusted Series - -~ -
2358{.
E
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3.2. Easter Holiday Variation
Some economic time series are affected by holidays that Figure 3.11b COMBINED SEASONAL AND
recur each year at different times. The principle example of TRADING-DAY FACTORS
this for U.S. series is the increase in the level of some retail 113

sales series in the days preceding Easter. Because Easter

oceurs at various dates during March and April, the monthly

values for these months can be affected by the date of Easter

each year. When the placement of holidays impacts the level 1
of a series, it is important to develop models to account for

these effects. Here we shall restrict attention to Easter holiday

effects, although a similar approach could be used to model

the effects of other holidays.

Series influenced by the placement of Easter may also ex-
hibit trading-day variation. Let Z; denote an appropriately
transformed time series containing Easter and trading-day
effects, and let E, denote the Easter effect for month ¢t. Then
an additive model for Z;" is

1
1

1%78
1968
1969/
1978
1871
872
973
1974
1875
978
877
1878,
1979

1
1

Figure 3.11c SEASONAL FACTORS

11
Z, =E, +TD, + Z, 39

where TD, is given by (3.2) and Z, by (2.3). 1

Specifying a functional form for E is not as easy as for 7D,
because the placement of Easter affects daily sales for a
period shorter than a month prior to Easter, while we typically L L.
have monthly data. As a first approximation, suppose there is e e 855 5 5 55 6 5 b5 b
a constant increase & in sales each day for T days before Eas- e e e e I o e B e e A
ter. Let H (v, t) denote the proportion of the time period 7
days before Easter that falls in month z. Then the Easter effect
is : ‘ Figure 3.11d TRADING-DAY FACTORS

113

E, =@a[rH(r, t)] = aH(T, 1) (3.10)

The effect of the placement of Easter need not follow the
pattern assumed in (3.10). However, a limited number of Eas-
ter dates will occur during the time frame of any series, and 8

L 1 L L 1 i
this limits the type of Easter effect that can be estimated. Bell E 8 © & ~ ‘r\f ;Q K Q = § é ,\*
and Hillmer (1981) show a way to test if the simple effect in 2 a0 Do 2 LI UL AL
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(3.10) is reasonable for a given series and discuss more gen-
eral effects.

Modeling strategy. To model Easter variation, we
proceed in a manner similar to that discussed for trading-day
variation. Thus, we (i) identify the degree of differencing,
(1 —B)Y¥ (1 —B?P, from the SACF of the original series and
its differences, (ii) remove the trading-day and Easter effects
in a preliminary fashion to allow a model for Z, = Z;" ~ ID,
— E, to be identified, and (iii) efficiently estimate and check
the entire model. To remove E, and 7D, in (ii) and identify a
model for Z,, we make a specific choice of 7 in (3.10) (e.g. 7
= 14), regress (1 — B)Y1 — B'»PZ  on (1 — B)YY(1 -
B2PH(14, tyand 1 —BY(1 =BT, i=1,...,7,
and examine the SACF and SPACF of the residuals from this
regression.

Parameter estimation. The model is (3.9) with E, given
by (3.10) and 7D, by (3.2), so

7
Z =aH(, t) +Y BTy +Z (3.11)
i=1

Assuming a suitable ARIMA model has been identified for Z,,
we wish to estimate the parameters of the model for Z
including 7. Gaussian maximum likelihood estimates
(MLE’s) of the parameters can be obtained as follows.

Let L(a, T, B, &, 0, o 2) denote the log-likelihood func-

tion, where B = (By, . . ., By, $=..., ¢,)’, and
6= 6y, . .., 8,)". Maximizing this over a, B, ¢, 9, and
o 2 for fixed 1 gives (asymptotically)

Lyx(™)= max Lo, 7, B, b, 0,02 =
“B & %o} C

—% In &3‘(1')
where c‘rg('r) is the MLE of o 2. Fitting (3.11) for a suitable
set of 7’s and picking the T that minimizes & X(r) gives %, the
MLE of 7. The estimates &, B, &, 8, & X(7) from the fit with

% arethe MLE's of o, B, &, 0, and o 2.
For fixed 7 (3.11) is linear in o and B, so the results of

Pierce (1971) may be used to make inferences conditional
upon 7. Unconditional inferences are difficult to make
because H (T, t) is a nonlinear and nondifferentiable function
of 7. In practice, due to the limited number of observed Easter
dates, it is unlikely that T can be estimated with great accu-
racy, so that a range of values for v will yield broadly similar
estimates of the other parameters. In this case, inferences
made conditional upon 7 = 4 should not be misleading. In
any event, this can be checked by examining the estimates of
the other parameters and their standard errors for various
values of 7.

Seasonally adjusting series with Easter effects. The
Census Bureau’s adjustment for Easter is done in the context
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of a multiplicative model and uses the reciprocal of the March
adjustment factor for April. We use an additive decomposition
on a suitably transformed series so a similar requirement
imposed on our Easter factors would be that they sum to zero.
So far, we have accounted for the effect of Easter by includ-
ing E, = oH (, t) in our model without worrying about this
restriction.

Notice that H (1, ) sums to 1 over any calendar year. We
assume T < 21; then H (t, t) is nonzero only for March and
April. We let MA, equal 1 in March and April and 0 otherwise
and write

E =a[H(, 1) —-;—MA,] +a[%MA,«i] e

2T (3.12)

Now in (3.12), [H(7, t) — %MA,],is zero outside of March

and April, and it sums to zero over March and April, thus
satisfying the restrictions we desire for an Easter effect. Since

UBMA, =12, [%MA, = ~1—12~] in (3.12) sums to zero over
any 12 consecutive months, a condition we desire of a sea-
sonal effect. Thus, in (3.12) we let a[H (7, ) — —%—MA,] be

the Easter effect, a[%MA, S %] be a seasonal effect, and

% be part of the level of the series.

To seasonally adjust a series with Easter and trading-day
effects, we first remove the estimated Easter and trading-day
effects and then apply the resuits of section 2. Thus, we form

. . A . 1 6, .
Z =z - aHG, 1) — SMA] = 2, BTy — BiLF,
i=1

and compute N, = Wy(B)Z, and S, = W,(B)Z,. When this is
done the deterministic seasonal effect, &[—2—MA, - —112—], is

automatically assigned to S, since Wy(B) + W,(B) = 1 and
Wy(B)[1/2MA, — 1/12] = 0. (See (2.5).) Similarly, &/12 is
automatically assigned to N, .

Holiday example. We consider the time series of monthly
retail sales of U.S. men’s and boys’ clothing stores from Janu-
ary 1967 through September 1979. The data is given in the
appendix. The plot of the original data in figure 3.21a shows
that it increases in level over time and that the seasonal ampli-
tude varies with the level. Taking logarithms (fig. 3.12) seems
to stabilize the seasonal amplitude. SACF’s of the log series
Z,and of (1 — B)Z', (1 —B'3Z}, and (1 — B)1 —BZ/,
are given in figures 3.13-3.16. We need to take (1 —B)}(1 ~
B'%)Z; to get the autocorrelations to die out.

The behavior of the SACF of (1 — B)(1 — B')Z; at and
near lags 36 and 48 is indicative of the Easter effect in this

LThis effectively assumes that the long-run average Easter effect is /2 in
both March and April, whereas it really depends on T. A more refined ap-
proach would be to replace MA, with the long-run average of H(r, t)

for each month.
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series as pointed out by Bell and Hillmer (1981). Figures 3.17
and 3.18 present the SACF and SPACF of the residuals from a
regression of (1 — B)(1 — B')Z on (1. —B)(1 - B 12)p7 (14,
fand 1 — BY1 —BYT,,i=1,...,7. Notice there are
no longer spikes at lags 36 and 48 in the SACF. The SACF
and SPACF suggest the tentative model

* > 7
Z TaHG, 1)+ BTy T2 (3.13)
i=1

where
(1 —B)1 -B®z, =1 — 6,8 — 8,8)(1 — 0,89,

This model was fitted to the data with 7 = 14 and diagnostic
_checks revealed no model inadequacies.

We now estimate 7 jointly with the other parameters in
(3.13). This was done by estimating (3.13) for integer values
of v from 1 to 25. Some of the results are given in table 3.2.
We see 1006 X(7) is minimized around # = 9, although a
wide range of T values works about as well. The residual ACF
for the model with T = 9 is shown in figure 3.19. It reveals no
model inadequacies, and the Ljung-Box test statistic using 36
lags is 27.4, which is less than the x4 S-percent critical value

Table 3.2a. ESTIMATION OF 7

T l 1 ) 3 4 5
1006 2(1) ‘ 126 122 122 123 123
o7 6 7 8 9 10
1006 2r) | 122 121 1203 1201 .1205

T m 12 13 14 15
10062(v) | 122 123 125 127 127

T 16 17 18 19 20
1006 2(r) | 128 129 129 130 .131

T 2100 2 B 24 25
100620 | 131 131 431 131 131

Table 3.2b. ESTIMATION FOR T =% =9

Parameter Estimate t-ratio
0, .26 32
0, 37 4.5
01 .78 15.5
81 -.010 -1.8
B> —.002 —4
B3 .005 1.1
Ba —.002 -3
Bs 011 2.2
Bs .013 2.5
B, 014 8
a .070 7.7

’
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of 47.4. The standardized residuals, plotted in figure 3.20, do
not indicate any problems with the model.

We can now estimate the canonical seasonal and nonsea-
sonal components in the manner discussed earlier. The com-
ponents were first estimated in the log-metric and then
exponentiated. Figure 3.2la shows the original data and
estimated nonseasonal component and figure 3.21b the esti-
mate of the combined holiday trading-day seasonal com-
ponent. The pattern in figure 3.21b varies from year to year,
especially for the months of March, April, and December.
Figures 3.21c to 3.21e give the estimated seasonal, trading-
day, and holiday components, respectively. We notice from
figure 3.21c that December has far and away the largest sea-
sonal influence (due to Christmas) and that the pattern is fairly
stable from year to year. The less regular pattern in figure
3.21b is due to the erratic patterns of the trading-day and holi-
day components.

4. DETECTION AND REMOVAL OF THE EFFECTS
OF OUTLIERS ,

Economic and business time series observations are often
subject to the influence of nonrepetitive exogenous interven-
tions, e.g., strikes, outbreaks of wars, sudden changes in the
market structure of a commodity, and unexpected heat or cold
waves. When the timings of such interventions are known,
their effects can often be accounted for in a model using inter-
vention analysis techniques proposed by Box and Tiao (1975).
As an illustration, again let Z," be the observable time series,
and suppose that an intervention occurs at time #,. The effect
can often be modeled as

« _ w(B),
Z 5B) £V + 2, 4.1
o _ 1 fort =1, and

where €& = 0 otherwise

~ signifies the time of occurrence of the intervention, w(B) =

wy — 0B —. .—0;B*,8B)=1-88—. .— 3,B7, and the
ratio o(B)3(B) describes the dynamic behavior of the
intervention.

In practice, the timings of exogenous interventions are
often unknown to the statistical analyst. Since the effects of
the interventions can lead to bias in parameter estimates, and
hence in forecasts and seasonal adjustments, it is important to
develop procedures which can help detect and remove such
effects. This has come to be known as the problem of
““outliers’” or “‘spurious observations.” In the Census X—11
procedure, outliers are handled in the filtering process. How-
ever, we believe that it is best to treat this problem as another
element in the modeling process. If the time 7 is known, this
problem is not different in principle from that of modeling
trading-day or holiday variation. For the situation when ? is
unknown, we summarize the results on outliers in time series
of Chang and Tiao (1982), following earlier work by Fox
(1972).
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Figures 3.12-3.21 EXAMPLE OF SEASONAL, TRADING-DAY, AND HOLIDAY ADJUSTMENT:
RETAIL SALES OF MEN’S AND BOYS’ CLOTHING

AUTOCORRELATIONS

Figure 3.12 LOG RETAIL SALES (Z,)
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Figure 3.15 SACF OF (1 — Bz Figure 3.16 SACF OF (1 — B)(1 — Bz
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" Figure 3.21a RETAIL SALES OF MEN’S AND BOYS’

Millions of dollars

CLOTHING, ORIGINAL AND ADJUSTED SERIES

1
Original Series
Adjusted Series - - -
1872
Figure 3.21b COMBINED SEASONAL, TRADING-
» DAY, AND EASTER FACTORS
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Figure 3.21c SEASONAL FACTORS
218, S

5 NS I S
1111
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4.1 Additive and Innovational Qutliers

We shall concentrate on two types of outliers, additive and
innovational. An additive outlier (AO) is defined as

z =7 + ot

4.2)
while an innovational outlier (I0) is defined as
z' =z + 3B 4.3)

&B) '

where Z, follows model (2.3). In terms of the g,’s in (2.3), we
have that

k0 7z = g((_?)"“t + wto @.4)
and
10) 7} = (%((g—); {a, + w0 } 4.5)

Thus, the AO case may be called a gross error model, since
only the level of the ¢{ observation is affected. On the other
hand, an IO represents an extraordinary shock at ¢, influenc-
ing Z, o Ztg+1, - . . through the memory of the system

described by 6(B Y/ d(B).
4.2 Estimation of ® When ¢, Is Known

To motivate the procedures for the detection of AO and IO,
we discuss the situation when ¢, and all time series parameters
(d’s, 0’s, and ¢ ,) in the model (2.3) are known. Defining the
residuals e, = [1(B)Z", where 1I(B) = $(B)Y6B) = (1 +
B + I1,B% + . . .), we have that

(AO) ¢, = wIIBEY + g,

10) ¢, = wt'® + g, (4.6)

From least squares theory, estimators of the impact, w, of the
intervention and the variances of these estimators are

(AO) oy = pII(F)e,, Var(@s) = pog

(I0) &; = ¢, Var(@) = ol @7
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where p? = (1 + [12 + II# + . . )™". Thus, the best estimate
of the effect of an IO at time 7 is the residual e, o» While the

best estimate of the effect for an AO is a linear combination of
€ €y+15 - - -, With weights depending on the structure of

the time series model. Note that the variance of ®, can be
much smaller than o 2.

If desired, one pnay perform various tests among the
hypotheses:

Hy Z,: is neither an IO nor an AO
Hy Z, isanlO
Hy: Z; isan AO
The likelihood ratio test statistics for IO and AO are
Hy vs Hy
H, vs Hy

)\1 =5 (:)I/U'a
Ay = @4/ (poy,)

On the null hypothesis Hg, Ay and A\, are both distributed as
N, D).

4.3 Detection of Outliers

In practice, ¢, as well as the time series parameters, are all
unknown. If only 7 is unknown, one may proceed by calcu-
lating N\ and X, for each #, denoted by A, and \,,, and then
make decisions based on the sampling properties given above.
The time series parameters (¢’s, 0’s, and o) are also un-
known, and it can be shown that the estimates of these param-
eters can be seriously biased by the existence of outliers. In
particular, o, will tend to be overestimated. These considera-
tions have led to the following iterative procedure to handle a

situation in which there may exist an unknown number of AO
or IO outliers.

(i) Model the series Z by supposing that there are no
outliers (ie., Z, = Z ;) and from the estimated model com-
pute the residuals

¢ =Bz
—’1; E ? be the initial estimate of & o

(ii)) Compute )\,~,, i=1,2and ¢ =1, . n, these being

Ay, and Ay, with the estimated model. Let |)\,0 | =

max max[ | A, | 1. If QX, |)\1, | > ¢, where cis
{

a predetermined positive constant usually taken to be 3,
then there is the possibility of an IO at ¢, and the best esti-
mate of w is &y, Eliminate the effect of this possible IO by

defining a new residual e,o =&, — = (. If, on the
other hand | A, o =1 )\2, | >c, then there is the possi-
bxhty of an AO at tg, and the best estimate of its effect is

o Ihe effect of this AO can be rernoved by defining the
new res1duals é =é — u)A, 1B )g, ,t=t,. A new esti-
mate G 2 is computed from the modlﬁed residuals.

(iii) Recompute )\1, and )\2, based on the same initial

SECTION 2

parameter estimates of the ¢’s and 0’s but usmg the modi-
fied residuals and O'a , and repeat the process (ii).

(iv) When no more outliers are found in (iii), suppose that k
outliers (either I0 or AO) have been tentatively identified
at times £y, . .., %. Treat these times as if they are
known, and estimate the outlier parameters, w,, . . . , o
and the time series parameters simultaneously using models
of the form

ta

F= 3 wL@E + 28,

2 o) (4.9)

where L;(B) = 1 for an AO and L;(B) = ¢(B)) for an 10

at ¢ = ¢;. The new residuals are

¢ = OBz i LB )gl(t/)] (4.10)

The entire process is repeated until all outliers are identified
and their effects simultaneously estimated.

The above procedure is easy to implement since very few
modifications to existing software capable of dealing with
ARIMA and transfer function models are needed to carry out
the required computations. Based on simulation studies, the
performance of this procedure for estimating the autoregres-
sive coefficient of a simple AR(1) model compares favorably
with the robust estimation procedures proposed by Denby and
Martin (1970) and Martin (1980). While the latter procedures
cover only the AR case, our iterative procedure can be used
for any ARIMA model.

4.4 Seasonal Adjustment

For the purposes of seasonal adjustment, trading-day varia-
tion, holiday variation, and outliers can all be incorporated
into the model-based procedure by writing the model as

Z, =TD, +E + 0, +2 @.11)

where O, . The influences of all these

) @)
= D, wL;B%’
j=1
effects can then be removed by setting Z Z; —TD, —E, —

O, after which the techniques of section 2 can then be used to
decompose Z, into the canonical seasonal S;, and the canoni-
cal nonseasonal N, (allocatmg appropriate parts of 7D, and E,
to S and N as discussed in sections 3.1 and 3.2). Finally, in
keeping with current practice, the series adjusted for seasonal,
trading-day, and holiday variation is N, + O, (in the
transformed metric).

4.5 An Example

To illustrate the iterative procedure described above, we
consider the logarithms of the monthly retail sales of variety
stores from January 1967 to September 1979 obtained from
the Bureau of the Census. This series contains trading-day and
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Figure 4.1 LOG RETAIL SALES OF VARIETY STORES @)
(Modified for trading-day and Easter effects)
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Easter variation; as a preliminary step, these effects were
modeled as described in section 3 and removed from the
data.? The preprocessed data are reported in the appendix and
plotted in figure 4.1.

The ARIMA model obtained from the preliminary analysis
is

(1 — &8 — &B)(1 —B)1 ~ Bz =

(1 — 81,BP)a, (4.12)
where ¢; = —40, &, = —27, 0y, = .81, and Z;" denotes the
logarithms of the trading-day and Easter adjusted sales.
Examination of the statistics A, and A, as described in (ii) of
section 4.3 indicates the possibility of an IO at ¢ = 112. After
modification of the residuals, updating of the estimate of o 2,
and construction of new sequences for Xl, and th, an AO is
identified at + = 96. Further inner iterations revealed two
additional candidate IO’s at ¢t = 113 and ¢ = 45.

For the second major iteration, the four tentatively identi-
fied outliers and the ARIMA parameters are simultaneously

estimated. The process is repeated and an AO at ¢ = 121
together with an IO at ¢ = 114 are identified. The process is
continued through five major iterations; table 4.1 summarizes
the results. The elimination of the eight outliers leads to
changes in the estimates of the time series parameters and a
large reduction in the estimated variance, ol

The effects of possible outliers were approximately removed so that the
trading-day and Easter parameter estimates would not be badly biased.

Table 4.1. VARIETY STORES OUTLIER DETECTION

Major . R . . Outlier  Outlier

iteration & b, 6, 62x10° time type
-40 -27 81 1.02 112 (0]

0)) 96 AO
113 10

45 (0]

@ -5 —27 .83 65 121 AO
114 10

3 -61 —-38 .85 58 129 10
“) -64 —36 .87 54 103 10

6) 66 -33 .89 50

Discussion. For this example, it is interesting to note that
three consecutive IO’s are identified at ¢ = 112, 113, and 114,
suggesting an intervention effect different from that of an
individual AO or IO. Discussions with analysts at the Census
Bureau revealed that at around ¢ = 112, (which is April
1976), a major variety store chain, W. T. Grant, went out of
business, and that as a result a significant proportion of retail
sales previously made at variety stores were shifted to depart-
ment stores. Based upon this information, it is reasonable to
expect a level drop in the series starting at £ = 112. A model
for this is

Z =7 + ——f-gg,ﬂm with o < 0 (4.13)

1
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The important point is that the outlier analysis summarized
in table 4.1 is consistent with the above explanation, and a
closer examination of consecutive outliers may reveal the
" nature of the intervention. To illustrate, the standardized resi-

duals from the preliminary model for t = 111, . . ., 115 are
reported below.
ot é/6,
-« 111 0.0
112 -5.3
113 =3.1
114 20
115 =)

If the model for Z," is described by (4.13) with Z, following

the preliminary model (4.12), then the residuals are

N (1 — B — BH)(1 — BY)
(1 - 6,,B%)

we?  (4.14)

e = &

From the initial estimate of 8, in table 4.1, it follows that
(1 — B2y/(1 — 8,,B'?) is approximately 1. From 4.14 and
the initial estimates of ¢ and &,, we would expect to observe
large negative residual values at ¢ = 112, 113, and 114 that
would behave somewhat like ®, 4w, and .3w. Also, there
would be no effect on the residual at £ = 115. The three con-
secutive 10’s noted above are thus reasonably consistent with
the model (4.13).

If we consider the first differences of the data, W,', = Z; —
7,1, then the model (4.13) reduces to

W =W, + og?

where W, = Z, — Z, ;. In other words, the intervention in
(4.13) can be viewed as an AO at ¢ = 112 for the differenced
data W,". This is confirmed by applying the outlier detection
procedure to W, resulting in the identification of a single AO
at t = 112 instead of three consecutive outliers starting at that
point.

5. REVISIONS

Most seasonal adjustment methods recently proposed or
currently in use use two-sided filters. When current data are
being adjusted, the future values of the series required for the
use of the two-sided filters are not available. In practice, the
estimates of N, are computed and subsequently changed as
more data become available—these changes are known as
revisions. Revisions present a practical problem, since it can
be difficult to.explain to users of seasonally adjusted data why
the current adjusted data get changed in subsequent years—

- especially if the changes are large.

Large revisions are often viewed as undesirable. However,
it is easy to devise a seasonal adjustment method which pro-
duces zero revisions simply by using one-sided filters. Since
such methods have rarely been adopted in practice, we must
conclude that zero revisions, as well as large revisions, are
undesirable. From a signal extraction point of view, estimates
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of N, should be updated as new data become available, and
the magnitude of the revisions should depend on the model
and the data. For the above reasons, we do not feel one
method of seasonal adjustment should be preferred over
another on the basis of revisions. However, because of the
emphasis that has been placed on revisions and their practical
significance, it is of interest to investigate how the model-
based method behaves in comparison with other methods in
terms of revisions. In section 5.1 we make some theoretical
comparisons between revisions for the model-based method
and those for X—11, and in section 5.2 we report on results of
an empirical study comparing the revisions for the model-
based method, X—11, and X—11 ARIMA.

5.1 Theoretical Comparisons

To make some theoretical comparisons of revisions for the
proposed model-based method with those of X—11, we con-
sider the following simplified situation:

(i) Z, follows the model
(1 -B)1 —-B%Z =1 —0,B)1 — 0,,8%a (5.1)

(ii) the standard options of the additive version of X—11
are used, and

(iii) at the end of the series the values needed to apply the
symmetric X—11 filters are obtained by forecasting
future observations based on (5.1).3

Seasonal adjustment is usually done at the Census Bureau
by producing in December forecasts of the seasonal com-
ponents for the coming year and using these to adjust the data
as they become available. We refer to this practice as year-
ahead seasonal adjustment. To duplicate this procedure for
both X—11 and the model-based method, we assume that
(i) the respective symmetric filters are applied to the series
extended with forecasts of Z, to produce forecasts of the sea-
sonal components for the 12 months beyond the end of the
observed series and (ii) the forecasted seasonal components
are used to adjust the data as they become available. Note that
for the model-based procedure, these forecasted seasonal
components are the conditional expectations (under normal-
ity) of future S;’s, given the available observations.

For theoretical convenience, we shall measure the magni-
tude of revisions by their mean square. If A, is the initial
adjusted value (estimate of N;) and A, the revised adjusted
value when 1 year of additional observations is available, then
A,D — A,© is the first-year revision. To compare the model-
based procedure with X—11 we shall consider the ratio of
E[AD — A®)?] for model-based to that for X—11. Note
that the seasonal components used in the computation of A,
have been forecasted from 1 to 12 months ahead. To reduce
the number of comparisons, we shall only consider the cases
where the seasonal components are forecast 1, 6, and 12
months ahead.

3This is not how X—11 is actually used, and will give smaller .mean
squared revisions than the way X—11 actually operates (by results of Pierce
1980 and Geweke 1978).
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Under our simplifying assumptions, the results in Pierce
(1980) can be used to obtain the mean squared first-year revi-
sions for the model-based approach and for X—11. The ratio
of the mean squared revisions for a grid of §; and 8,, values is
presented in table 5.1.

Table 5.1. RATIO OF MEAN SQUARED FIRST-YEAR
REVISIONS (MODEL-BASED/X~11)

1-month-ahead forecasts
6,
1 3 ) i 9

11156 138 1.19 1.19 1.28
3113 122 108 1.08 1.14
0 5| 1.06 .98 .89 .89 93
i .66 62 .58 .58 .60
9 15 15 15 .14 15

6-month-ahead forecasts

0,

1 3 5 i 9
1] 148 148 148 148 148
31127 127 127 127 127
6, 5] 1.0 100 100 100 1.00
i .62 .62 .62 .62 .62
9 .15 15 15 15 15

12-month-ahead forecasts

0,

.1 3 .5 Vi 9
d 1128 131 136 141 145
341114 116 119 123 125
012 .5 94 .95 .96 .98 .99
i .63 .63 .63 .63 .62
9 .18 17 .16 .16 15

The main conclusion that can be drawn from this table is
that the mean squared revisions for the model-based approach
are smaller than those for X—11 when 6, is greater than
about .4, and vice versa when 8, is less than about .4.

If Z, follows an ARIMA model, then the weight function
used to compute the estimates of the nonseasonal component
is

(@) = SEWBIWE S BIOE) B F)
N o 20(B)8(F) 6(B)O(F)

where y(B ) is a polynomial in B of finite degree and 8(B ) is
the moving average polynomial of the model (2.3). In the
important case where 8(B) = 6"(B)(1 — 0,8 12) with 6*(B )a
nonseasonal polynomial in B, the magnitude of 6, is the most
important factor in determining the effective length of the
moving average filter Wy(B). Larger values of 0;, lead to
longer moving averages. Cleveland and Tiao (1976) found
that an implicit model for the additive version of X—11 with
standard options can be roughly regarded as having 6(B) =
8°B)(1 — 8;,B'2) with 8, about .4. Thus, when 0y, is less
than about .4, the model-based method uses shorter filters
than X—11 and otherwise uses longer filters. Since 4 is the
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approximate value for 0, in table 5.1 at which the mean
squared revisions for the model-based method become smaller
than those for X—11, this suggests that longer filters lead to
smaller first-year revisions. Because the key factor here is the
size of 8y, results similar to those in table 5.1 might be
expected for models other than (5.1) with 6(B) = 0*B)
(1 -0,,B1).

The above results do not mean that the X—11 procedure
should be preferred over the model-based procedure whenever
01, is estimated to be less than about .4 and vice versa. In our
opinion, justifications for the use of the model-based pro-
cedure are based on grounds other than the comparative size
of the revisions. In fact, these results cast severe doubt on the
appropriateness of using revision measures to choose between
different methods of seasonal adjustment. The parameter 6;,
can be estimated from the data, so there is information in the
data regarding how long a filter is appropriate. It makes sense
to use this information as the model-based method does rather
than ignore it as use of X—11 with standard options does. The
theoretical results together with the empirical findings in the
next section are presented in this paper mainly because of the
practical interest in this problem.

5.2 Empirical Comparisons

Measures of revisions. In this section, we report on the
results of an earlier empirical study comparing revisions for
the model-based approach, X—11, and X—11 ARIMA. (See
Hillmer 1981.) In this study, the magnitude of revisions was
assessed by measures other than the mean square measure
used in the preceding discussion, where it was chosen for
theoretical convenience. We would expect the results based
upon different measures to yield broadly similar conclusions.

For any particular 12-month period, let A,© ¢ = 1,

12 denote the year-ahead adjusted values, and 4,%) ¢ = 1

, 12 and k = 1, 2, 3 denote new adjusted values for the
same 12—month period after k additional years of data become
available. The revisions in level after k years are then R,%) =
AP —-AO®r=1, ... ,12andk =1, 2, 3. To measure the
magnitude of the revisions in the level of the series, we can
compute the average absolute revision over a 12-month period
after k years of additional data are available

Do = 1 ﬁIRUOl

Another quantity of interest is the magnitude of the revisions
in the month-to-month percentage changes. We let P,© =
1004,9 — A9 yA 9 ¢ =2, , 12 denote the month-
to-month percentage changes in the ear-ahead adjusted fig-
ures, and let P,%) = 100(4,% — A, % vA4) t=2,...,12
be the month-to-month percentage changes after k years of
additional data are available. Then,

1 1
Cc® = _1_1_ é lpt(k) — Pt(O) |
=2

k=123 5.2)

k=12 3 (53

is a measure of the revision in the month-to-month percentage
changes.
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The data used. To perform the empirical comparison,
actual time series were obtained from the Census Bureau and
the Bureau of Labor Statistics. The series included com-
ponents of the following groups: Employment-unemployment
series, industrial inventories, wholesale inventories, construc-
tion series, retail sales, wholesale sales, industrial shipments,
and retail service series. The series were not a random sample
but were not chosen with any particular characteristics in
mind.

To perform the ARIMA model-based adjustment, each
series was modeled in a manner similar to that given in Box
and Jenkins (1970) and in section 3. The research on the
modeling of outliers as described in section 4 was completed
subsequent to the empirical study, so the treatment of outliers
in the study was slightly different. In particular, all outliers
were treated as additive outliers. A few series were eliminated
from the study at the modeling stage for reasons including
(i) the apparent lack of the need for the seasonal differencing
operator 1 — B'2, indicating that a seasonal component should
not be removed (see sec. 2.4) and (i) modeling complications
such as the occurrence of a strike in the series. We plan on
further investigating the series removed for the second reason.
After eliminating these series, 76 series were available for the
study. Each of the 76 series was seasonally adjusted by the
three methods under consideration. For the model-based
method, logarithms of the data were taken for 58 of the series,
square roots for 2 series, cube roots for 1 series, and 15 series
were not transformed at all. For X—~11 and X—11 ARIMA,
the additive versions with standard options were applied to the
15 series not transformed for the model-based method, and to
the logarithms of the data for all the other series.* The
adjusted transformed series were transformed back to the ori-
ginal metric by exponentiating, squaring, or cubing before
computing the revision measures.

For each method, the seasonal adjustment was performed
using data from the beginning of the series up to 3 years from
the end of the series, and year-ahead adjusted values were
computed. Then 1, 2, and 3 years of data were sequentially
added so that first-, second-, and third-year measures of (5.2)
and (5.3) could be computed. For seven of the series, only
first-year measures were calculated because these series were
felt to be too short for the computation of the second- and
third-year revisons. \

Comparison of model-based and X—11 methods. In
comparing the model-based approach to X—11 for each of the
two measures (5.2) and(5.3), the ratios of the revision meas-
ures (model-based divided by X—11) were computed.’ Histo-
grams of these ratios for the first-, second-, and third-year
revisions are plotted on a log scale in figures 5.1 and 5.2 for

4For X~—11 ARIMA, no account was taken of trading-day variation in
forecasting the observed series (it was handled in the usual X—11 way in
adjusting the extended series) because the X—11 ARIMA computer program
did not allow for it. Smaller revisions for X—11 ARIMA may have resulted
if some allowance for trading-day effects had been made in the forecasting.

The ratios were computed to make comparisons across the 76 series. The
revisions for the individual series for each of the three methods are available
and will be provided on request.
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the measures (5.2) and (5.3). The geometric means of these
ratios are reported in table 5.2. Based upon the figures and the
table, we draw the following conclusions.

(i) On the average, there was at least a 40-percent reduction
in the first-, second-, and third-year revisions in the level of
the series when the model-based procedure was used. From
the histograms, there appears to be a moderate amount of
variation in performance; but, for the majority of the series
considered there was a reduction in the revisions in level
when the model-based method was used.

(ii) There also was more than a 40-percent average reduc-
tion in the revisions of month-to-month percentage changes
for the first, second, and third years for the model-based
approach. Again, a major proportion of the series had smaller
revisions in month-to-month percentage changes when the
model-based approach was used rather than X—11.

Table 5.2. GEOMETRIC MEANS OF THE
RATIO OF MODEL-BASED TO X-11

Revisions in the level of the series

First year Second year Third year
.59 .56 .56

Revisions in month-to-month percentage changes

First year Second year Third year
.56 .54 .54

Comparison of model-based and X-11 ARIMA
methods. For comparing the model-based approach with
X—11 ARIMA, similar ratios of the revision measures
(model-based divided by X—11 ARIMA) were computed.
Histograms of these ratios, plotted in log scale, are presented
in figures 5.3 and 5.4 for the measures (5.2) and (5.3), and the
geometric means of these ratios are reported in table 5.3.
From these, we draw the following conclusions.

(i) For each of the first-, second-, and third-year revisions,
there was more than a 40-percent average reduction in the
revisions in level when the model-based approach was used
instead of X—11 ARIMA.

(ii) For revisions in the month-to-month percentage
changes, the use of the model-based approach led to a reduc-
tion of more than 40 percent in each of the first-, second-, and
third-year figures on average.

Table 5.3. GEOMETRIC MEANS OF THE
RATIO OF MODEL-BASED TO X-11 ARIMA

Revisions in the level of the series

First year Second year Third year
.53 .55 59

Revisions in month-to-month percentage changes

First year Second year Third year
.58 .56 .58
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REVISIONS IN MONTH-TO-MONTH

Figure 5.2 RATIOS (MODEL-BASED/X-11) FOR
PERCENTAGE CHANGES

Figure 5.1 RATIOS (MODEL-BASED/X-11) FOR
REVISIONS IN LEVEL
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FOR REVISIONS IN MONTH-TO-MONTH

Figure 5.4 RATIOS (MODEL-BASED/X-11 ARIMA)
PERCENTAGE CHANGES

Figure 5.3 RATIOS (MODEL-BASED/X-11 ARIMA)
FOR REVISIONS IN LEVEL
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Explanation of results. It is of interest to investigate why
we obtained substantially smaller revisions when using the
model-based approach rather than the other two methods. For
the 76 series studied, the moving average part of the model
for the series Z, has the form 8(B) = 8°(B)(1 — 6,819
where 8°(B) is a nonseasonal moving average polynomial.
The estimated values of 8;, for the 76 series are reported in
table 5.4. Notice that about 99 percent of the series had 6y,
values larger than .4. Thus, from the results in section 5.2, we
would expect the model-based approach to have smaller revi-
sions than X—11 with standard options since it is using longer
filters. The situation seems to be similar when comparing
model-based to X—~11 ARIMA with standard options. To the
extent that series to be adjusted follow models with high 6,
values, as in this study, we can expect the model-based
approach to lead to smaller revisions than X—11 or X-11
ARIMA.

Table 5.4 ESTEIMATED VALUES OF 0, FOR THE SERIES
IN THE STUDY

012

Occurrences <.5 .5-6 .6-.7 7-8 .89 910

Number 1 5 3 11 38 18
Percent 1.3 6.6 4.0 145 500 23.7

6. COMMENTS ON MODEL-BASED VERSUS
EMPIRICAL PROCEDURES

We believe that the best way to make progress in the area
of seasonal adjustment is through an iteration between
theory and practice. In this spirit, we recognize that empiri-
cal seasonal adjustment procedures, particularly X—11, have
served a need for many years, and have provided a starting
point in the development of model-based procedures. On
the other hand, if we are going to make progress in seasonal
adjustment, it is necessary that model-based procedures be
developed. We now make some general comments on the
relative merits of empirical and model-based approaches.

Underlying statistical assumptions. In model-based pro-
cedures, the underlying statistical assumptions are specified
so that methods can be constructively criticized from a sta-
tistical viewpoint. Thus, it is possible to understand the sta-
tistical principles iroplicit in model-based methods. Also,
when valid problems arise, a model-based approach will
provide possible ways for improvement.

In contrast, empirical adjustment methods are not based
upon statistical theory, so that it is difficult or impossible to
judge them on theoretical grounds. This makes improve-
ments difficult with empirical methods. Therefore, we
expect that more rapid progress in Improving seasonal
adjustment methods should be possible with model-based
methods rather than empirical methods.

Arbitrariness. As discussed in section 2, seasonal
adjustment is inherently arbitrary. The ARIMA model-based
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approach presented here assumes that an appropriate model
can be found for the observed series. Modeling time series
is a somewhat arbitrary process, but any model finally used
has been subjected to appropriate diagnostic tests. The pri-
mary source of arbitrariness lies in the fact that even if the
model for Z, is known, the proposed approach depends upon
some arbitrary principles to achieve a unique decomposition.
The advantage here is that the arbitrariness is clearly speci-
fied. Thus, if someone disagrees with the choice of the
canonical decomposition, they may choose a different
acceptable decomposition, or if they are unwilling to make a
choice, they may refrain from seasonal adjustment.

If we view seasonal adjustment as a signal extraction
problem (as most empirical adjustment procedures implicitly
do), then it is clear that empirical methods must somehow
deal with the same kind of arbitrary choices as the ARIMA
model-based approach. The problem is that with empirical
methods the nature of the arbitrary choices being made is
unclear. As a result, there is no way to judge the reason-
ableness of the choices. In fact, as discussed subsequently,
empirical procedures need not be consistent with the infor-
mation in the data; consequently, some of the implicit
choices may be, in a sense, incorrect.

Consistency with the data and flexibility. The model-
based seasonal adjustment procedure described in section 2
uses models for S, and N, that are constrained to satisfy
(2.4). Therefore, given that one has built an appropriate
model for Z,, the estimates derived under this procedure are
consistent with the information in the data. The model-based
approach is also flexible because for each different series a
model of appropriate form can be selected and the model
parameters estimated using the relevant data. Model identifi-
cation is a somewhat subjective procedure that can,
nevertheless, be checked, while model estimation is totally
objective.

In contrast, an empirical seasonal adjustment method will
be consistent with the information in the data only by
chance. For example, the additive X—11 program with stan-
dard options could be thought of as being consistent with
the data if Z, approximately follows the ARIMA model
given by Cleveland and Tiao (1976). If the data deviate sub-
stantially from this model, then the additive X—11 will be
inconsistent with the information in the data. The X-11
program does have many options that can be adjusted by
analysts. The frequency with which nonstandard options are
selected varies considerably, depending on who is adjusting
the data. When this is done it is frequently because previ-
ously estimated seasonal factors appear to be inadequate.
These options offer only limited flexibility, so it may be
that no choice of options yields a procedure that is con-
sistent with the data. Also, choosing options is highly sub-
jective, requiring judgment and experience, and without
valid statistical tests to support one’s judgment, inappropri-
ate options may be selected.

Optimality of filters. In empirical app.roaches, the mov-
ing averages have been determined by trial and error, and
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therefore do not necessarily satisfy any particular optimality
criterion. In contrast, the moving averages for model-based
approaches are derived from the theory of signal extraction
so that given the models for and N, the estimates have
smaller mean squared error than any other linear unbiased
estimates. - Finally note that, in principle, model-based
approaches could derive estimates that satisfy a criterion
other than minimunY mean squared error. (See Wecker 1979,
for example.)
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APPENDIX
DATA SETS USED IN THE EXAMPLES

EMPLOYED MALES IN NONAGRICULTURAL INDUSTRIES: 1/65-8/79
(Thousands)

1963 2071 2057 2228 2354 2777 3449 3415 2510 2549 2049 2622
p482 1489 2470 2636 2659 3434 4009 3910 24699 2680 2686 2688
2520 2533 2558 2607 2708 3400 3788 3717 2615 2605 2505 2356
2350 0449 2520 2852 2784 3407 3868 3897 2720 2786 2736 2793
2480 2700 2742 2880 2850 3570 4059 3970 2941 2944 2922 2974
2774 D786 2847 2815 2939 3428 3991 3827 2834 2833 2868 2928
2713 2758 2712 2838 2963 3451 4118 3933 2918 2997 3066 3049
2037 2880 2987 3144 3275 3937 4336 4230 3258 3325 3306 3333
3109 3236 3388 3452 3474 422 4634 44246 3568 3634 3535 3334
2406 3345 3422 3444 3ERE 4242 4661 4429 3484 3546 3414 3383
2124 3140 3134 3I205 3267 3IB33 4282 4138 3216 3276 3242 3237
3104 3111 3176 3331 3439 4034 4576 4342 3300 3422 3330 3401
3231 3253 3330 3512 3683 4312 4791 4586 3544 3778 3715 3764
Imas 477 3520 3679 3BAZ  AS82 4941 4798 3743 3826 3792 3745
34637 3501 3634 3704 3787 4528 4936 4586

WHOLESALE SALES OF HARDWARE: 1/67-11/79
(Millions of dollars)

626 614 689 684 723 778 711 824 793 831 775 689
692 718 757 769 791 809 836 878 856 935 830 763
761 796 830 902 ?10 ?32 ?31 ?08 934 95 863 822
763 778 841 845 863 P52 909 899 P62 P63 893 831
773 803 ?18 P67 9463 1065 1014 1051 1054 1051 1039 260
230 956 1072 1023 1136 1181 1088 1247 1164 1251 1218 1062
1114 1088 1253 1254 1354 1349 1305 1420 1313 1481 1387 1284
1310 1262 1446 1573 1634 1612 1591 1640 1590 1496 1456 1296
1311 1232 1274 1388 1374 1443 1466 1454 1538 1587 1406 1341
1351 1367 1553 1588 1591 1703 1643 1711 1731 1678 1678 1580
1515 1544 1817 1838 1925 2017 1898 2068 1961 2027 1974 1820
1790 1708 2021 2102 2306 2360 2247 2412 2159 2455 2250 2057
2147 1984 2319 2374 2592 2461 2524 2678 2399 2794 2410

RETAIL SALES OF MEN’S AND BOYS’ CLOTHING STORES: 1/67-9/79
(Millions of dollars)

237 187 241 245 259 296 252 260 271 267 320 549
266 216 252 297 302 310 270 288 280 316 372 594
319 249 287 320 342 329 291 321 315 361 400 680
338 268 304 313 348 350 321 317 333 364 396 719
336 267 303 375 382 401 341 351 357 382 447 771
364 310 379 408 439 451 390 413 424 4469 534 884
452 361 426 470 477 502 424 442 442 479 562 P61
437 368 427 495 514 492 443 500 458 492 542 889
459 403 490 467 556 542 474 310 483 8527 591 1044
495 404 4463 540 518 G52 505 502 494 558 629 1137
511 440 496 578 S42 550 492 518 507 569 708 1141
480 421 532 536 542 H563 508 554 G952 609 763 1293
G561 462 G564 582 586 615 553 612 570



100

296
331
345
370
394
393
463
490
489
503
427
438
483

303
361
364
378
411
425
459
490
S11
537
450
458
483

365
402
427
453
482
503
554
598
612
636
573
548
593

RETAIL SALES OF VARIETY STORES: 1/67-9/79
(Millions of dollars. Modified for trading-day and Easter effects)

363
426
445
470
484
G529
576
615
623
1-1]
579
584
620

417
4460
478
534
530
581
615
681
726
607
615
639
&72

421
457
492
510
525
558
619
654
692
585
601
616
650

404
451
469
485
494
547
589
637
623
559
608
614
643

436
476
S0l
527
537
588
637
694
734
608
617
647
702

421
436
459
536
513
549
601
4645
662
556
550
588
654

429
464
494
553
521
593
642
684
684
596
616
648

499
525
548
621
9596
649
737
749
781
665
673
713
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239
1022
1122
1069
1191
1279
1245
1386
1229
1199
1241
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AND G. C. TIAO
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Bank of England

1. INTRODUCTION

This is a very constructive and valuable contribution, which
fills out the practical aspects of the model-based signal extrac-
tion approach. The essential facilities that are needed by users
comprise trading-day adjustment, the Easter effect, and iden-
tification and modification of outliers. The authors conclude
with some comparisons of the size of revisions for signal
extraction, X—11, and X—11 ARIMA.

We have been developing a program for signal extraction in
the Bank of England over the past 3 years, which is basically
the same as in this paper, but there are some important diver-
gences, which I shall discuss.

2. MODEL ESTIMATION AND DECOMPOSITION

The authors confine the decomposition of the spectrum to
its seasonal and nonseasonal components. We have divided
the spectrum into three parts, separating trend from irregular,
to identify outliers, which the authors handle in a quite dif-
ferent way. For this purpose, the decomposition by partial
fractions does not always produce an acceptable division
between trend and irregular; for example, if the numerator of
the rational lag function defining the model is of lower degree
than the denominator (‘‘bottom-heavy”’), a white noise irreg-
ular leaves quite a lot of power in the high frequency part of
the trend; in the time domain, this shows up as a high weight
being given to the central observation in the trend filter. In
Burman (1980) a smoother trend was obtained by allowing the
irregular component to be a first-order moving average. On
the other hand, top-heavy models (degree of numerator
greater than that of denominator) sometimes generate non-
monotonic trend spectra (with a maximum instead of a
minimum at frequency ). This could also occur for more
complex balanced models; for example, the (0, 2, 2) nonsea-
sonal operator with 1 + 6 + 87 + 60, < 0 (which implies
that the roots of the MA operator are complex). By extending
the use of a first-order moving average irregular component to
these cases, a monotonic decreasing trend could be obtained
(e.g., by subtracting a function of the form (ey — e, cos w)
from the trend spectrum where eg > 0, e, > 0). In practice,

we find that the attempt to make the trend spectrum mono-
tonic may lead to an invalid irregular spectrum—one that
takes negative values.

Hillmer, Bell, and Tiao (HBT) confine the seasonal opera-
tor to (0, 1, 1),, a restriction that Statistics Canada has
imposed in the light of experience (Dagum 1979). A few
series are known for which the (0, 1, 2), operator fits better,
but this does not seem to provide valid spectral decomposi-
tions. Another possibility that occurs occasionally is
(1, 0, 0); with ¢, > 0. This is rejected in section 2.4 of
the paper on intuitive grounds.

Before considering the special features developed by the
authors, I have a question about the method of estimation of
the filters (2.5). A very large number of forecasts and back-
casts are required before the filter weights die away if 6, is
close to 1. Did they use what was called in Burman (1980) the
Tunnicliffe Wilson algorithm? This enables exact results to be
obtained with only 2-years’ forecasts and backcasts and a
couple of matrix inversions.

3. TRADING-DAY ADJUSTMENT AND EASTER

The model of trading-day adjustments (TDA) is well-
established as part of X—11, and it is clearly defined. It there-
fore seems right that for model-based seasonal adjustment, it
should be estimated simultaneously with the ARIMA model.

The definition of an Easter effect is one that I have not met
before, but it seems eminently reasonable and simple to esti-
mate in practice. The procedure parallels that with TDA,
except that the estimate of T, the length of the Easter buige, is
obtained by a grid search. However, the model is less clearly
defined because 7 is not very well-determined; so it might be
advisable to keep 7 constant when updating the model each
year to minimize revisions.

4. OUTLIERS
4.1 Comparison of Methods

The older methods of seasonal adjustment deal with out.liers
in a largely intuitive way. After preliminary seasonal adjust-
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ment, outliers are identified, the series is modified, and the
main procedure repeated. An outlier is identified at time ¢
when I/, | is larger than some multiple of the RMS of the /; (in
the additive case), say 2.5¢;. In X~11 the modification is
simply to subtract /, from z,. The Bank of England’s moving
average program (see Burman 1965) takes account of the
weight d of the outlier in the estimated trend, and the modifi-
cation is I,/wg, where wg = 1 — dg. This program (called
hereafter B/E(1985)) also allows for the interaction among
adjacent outliers of the same sign. In both programs, tapered
modifications are made for smaller values of |l,f, which
diminishes the effect on the seasonal adjustments of an obser-
vation crossing the boundary at 2.50;, when the annual
update takes place. Hitherto our signal-extraction program has
followed this method for handling outliers.

We need to rethink the handling of outliers when using
model-based methods, and HBT have now put it on a firm sta-
tistical basis. The paper draws an important distinction
between additive outliers (AO) and innovative outliers (JO).
An AO has only a transient effect on the series; while an IO
results in an abrupt permanent change in the level, growth
rate, or seasonal pattern of the series, or in all three. A more
fundamental classification is between outliers that can be
attributed to external causes and those that cannot. I believe
that all IO’s will have external causes, as will some AO’s
(e.g., those related to strikes or exceptional weather). But can
we reliably distinguish between AO’s resulting from such
contamination of the generating process and those that simply
reflect sampling fluctuations from a rather fat-tailed distribu-
tion?

The paper’s equations (4.2) and (4.3) define a single AO or
10, though other types of 10 are likely to be needed, e.g.,

10Gi): 7, = g((;)) g, + 1(_"_0 = E(t)  (Theireg. 4.13)
10Gii): z, = g((—gl) 4 + o 11 - :J £,(0)

I0(iii) represents an abrupt shift in the seasonal pattern
between the months (or quarters) at ¢ and (¢( + 1), which is
repeated in later years. (Note: The dummy wg in HBT has
been replaced by o to avoid confusion with w, the spectral
frequency.)

4.2 A0 Identification

‘We now examine the relation between the HBT identifica-
tion of AO’s and the traditional method. Their regression
equations (4.6) for a single AO at ; may be written

(B )le =e =o; ta
wB )z 41 = ey = ;my +oa

Bz 42 = €42 =0Ty T aag ...

Letp, =0, ...0, 1, m ... %) (n vector)
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where n = number of terms in the series. Equations become

e=qo;p; +a
If there are k outliers at ¢, 15 . . . 1, define
P=(P,ps- . -Po (nxk matrix)
and
a' = (o, 0, . .. 0y)
Regression equations become
e=Pa +a “.1)

and the normal equations are P 'Pa = P’e. If the model
spectrum is decomposed so that the irregular component is
white noise,

2:(®) =g + gn(®) + g(v)

the filter for i, is the time-domain equivalent of g¢/g,(w), that
is,

dBIOF) _
90 ) qom(B)w(F)

But this is calculated in our signal extraction program from
the trend and seasonal filters as {wo + w;B +F) +
woB2 + F?) . . .}. So, equating coefficients

q0(1+‘ﬂ'12+’1T22.)=W0 }
qo(l~m; +my T ... ) =W £22
Hence,
| Wo w’Z—tl wt3—tl S0 o
qoP'P = | Wiy, Wo Wiy, ... | =W (say)
Also
I, = ggnB)m(F )z
= gom(F)e, 4.3)
So,
qoP'®) =, Ly ... 1) =Xy (say)

and the normal equations for the regression become
wa =1 4.4

Note that the finite sums in P'P have been replaced by in-
finite series in (4.2), but this is valid because ¢, = 0( > n).
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The covariance matrix of & = (P 'P) ' a2 =gW o2

For an isolated outlier

&,' = I)‘i/WO

SE@&;) = (qo/wo)? 0

and the -ratio is 1,/(qow 0)1/2 Tg-
The initial sum of squares of the dependent variable in (4.4)

n
=q0 2 e,> and the initial selection of outliers for the regres-

1
sion is made with o, instead of o, in the zratio. Revised
residuals from (4.1) are needed to identify further outliers, but
instead we can use revised /, from (4.4)

a=e—Pa

Revised

I = gym(F)a = old I — Wi«

where W. is (n X n), i.e., W padded with zeroes, and &- is
similarly related to & We conclude that, provided (4.3) is sat-
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isfied, the intuitive identification of outliers through the /, is
correct, and so is the amplifying factor 1/w, for isolated outliers
in B/E (1965). But this factor now allows for distortion by the
outlier of the seasonal component, as well as the trend, and for
all interactions between neighboring outliers. After removal of
outliers, (4.3) shows that /, is normally distributed with variance
g3l + w} + @3 ... + wi_,)o2, which, for terms not too
near the end of the series, approximates to gowoo2. However,
towards the end, the truncation of 7w(F) leads to i having smaller
variance; and, by symmetry, the same must be true near the
beginning, i.e., the e, have variance less than o2

The interaction between outliers is negligible if they are
more than 3 months (quarters) apart, except when in the same
month of neighboring years. (See figure 1.)

4.3 Estimation of the Outliers

The authors (HBT) recommend an inner iteration to iden-
tify outliers and an outer iteration of the whole model, simul-
taneously reestimating the outliers. We have implemented
their inner iteration in slightly modified form so that new
outliers enter the regression as they are identified, but the
removal of those that have become insignificant is deferred

Figure 1. FILTER WEIGHTS FOR IRREGULAR COMPONENT
(011)(011);, model with 8; = 0.57, 84, = 0.75
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until the end of the iteration. This change makes no difference
when outliers are effectively isolated (W is diagonal), but it
avoids the risk of their oscillating in and out of the regression.
The simplicity of equation (4.4) permits simultaneous entry of
several outliers.

An important philosophical point arises in the use of simul-
taneous estimation of outliers in HBT’s outer iteration. If the
outliers are linked with external causes (as they will always be
for 10), the hypothesis concerning them is precise and closed,
so that simultaneous estimation is justified (as in the case of
trading-day adjustment). But, if not, the hypothesis is open
ended; that is, one can choose the cutoff point arbitrarily, and
in some cases this could lead to an unstable situation with an
ever-increasing number of outliers being identified. More-
over, AO’s without known external causes may be identified
one year and not the next year if they are close to the cut-off
point.

An example of the difficulties that can arise with the
automatic identification of outliers is provided by the series
for United Kingdom unemployed. This is normally very
smooth and a (111) (011);; model is fitted very well. The
exceptional winter of 1962-63 coincided with the cyclical
and, of course, the seasonal peak. The irregular series shows a
large positive in March and an even larger negative in April
1963. The program identifies the latter as an outlier, but treats
the former as its shadow. What happened was that unemploy-
ment rose more than seasonally in January, February, and
March and fell suddenly when the snow melted. Knowledge
of the external cause would have led to a better treatment of
the outliers, as occurred automatically with the less flexible
trend of B/E (1965).

A compromise, which I plan to adopt, is—

(i) include all IO and AO with known causes in the model
reestimation (once)

(ii) estimate other identified AO from (4.4), and modify
the series, but do not reestimate these outliers in the
model; also provide for tapered modification, as in
X—11 and B/E (1965).

I have serious doubts about the usefulness of HBT’s IO in
their equation (4.3). If the outlier has produced abrupt
changes in both trend and seasonal components, would we be
justified in assuming that the structural parameters of the
model are unchanged?

4.4 Implications for the spectral decomposition

The argument from the character of the spectra only allows
us to conclude that the irregular component should be a low-
order MA. The best chance of identifying outliers seems to be
by making the spectrum as smooth as possible, reinforcing the
minimum signal extraction principle. For this reason, Burman
(1980) proposed, for bottom-heavy models, the transfer of a
function €;(1 + cos w) from trend to irreguiar. But we now
know that valid identification of outliers can be made only
with a white noise irregular. This settles the decomposition of
the spectrum on the first round. Of course, on the second
round, one could have a MA irregular if one is not iterating
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the identification of outliers. A MA irregular arises naturally
in top-heavy models; but, as remarked above, it can lead to an
invalid decomposition in which the irregular component of the
spectrum takes negative values. I am therefore now persuaded
that this component should always be white noise.

5. REVISIONS

The authors remark at the beginning of section 5, ‘‘we do
not feel that one method . . . should be preferred over another
on the basis of revision.”” I think it is fair to say that if on
average one method produces smaller revisions without any
sacrifice of quality (e.g., traces of residual seasonality), it
should be preferred. They show that for the model-based
method 0, is nearly always greater than 04, which
corresponds to the model for which the X—11 central filters
would be approximately optimal. This explains why, on aver-
age, signal extraction produces smaller revisions. But the
appearance of the seasonal component of the latter is often
more flexible than X—11, even in the range 04 <
01, < 0.6, which must be due to the operation of the noncen-
tral filters.

An important cause of revisions is the fall in 01, resulting
from the modification of outliers. This also tends to increase
the variation of 8, over different lengths of a series. Columns
1, 2, 5, and 6 of table 1 show how the estimates vary for two
series as they are extended from 8 to 19 years. These results
were obtained with an earlier version of our signal-extraction
program, in which modifications were tapered. It would be
useful if the authors examined their extensive data to see
whether the use of model estimation of outliers (implying no
tapering) has increased the size of revisions.

6. PRIOR PROBABILITIES

For shorter series—under 10 years—the variation of 8, is
often much larger than its asymptotic standard error, which

" must contribute to the revisions. Following Akaike’s Bayesian

approach, it is suggested that the user be allowed to impose
his/her own prior beliefs on the model, namely that the sea-
sonal pattern evolves slowly over time, except when there is a
sharp change (IO(iii) above) induced by an external cause.
This implies that values of 85 close to 1 should be given
higher priors than those in the region 0.4-0.6. We have imple-
mented an example of such a prior function in our program.
The prior equals 1 at 8,; = 1, is close to 1 for 8;, > 0.8,
and is set by the user to a value o at 035 = 0.6,

Columns 3, 4, 7, and 8 of table 1 show 8, estimated with
priors, setting a = 0.2. The effect is to increase By, but by
decreasing amounts as the series lengthens. It also reduces the
differences between preliminary and final values and their
variation over the span of years. But 6, and the Ljung-Box 0
are virtually unchanged compared with straight ML, which
must mean that the likelihood surface is fairly flat in the
neighborhood of the maximum, for series of the length avail-
able in economics. So a seasonal prior should cause a signifi-
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Table 1. VARIATION IN ESTIMATES OF 6,
Series 1! Series 2°
ML + priors ML + priors
ML (@=02) ML (@ =0.2)
Number

of years Prelim. Final Prelim. Final Prelim. Final Prelim. Final
8 .682 .640 754 .808 Fixed Fixed Fixed Fixed

9 .699 .648 51 767 951 .867 .966 .890

10 744 176 781 .818 .905 775 923 .812
11 .785 .874 .807 .893 Fixed Fixed Fixed Fixed

12 .843 .886 .860 927 .925 .884 .934 .891

13 788 .786 .805 791 .844 .812 .858 .847

14 780 701 795 736 .826 778 .838 .808

15 .810 756 .819 779 751 .651 174 702

16 758 621 172 .666 749 663 770 704

17 72 647 784 .680 .801 748 811 .766

18 .812 703 817 124 .826 195 .833 809

19 .820 712 .825 132 .839 .813 .844 .824

Mean 774 729 798 77 .868 .816 879 .838
SD .0458 .0849 .0300 0748 .0835 .1056 .0790 .0923

"United Kingdom production of passenger cars.
2United Kingdom engineering orders on hand.

cant reduction in the size of revisions without any loss of
quality of seasonal adjustment.

In a similar way, priors-may be introduced for the smooth-
ness of the trend; but the corresponding parameter estimates
seem to be little affected, and I am not sure yet whether such
priors will prove useful. Details of the method will be pub-
lished elsewhere.

7. CONCLUSIONS

1 should like to thank the authors for providing extensive
insights into the practical problems of applying signal extrac-
tion, e.g., trading-day and Easter adjustments, and in particu-

lar for clarifying the statistical treatment of outliers and the
related question of the canonical decomposition.
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PRAISE WHERE PRAISE IS DUE

The paper by Hillmer, Bell, and Tiao (1982) is a very
substantial one. It leaves this reader convinced that their
approach to seasonal and calendar adjustment—modeling the
trend, seasonal, and irregular by ARIMA models, modeling
the calendar in the X-11 manner by a linear combination of
day-of-the-week counts, and using signal extraction to carry
out the adjustments—is one which deserves serious
consideration.

A HISTORICAL NOTE

Grether and Nerlove (1970) were the first to suggest
modeling trend, seasonal, and irregular components by
ARIMA models and using signal extraction to carry out sea-
sonal adjustment. This work culminated in a book (Ner-
love, Grether, and Carvalho 1979), several chapters of
which are devoted to such modeling. It will be important
for us to compare the Hillmer-Bell-Tiao technology with the
Nerlove-Grether-Carvalho technology, both theoretically and
empirically.

THE DESIDERATA

As the authors have clearly stated, there is an inevitable
arbitrariness to ‘the definition of the seasonal component.
When seasonally adjusting a series, in isolation, without
ascribing the seasonal variation to some specific cause, the
best we can do is simply say that we want to remove varia-
tion at and near the seasonal frequency (1 cycle per 12
months for monthly data with a yearly seasonal component)
and its harmonics; just what ‘‘near’’ means is and must be
somewhat arbitrary.

The situation with calendar adjustment is different; here
we are addressing the variation associated with the number
of times different types of days occur in each month, so that
specific explanatory variables can be defined and regression
techniques used to remove the variation. Of course, there is
the usual vagueness about the specific form of the explana-
tory variables; in fact, I shall argue shortly that a definition
of explanatory variables somewhat different from that of the
authors is more appropriate.
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Even though the definition of the seasonal component is
in part arbitrary, there are nevertheless some broad guide-
lines for the seasonal component and the trend component,
which I shall describe for a monthly series with a yearly
seasonal.

The trend is a portrayal of the low frequency, or long
term, variation in the data. Thus, it should appear like a
smooth curve drawn through the data.

Each monthly subseries of the seasonal—for example, the
January values—should describe the low frequency, or
long term, variation in the corresponding monthly sub-
series of the data minus the trend (and minus the calendar
component if one is present).

This is the general thinking that has guided seasonal adjust-
ment in the past. The earliest expression of this thinking that
I have been able to find is in Macaulay (1931, app. I).

GRAPHICS

Irma Terpenning, Susan Devlin, and I have argued that
graphical displays deserve to be a routine part of seasonal
and calendar adjustment. We know of no other way of pro-
viding such powerful tools for assessing the adequacy of the
adjustment process and for understanding the variation in
the series. In Cleveland and Terpenning (1982), there are
graphical displays for seasonal adjustment and in Cleveland
and Devlin (1980), there are graphical displays for calendar
adjustment.

I used these displays to investigate the performance of the
Hillmer-Bell-Tiao methodology. Three of these displays will
be shown later for the following three monthly series:

Series 1. Number of unemployed males in the U.S.,
ages 16-19

Series 2. Natural logarithms of wholesale sales of
hardware in the U.S.

Series 3. Number of nonagriculturally employed males in
the U.S.

Series 2 and 3 are analyzed in the Hillmer-Bell-Tiao paper
and series 1 is analyzed in Hillmer and Tiao (1982). Steve
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Hillmer kindly provided mé with their trend, seasonal, irreg-
ular, and calendar components for these series. I also ran
the SABL seasonal and calendar adjustment procedures
(Cleveland, Devlin, and Terpenning 1981) on these series.

The same three graphical displays that are used to show
the authors’ resuits are also used to show the SABL results
to provide a comparison of the two methods. Figures with
odd numbers show the three types of graphical displays of
the Hillmer-Bell-Tiao components for the series. Figures
with even numbers show the same displays for the SABL
components for these three series. The following sections
describe the three types of displays used.

THE DATA AND COMPONENTS PLOT

The display shown in figure 1 is a plot of the data and the
components in a vertical array of panels, so that time is a
common horizontal scale. Each panel has its own scale,
chosen so that the plotted values fill the panel. This is done
since, typically, the ranges of the series and the components
are very different. The drawback to having different scales,
of course, is that the relative amount of variation can be
seen only by looking at scale labels. To provide a more
visual appreciation of the relative variation, a bar has been
drawn to the right of each panel. The lengths of the bars
represent the same amount of change in each panel. For
example, a change in the value of the trend component
equal to the length of the trend bar is the same as a change
in the irregular component equal to the length of the irregu-
lar bar.

SEASONAL SUBSERIES PLOT

The plot of the seasonal compopent in the data-and-
components plot certainly gives much information, but we
cannot assess the behavior of each monthly subseries of the
seasonal. This can be done in the seasonal subseries plot
shown, for example, in figure 3. First, the January values of
the seasonal are plotted for successive years, then the
February values, and so forth. For each monthly subseries
the midmean of the values (the average of all values
between the quartiles) is portrayed by a horizontal line. The
values of the subseries are portrayed by vertical lines
emanating from the midmean line. The predicted values of
the seasonal, which are frequently used to adjust data for
the coming year as they come in, are portrayed by dashed
lines. The seasonal subseries plot allows an assessment of
the overall pattern of the seasonal as portrayed by the hor-
izontal midmean lines and also of the behavior of each
monthly subseries. Since all of the values are on the plot we
can see whether the change in any subseries is large or
small compared with the overall pattern of the seasonal.

THE SEASONAL-IRREGULAR PLOT

Earlier I pointed out that each monthly subseries of the -
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seasonal can be thought of as the result of smoothing the
corresponding monthly subseries of the data minus the
trend. Thus, the values of the former should be as smooth
as possible, subject to the constraint of reproducing the
overall long term pattern in the latter. One way to judge the
performance of the smoothing is to plot, for each month,
the monthly subseries of the seasonal and the monthly sub-
series of the data minus the trend (and minus the calendar
component if it is present), which is equal to the seasonal
plus the irregular. This has been done, for example, in fig-
ure 5. The seasonal plus irregular is plotted using the sym-
bol ““O” at the plotting locations; the seasonal is plotted
using a connected plot in which successive plotting locations
are connected by straight lines; the values of the seasonal
predicted 1 year beyond the end of the data are plotted by
the symbol “‘+’. Sometimes a ‘‘*’ is used as a plotting
character instead of ‘‘O’’; at these times the irregular value
is very large in absolute value and the seasonal plus a modi-
fied irregular has been plotted. This is done so that outliers
in the irregular do not destroy the resolution of the display.

I have included the three graphical displays for the three
examples described above to give the reader the opportunity
to make his or her own judgments. In the following sec-
tions, I will make some observations based on these
displays.

THE NEED FOR ROBUSTNESS

The authors are quite accurate in stressing the importance
of robust estimation to cope with outliers. The detrimental
effect of outliers in economic data on standard statistical
procedures was noted at least half a century ago (Kuznets
1933). An example of how an outlier can distort results is
provided by the decomposition of the unemployed males
series shown in figures 1, 3, and 5; Hillmer and Tiao (1982)
used the version of their methodology without the robustness
capability. The bottom panel of figure 1 shows two large
positive outliers in the irregular; as it happens they both
occur in May, one in 1965 and one in 1966. If we now look
at the May panel in figure 5, we see that the seasonal com-
ponent has been substantially distorted for this month; in an
effort to accommodate the outliers, the seasonal values for
May from 1967 to 1971 have been pulled up above what
appears to be reasonable for these years.

It would be interesting to see how the authors’ robustness
methodology performs on this example. Figure 6 shows the
SABL robustness methodology was able to cope with the
outliers; the seasonal in the May panel has not been dis-
torted for the years 1967 to 1971.

SMOOTHNESS OF THE SEASONAL

Figure 11 shows, for the authors’ decomposition of
hardware sales, some peculiar behavior: the seasonal sub-~
series all have a small amount of local roughness. The sea-
sonal subseries for the authors’ decomposition of employ-
ment and unemployment are smoother (see figs. 5 and 17)
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even though all three models and their parameter estimates
are very similar. For these three series; the models are
(apart from the fact that hardware has a calendar com-

ponent)
(1 =B)1 —B™Z = (1 - 6,B)1 — 08,,8'q,

where the parameter estimates are

- b b
Unemployed .31 .82
Hardware 19 74

Employed 27 .82

It would be interesting to work out the correlation structure
of the seasonal subseries and see if it depends sensitively on
the value of 6;,.

WHY NOT A DETERMINISTIC SEASONAL PIECE?

One strong impression conveyed in the seasonal subseries
plots of all of the examples is that the seasonal components
consist of a large overall stable seasonal cycle (as
represented by the horizontal midmean lines) around which
are moderate or minor fluctuations of the seasonal subseries.
The pattern seems to beg for a model having a stable deter-
ministic piece. Thus, I strongly second the motion of Pierce
(1978) to do this by including a month-of-the-year effect for
EZ,).

WHY NOT DIVIDE BY MONTH LENGTH?

When the monthly series is an aggregate (flow) for each
month, seasonal variation will be induced in the series sim-
ply because of changing month length; for example, all
other things being equal, February will be less than March.
The obvious and simple expedient is to divide the data by
month length (before transforming). This has been done in
the SABL decomposition of hardware sales portrayed in fig-
ures 8, 10, and 12 but was not done in the authors’ decom-
position portrayed in figures 7, 9, and 11.

It should be remembered that frequently one wants to
study the seasonal component to understand its behavior as a
way of understanding the behavior of the series. When
aggregate data are not divided by month length, the month-
length variation goes into the seasonal component; thus the
seasonal represents a confounding of the uninteresting
month-length fluctuation and the interesting seasonal
behavior. In figure 10, where the original data were divided
by month length, we do not have the effect of month length
as in figure 9, so we can see that some of the interesting
seasonal behavior is low values for January and December
and a big drop fronf June to July.

CALENDAR EXPLANATORY VARIABLES SHOULD
TAKE ACCOUNT OF HOLIDAYS

The authors’ calendar explanatory variables, X;,—seven
(linearly -dependent) variables which are the numbers of
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times the 7 days of the week occur in each month—are the
same as those suggested by Young (1965) and used in X-11
(Shiskin, Young, and Musgrave 1967). If we divide the data
by month length, then the explanatory variables should be
divided by month length so that they become the fractions
of times, X;,, the days of the week occur in a month.

Clearly, it is important to make appropriate modifications
of these explanatory variables to allow for holiday effects,
some of which would otherwise go into the irregular and,
therefore, not be removed in the adjustment process.
Remember that B3; is the effect of the i-th day of the week
on the aggregated daily series. If a particular day is a holi-
day, it is unlikely that $; will still be appropriate.

Susan Devlin and I (Cleveland and Devlin 1982) have
taken the following approach. Consider a holiday that
always occurs on the i-th day of the week and always in the
same month, such as.Labor Day in the United States. First,
since it always occurs. in the same month, its effect can be
accounted for by the seasonal component. Second, if the
calendar modeling proceeds as if the holiday did not occur
and the holiday is treated like any other i-th day of the
week, then the same B; is always added each year (e.g., B,
for Labor Day) by the calendar component. But in the fit-
ting, this will be compensated for by f; being subtracted
from the seasonal. Thus, holidays that are always in the
same month and on the same day of the week can be treated
like any other day in forming X;;,.

Suppose the holiday occurs in the same month, but
changes the day of the week; examples are Christmas and
January 1. The effect of such a holiday, since it is always in
the same month, can go into the seasonal, provided, of
course, the effect does not change according to the day of
the week on which it occurs. But now, if the holiday is

~ ignored in the calendar modeling and treated like any other

day of the week, then the B; that is added will vary with the
year. The effect of this misrepresentation of the holiday as
B; will be incorporated in the irregular, which is undesirable
since it will not be removed in the seasonal and calendar -
adjustment process. The solution is simply not to count the

holiday in X, .

THE CALENDAR COEFFICIENTS FOR HARDWARE
SALES

I am slightly uncomfortable with the authors’ esimates of
B; for the hardware sales data. The values are—

Bi
Mon .001
Tue .013
Wed .004
Thu 011
Fri .001
Sat -.015
Sun —.015

I am not surprised to see the Tuesday, Wednesday, and
Thursday coefficients higher than those for Monday and Fri-
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day; many economic series, such as numbers of phone calls,
show this behavior. But the Wednesday value is peculiarly
low. Does this make sense? We need to consult a hardware
sales expert. However, I do not need an expert to tell me it
is not true that Sunday sales are the same as Saturday sales,
as the coefficients would seem to indicate. The following
are coefficients resulting from the SABL calendat estimation
procedures:

Bi
Mon 016
Tue 104
Wed 066
Thu .086
Fri .010
Sat -.126
Sun -.156

Could it be that the authors not adjusting the calendar
explanatory variables for holidays has resulted in somewhat
distorted calendar coefficient estimates?

ROBUSTNESS

The procedure suggested by the authors for dealing with
outliers—the I0 and AO models, the methods of estimating
o, and the use of likelihood ratio tests to detect the two
kinds of outliers—are essentially the same as the procedures
suggested by Fox (1972). Martin and Zeh (1980) have com-
pared the Fox procedures with M-estimates and GM-
estimates (Denby and Martin 1979) in the IO and AO cases.

A modification of the authors’ implementation of the Fox
method might be helpful. As the authors have stated, the
estimate of o2 can be seriously distorted by outliers. One
easy solution, which has been found to work well for robust
location estimation and robust regression (Huber 1964;
Andrews 1974), is to replace the usual standard error esti-
mate by 1.5 times the median of the absolute residuals.
When the data are Gaussian, its expected value is pearly o.
Once all of the outlier modification has been carried out, o
can be estimated in the usual way.

SUMMARY

My suggestions, which I think can improve this already
excellent piece of work, are—

Use graphics to probe the results of the procedures.

Include stable, deterministic seasonal variation in the
model.

Divide an aggregated monthly series by month length
and adjust the calendar explanatory variables
appropriately.

Modify the calendar explanatory variables to account
for certain types of holiday effects.
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=  Use a robust estimate of the standard deviation in place

of the usual estimate to avoid contamination by
outliers.
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Figure 2. SABL. DECOMPOSITION

Figure 1. HILLMER-BELL-TIAO DECOMPOSITION
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COMMENTS ON “MODELING CONSIDERATIONS IN THE SEASONAL
ADJUSTMENT OF ECONOMIC TIME SERIES”’ BY S. C. HILLMER, W. R. BELL
AND G. C. TIAO

Agustin Maravall
g Bank of Spain

The authors stress the superiority of a model-based
approach to seasonality versus empirical methods. Their
approach centers on the use of statistical univariate time series
models, yet in adjusting economic series there are also
economic modeling considerations, which can be relevant.
They are implied by the implicit demand-supply equilibrium
associated with observed quantities and by the existence of
economic policy (or control). From the point of view of
economic analysis and policymaking, it may be convenient to
distinguish between seasonality in demand and supply, as well
as between seasonality exogenous to the policymaker and the
endogenous one induced by policy.

Although the interest in distinguishing among those dif-
ferent types of seasonality has been occasionally pointed out
(Poole-Lieberman 1972, Bach et al. 1976, and Sims 1981),
zero attention, however, has been paid to it in practice. (An
exception is the work by Plosser 1978.) Very likely, sophisti-
cated and flexible enough estimation methods that permit
identification of these seasonal effects are still far from being
available to practical adjusters, hence, seasonal adjustment
will probably continue to be based on statistical univariate
filtering. Yet elementary economic modeling considerations
may have relevant practical applications. We illustrate the
point through an example derived from a simplified monetary
control framework. Seasonal adjustment plays a crucial role

in monetary policy where targets are set in seasonally adjusted -

terms and, therefore, have to be multiplied by their
corresponding seasonal factors in order to set the instrument’s
path. - Thus, errors in seasonal adjustment strongly affect the
accuracy of monetary control.

Monetary policy is mainly a supply-type control, and exog-
enous seasonal swings are more likely to come from the
demand side. To simplify the discussion, assume there are
only two periods in a year. Consider the market of figure 1,
where D and S are money demand and supply, respectively, x
the rate of growth of the money supply and i the interest rate.
(We assume that bank demand for excess reserves is a func-
tion of interest rate.) Assume that the monetary authority con-
trols S, shifting it at will in parallel, and that there is an exog-
enous seasonal shift in D. If D and D' represent money
demand in the first and second semester, respectively, the sea-
sonal variation in money will be x; and the one in interest rate
i;. (The seasonal shift in D could be caused, for example, by
a seasonal shift in income.)

120

Assume a monetary authority whose priority is to avoid
interest rate variability (which may depress investment and
thereby employment). We shall refer to it as a K-type author-
ity. It shall seek a constant i, for which it shall shift Sto S”'.
Obviously, seasonality in i disappears, while the seasonal
move in x increases by Ax;.

On the contrary, assume the monetary authority to be a
very strict monetarist, for which the first priority is to main-
tain a constant money rate-of-growth. We shall refer to it as
an F-type authority. It will shift S to §''; seasonality in x
disappears while the one in i increases by Ai.

Finally, assume that, at a given time, the monetary author-
ity is changed. The new authority, in order to enforce what-
ever monetary policy in mind, requests from its staff an esti-
mation of seasonality. The staff, unconcerned with previous
monetary policies, simply looks at the univariate information
in the x series. (Although simplified, it is nevertheless a fairly
accurate description of reality.) Depending upon whether the
previous authority was K or F, the conclusion would be: “‘we
are dealing with a very seasonal series’” or *‘no need to worry:
there is no seasonality.”” Obviously the new monetary author-
ity could be in for a surprise.

In general, the correct answer to the monetary authority
request needs to consider more information than the one con-
tained in x alone. But there is an interesting case in which the
univariate information supplies the correct answer.

Assume a K-type authority. Its interest is to get an answer
to the question: By how much does §*have to shift (season-
ally) so that i remains constant? The answer is: By an
amount equal to x{. Further assume that the previous years
were characterized by K-type policies. Then the univariate
information in the x series would display a seasonal swing
equal to x{.

As a matter of fact, real world monetary authorities tend to
be of the K-type. For the U.S. case, the objective of ac-
commodating seasonal fluctuations in the demand for credit
was specifically stated in the 1913 Federal Reserve Act. For
the Spanish case, figure 2 displays the autocorrelation func-
tions of the rate of change of M ; and of the rate of change of
the interbank rate, both series computed as monthly averages
of daily values. .

However, interest rate series often exhibit some residual
seasonality, which seems to have been mostly induced by pol-
icy reactions to errors in the estimation of the seasonal com-
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ponent of the money supply. (See, for example, Lawler 1979
and Maravall 1981.) But, ignoring this small interest rate
seasonality, as long as the monetary authority intends to
remain K, the use of univariate time series analysis seems
valid. Yet, aside from the fact that it simplifies estimation of
seasonality, is there a solid reason to prefer a K-type of
policy?

Consider, for example, a (partial equilibrium) market,
where prices and quantities exhibit seasonal fluctuations. In
general, different seasonal patterns imply different sequences
of associated welfare measures (such as, for example, the
well-known ‘‘consumer surplus’’). Thus, different seasonal
patterns have different welfare properties. Basically, the
comparison among them can be done in a manner similar to
the analysis of welfare properties associated with price insta-
- bility.. (See, for example, Turnovsky, Shalit, and Schmitz
1980.) It is, then, easily seen that a K-type policy (i.e.,
removing price variability) may very well be less preferable
than a policy which produces a different seasonal profile. In
fact, for given D and S and a well-defined optimality cri-
terion, there may be an optimal seasonal path.

Naturally, for such (non-K) policies, seasonal adjustment
based on the information of an x series only would be inap-
propriate. Thus an easy-to-enforce check that could, in some
way, indicate to us whether, in order to adjust the money sup-
ply, a univariate method is appropriate or not would be quite
helpful. We concluded before that univariate seasonal adjust-
ment of the quantity series was appropriate when interest rate
series showed no seasonality. This can provide, therefore, the
easy-to-enforce pretest. If the i series has no seasonality,
univariate statistical techniques can be used. If, on the con-
trary, there is seasonality in i, a more sophisticated analysis
would be required.

Since, as ' we mentioned before, even under a K-type pol-
icy, some seasonality is likely to remain in the interest rate
series, the pretest could be roughly equivalent to the one
recommended by the authors for determining when a series
should be seasonally adjusted (Hillmer, Bell, and Tiao 1981,
sec. 2.4). This would amount to the following: If the autore-
gressive operator of the univariate model for the interest rate
series does not contain the factor

UB)=1+B +...+BY

SECTION 2

i.e., if no Vi, is needed, then univariate time series methods
can be appropriate for adjusting the money supply series, and
vice versa. The check is, thus, trivial to compute.

Similar examples can be constructed for different types of
markets. In general, for the case of economic variables, when
seasonally adjusting a quantity series, information on its dual
variable, the price series, should also be considered, and vice
versa. (Another important case would be unemployment and
wages series.) As we saw before, the dual information might
tell us that univariate statistical adjustment is appropriate, or
that, in order to get the right answer, a more complete
analysis would be required.
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RESPONSE TO DISCUSSANTS

S. C. Hillmer, W. R. Bell, and G. C. Tiao

We would like to thank the discussants for their comments.
Burman has shown the relationship between using the model
residuals and using the irregulars for (AO) outlier identifica-
tion. In doing this, he has made us aware of a point which we
missed. Consider the case where there is a single AO at time
#;. Burman points out that the vector of computed model re-
sidualse = (ey,. . ., e,) is given by

e =wup; ta 6))

where w, is the impact of the AO, p; = (0, . .., L, my,
., Tpy),anda = (ay, . . ., a,)’ is the vector of inno-
vations. Since the a,’s are white noise, (1) is a standard

regression equation and the appropriate estimate of wy, its
variance, and f-ratio are

by = pim(F e,

Var(®s) = plog

A L P ) )
X -_ — ——'Tr e
2 Var@@,)? 04 b
where
prf =1 +'n'12 +...+ w,?_,in

In (2) we set ¢, = O for t > n. (2) differs from the
corresponding result (4.7) in our paper in that p,f is used

instead of p? = (3, w1 For ; small enough so that ] is

0
small for all j > n — ;, p? will be close to p?, so that the

results in our paper will be close to those in (2) above. How-
ever, for other ¢; the Ay, in (2) will be larger than those used

in our paper, which will increase the chance of detecting an
AO. This difference will obviously be important for # near n
(how near depending on the m;’s), i.e., at the end of the
series. Since detecting outliers in the most recent observations
can be important when seasonally adjusting a series, the
modification in (2) should be made to our procedure.

Cleveland has suggested that we use 1.5 median ( |¢, |) in
place of the usual estimate of the residual standard deviation
in our outlier procedure; this is another useful modification to
make. Cleveland has also advocated the approach of Pierce
(1978) which involves always removing a deterministic sea-
sonal factor when modeling a series to be seasonally adjusted.
We would like to point out that our procedure in fact covers
the case of a purely deterministic seasonal component, and
that Pierce’s definition of a stochastic seasonal component is
inconsistent with ours.

For monthly. data, a purely deterministic seasonal com-
ponent means that S, = S,_j; and U(B)S, = 0, which obvi-
ously implies that Var(U (B)S;) = 0. To illustrate that our
approach covers this case, consider the model

(1 =BY1 —BYZ, =1 —0,B)1 - 8:8%a, (3

with o/ = 1. Then, from Hillmer and Tiao (1982), an accept-
able decomposition is characterized in (4), below, where
M (B) is a polynomial in B and (B, F) is a symmetric poly-
nomial in B and F. In (4) the first term on the right-hand side
corresponds to a seasonal component and the second to a non-
seasonal component. It follows that the covariance generating
function for U B)S, is (1 ~ 0812)*n,(B ), (F)o 2, and as 6,5
—> | this covariance generating function vanishes implying
that Var [ U(B)S,] — 0. Noting that for the canonical
decomposition Var [ U(B)S;] is minimized, we see that as
81, — 1 the canonical seasonal approaches a purely deter-
ministic seasopal component in which U(B)S, = 0.

(1= 8:8)(1 — 8B'H(1 — 8,F )1~ 0pF D) _ (1 = 8 nB ), (F)og

(1 =B)1 -B%H(1 —-F)1 -F9

(1 — 00,1 —B)1 —F) + {;}(1 — 0%, + 0,051 — BY(1 — F)* + (1 — 6’n(B, F)

UBY(F)

@

+

(1 —-BY(1 ~FY
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Cleveland’s observation that the seasonal components appear
to consist largely of stable seasonal cycles reflects the fact that
9, is fairly large for the examples.

In the situation where the seasonality is changing over time,
Pierce (1978) advocates subtracting out monthly means leav-
ing residual seasonality to be modeled as

- GBS, = 8(Bb,. Q)

Pierce notes that the seasonal autoregressive operator &(B 12y
in (5) will typically be a stationary operator. It thus will not
contain a factor U (B), so that the way in which Pierce defines
stochastic seasonality is not consistent with the definition
given in (2.6) of our paper. Therefore, in the presence of

SECTION 2

changing seasonality these two approaches can lead to dif-
ferent results. The potential difference is a subject for future
research.
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