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ON BACKSHIFT-OPERATOR POLYNOMIAL TRANSFORMATIONS TO STATIONARITY 

FOR SINGLE- AND MULTICOMPONENT TIME SERIES 

By David F. Findley 

1J.S. Bureau of the Census 

It is demonstrated that any two backshift operator polynomials which transform 

a given non-stationary time series into stationary series with continuous spectral 

distributions must have a common divisor which has this property. It follows that 

the lowest-degree polynomial with this property is unique to within a constant 

multiple. IJsing this result some derivations are given, under varying assumptions, 

of a transformation formula used in non-stationary signal extraction. Counter- 

examples are presented to show that continuity assumptions on the spectral distri- 

bution functions involved are necessary to obtain these results. 

1. Introduction. It is a common practice in the analysis of a nonstationary time 

series to look for a polynomial in the backshift operator B, such as p(B) = (l-B)(l-B12), 

normalized by p(O)=l, which transforms the given series into a stationary series 

(Box and Jenkins, 1976). It appears to have been taken for granted that when such a 

polynomial can be found, then after superfluous factors (e.g., from overdifferencing) 

have been eliminated, this polynomial provides the only normalized polynomial trans- 

formation to stationarity for the series. As we show, after verifying some calcula- 

tional formulas, this result can be established quite generally, but not universally. 

We apply it to validate a transformation formula used in non-stationary signal ex- 

traction by Pierce (1979) and Bell (1982). 

Except in a discussion in section 4 below, all (covariance) stationary time 

series which appear in this paper will be assumed to have mean zero. 
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2. Preliminaries. The proofs of the uniqueness results given in Section 3 

require some simple manipulations with backshift-operator polynomial filters 

and their inverses as they apply to stationary time series. Here we establish 

the validity of these manipulations. 

Let the Cram& representation of the stationary time series 

xt be 

Xt = J emitAdz , 

-71 

and let B denote the backshift operator, Bxt = xt-1. Recall 

[Hannan (1970, page 115)] that a function f(eix) defines a linear time- 

invariant filter f(B) which can be applied to xt if and only if 

II 

(2.1) 
/ 

If(eiX)12dF(A) < 03 

-IT 

holds, where F(X) is the spectral distribution of xt. If (2.1) is 

satisfied, then the series which results from applying f(B) to xt is given by 

f(B)xt = 
/ 

e-iXtf(eiX)dz(A) . 

-IT 
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In this case, we say that f(B)xt is defined. Often, f(B) will be obtained 

from a rational function 

(2.2) f(z) = is;(z)h(z) 

whose denominator polynomial Q(Z) may have roots on the unit circle 

{Id = 1) - Then the condition (2.1) is equivalent to 

(2.3) 

s 

76 

I+(eih)/-2dF(h) < 03 , 

--Jl 

because l+(eih)l is bounded and is bounded away from zero near the 

roots of $(eih). Henceforth, it will be convenient to refer to zeros of 

polynomials such as +(z) as roots of (G(B). 

3. The uniqueness of polynomial transformations to stationarity. 

Suppose that the nonstationary time series wt (t=O,+l,... ) is such 

that a backshift operator polynomial p(B) exists having the property that 

p(B)wt is a stationary time series with continuous spectral distribution. 

Let C (=C{wt}) denote the class of all polynomials p(B) defining such 

operators. We shall now show that all polynomials in C have a common 

divisor, which is then necessarily of minimal degree 4 in C. Consequently, 

the lowest degree polynomial transforming wt into a stationary time series 



with continuous spectral distribution is unique up to a constant scalar 

multiple. 

That all members of C have a common divisor follows immediately from 

(3.1). - Let p(B) and "p(B) be any two polynomials in C and let 4(B) be --- - -- - 

their greatest common divisor. Then 4(B) also belongs & C. 

PROOF. We have p(B) = +(B)4(B) and b(B) = $(B)$(B), 

where the polynomials +(z) and G(z) have no roots in common. We define 

the stationary series 

(3.2a) 

and 

(3.2b) 

xt = "p(B)wt 

yt = tWwt - 

Then 

(3.3) ;(Bbt = +(B)q - 

By hypothesis, the spectral distributions of xt and yt are continuous at 

any h for which elh is a zero of Q(B) or G(B), so we can recover xt 

and yt from (3.3) by applying + -l(B), respectively, $-l(B) thereby 

obtaining xt = +-l(B)$(B)yt and yt = d-l(B)$(B)x+,. We now observe 
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from (2.4) that (L-l(B)yt and +-l(B)xt are defined, so we have 

(3.4a) Xt = d(B)d(B)yt = dW1(B)yt 

and 

(3.4b) yt = i%)+(B) xt = +(B)j;-l(B)xt . 

Using (3.2a) and (3.4a) it follows that 

G(B) {m(Bhq - C1(B)yt} = 0. Hence 4(B)wt = +-l(B)yt + at, 

where at is some series satisfying G(B)at = 0. Similarly, using (3.2b) 

and (3.4b), we obtain 4(B)wt = G-l(B)xt + bt with +(B)bt = 0. 

Our proof will be completed by showing that 

(3.5) at = bt = 0 . 

The first equality in (3.5) holds because (3.4a) implies that 

(c-l(B)yt and Gwl(B)xt coincide. Consequently bt solves two homogeneous 

difference equations whose characteristic polynomials have no roots in common. 

This is possible only if the series bt is zero [cf. Henrici (1974, page 586)]. 

Hence, (3.5) holds, and the proof is complete. 

We shall call that minimal-degree polynomial p(B) in C for which 

p(0) = 1 the polynomial transformation to stationarity for wt. - 

To appreciate the role played by the continuity requirement on the spectral 

distributions of the transformed series in (3.1), consider the following 
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EXAMPLE. Let A be a random variable with mean zero and finite variance. 

Then the series zt = (l/2)(1 + (-l)t}A is nonstationary, but the 

transformed series (1-B)zt = (-l)tA and (l+B)zt = A are both stationary. 

Thus zt admits two polynomial transformations to stationarity having 

no non-constant common divisor. 

4. Series admitting improper transformations to stationarity and mean 

functions which satify a homogeneous difference equation. Suppose that 

pw(B), the polynomial transformation to stationarity for wt as defined in 

section 3, has a divisor 4(B) such that +-1(B) can be appl 

the stationary series it = pw(B)wt, yielding a stationary 

+-l(B)&. (From (2.1), we observe that this will happen i 

there are roots of p,(B) off the unit circle; or, in case 

ied to 

series 

f 

Wt 

is an ARMA process, also if the arguments of some unit circle roots of 

p,(B) are zeroes of the spectral density of Wt.) 

Then, since +(B){[pw(B)/+(B)]wt - Gel(B) = 0, we have 

(4.1) [p,(B)/+(B)] wt = +-l(B);, + at , 

where the series at, which need not be stationary, satisfies +(B)at = 0. 

For a given realization wt(w), the right hand side of (4.1) will 

therefore be indistinguishable from what is obtained by adding to the 

stationary realization [+-l(B)wt](w) a mean function 

consisting of a sum of terms of the form 
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expense, when 

of PwWwt. 

There wi 

be excluded. 

4(B) of P,(B) _ 

(4.2) {Co + Clt + . . . + Cm-ltm-l}r-t 

times cosht or sinht, one such term for each root reih of 4(B) 

of multiplicity m. The factor 4(B) of pw(B) can thus be regarded as 

having the function of eliminating a possibly non-stationary mean, at the 

4(B) has unit circle roots, of inducing zeros in the spectrum 

11 be occasions in the next section when such divisors must 

For ease of reference, we shall call a non-constant divisor 

improper for wt if 4-1(B)[pw(B)wt] is defined. 

We say that pw(B) is proper for wt if it has no improper divisors. 

The existence or nonexistence of such divisors is, of course, a property 

of the series wt. 

5. Nonstationary aggregates. Suppose the nonstationary series wt is the 

sum of two component series st and nt, 

wt = st + nt 

which have minimal-degree polynomial transformations to stationarity ps(B) and 

Pn(B) 3 respectively, such that the transformed series are jointly stationary. 

Then the product ps(B)pn(B) transforms wt to stationarity, but it will 

obviously not coincide with the minimal-degree transformation, pw(B), 
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4c(B) is the greatest common 

ps(B) = 4s(B)4c(B), and pn(B 

of 4c(B), there are no roots 

reasonable to expect, and it 

that 

if ps(B) and pn(B) have a (non-constant) common divisor. Suppose that 

divisor of ps(B) and pn(B) and that 

> = cGn(B)(Gc(B). By the definition 

common to 4s(B) and 4n(B). It seems 

is sometimes asserted, e.g. (Pierce, 1979), 

(5.1) Pw(B) = 4s(B)4,(8)4c(B) . 

We shall continue to be concerned only with the case in which pw(B)wt, 

ps(B)st and pn(B)nt have continuous spectral distributions. This 

will enable us to prove that (5.1) holds if the time series st and nt 

are uncorrelated, and the roots of ps(B) and pn(B) are on the unit 

circle. Bell (1982) has shown, however, that this assumption of no 

correlation between components, which is common in stationary signal 

extraction, conflicts with other attractive assumptions in the nonstation- 

ary case, in a way that the weaker assumption, that ps(B)st and pn(B)nt 

are uncorrelated, does not. We first present some results requiring 

only this weaker assumption. 

(5.2) Assume that the stationary series ps(B)st and pn(B)nt are uncorrelated, -- 

and consider the following two conditions: 

(i) The polynomials ps(B) and pn(B) are proper for st and nt, respectively. 

(ii) The polynomial pw(B) is proper for wt and is descrzd by (5.1). - -- - 
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If (i) holds, then so does (ii). - -- Conversely, if ps(B) and pn(B) have no - -- 

unit circle roots in common, then (ii) implies (i). -- 

PROOF. Let w{ be the stationary series defined by 

Wt = +s(B)+n(B)+c(B)Wt 9 

and set ct = ps(B)st and Et = pn(B)nt. Then, 

(5.3) 

If fs(h) and F",(h) denote the spectral distributions 

of it and ht, the spectral distribution F;(h) of w{ is given by 

F;(h) = 

s 

h 

14 n (ein)12dF (0) S 

-7l + I4 Se ( ie) 12di’ n (0) , 

-IT 

which makes it clear that a filter can be applied to wt if and only if 

it can be applied to +,(B)St and a,(B);,. If ss(B), (l,,.,(B) 
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and Gc(B) are (possibly constant) divisors of 4s(B), (i,,,(B) and 

4c(B), respectively, one can show, using (2.4), that 

G;l(B)$;l(B)G;l(B)~{ is defined if and only if 

;;l(B);,l(B);t and d,l(B)G;l(B)nt are defined. 

By (3.1), pw(B) is a divisor of 4s(B)4n(B)4c(B), so that pw(B)wt can be 

written in the form i,l(B)&,l(B)i,l(B)~{. The asser- 

tions of (5.2) follow immediately from this observation. 

It is of interest to have a derivation of (5.1) which does not 

exclude pw(B) from having roots inside the unit circle. To this end, 

we now assume that the series pw(B)wt, ps(B)st and pn(B)nt are not purely 

deterministic. Then each will, by the Wold decomposition, be the sum of 

two uncorrelated components, a (possibly zero) purely deterministic 

component and a purely non-deterministic component (nd)t having an in- 

novations representation of the form 

{ndlt = et + j)lcjet-j , 
= 

where et is a stationary series of uncorrelated, zero mean, random variables 

(the innovations), and where the analytic function defined by 

f(z) = 1 + J c.zj 
jil J 

(IZIW 
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has no zeroes inside the unit circle [Hannan (1970, page 147)]. Having in 

mind the sort of calculation done in the proof of (5.2), we note that if 

G(z) is a polynomial whose roots are in {Izl<l} and are distinct 

from the roots of the polynomial 4(z), then $-l(z)$(z)f(z) will have 

poles in {Izl<l}, which means that its Laurent expansion, 

$-l(z)+(z)f(z) = 7 d.zj , 
ji-, J 

will have non-zero coefficients dk for some values k < 0. Hence 

will be correlated with et+k for some k > 0. Using this observation, 

it is easy to adapt arguments from the proof of (5.2) to verify the 

following result, which illuminates the role played by (5.1) when improper 

divisors having roots inside the unit circle are allowed. 

(5.4) !& ez and et" denote the innovations series for ps(B)st a& 

pn(B)nt, respectively, which are assumed to be non-zero. Suppose that -- ---- 

ps(B) and pn(B) have no improper divisors for st and nt, respectively, -- 

with roots on or outside the unit circle. Then (5.1) holds if and only ---- -- ---- 

if for each t and for each k > 0, the innovations ej!+k and eF+k --- --- 

are uncorrelated with pw(B)wt. 
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Bell (1982) shows that the innovations condition described in (5.4) 

is a useful one. 

Now we give a general result. 

(5.5) If the series st and nt are uncorrelated, and are such that the roots -- - - ------ 

of ps(B) and p,(B) lie on the unit circle, then (5.1) holds. - ---- 

PROOF. From (3.1), pw(B) is a divisor of 4s(B)4n(B)4c(B). 

Suppose that $s(B),&,(B) and G,(B) are divisors of 

4s(B),4n(B) and 4c(B), respectively, such that 

P,(B) = CCs(B)/Ss(B)3cC,(B)/~n(B)I[4c(B)/~c(B)I l 

Obviously, pw(B)wt = pw(B)st + pw(B)nt, and it follows from the proof of 

(5.2) that the stationary series {G,l(B)G,l(B)}ps(B)st and 

{d;l(B)d;l(B)}pn(B)nt are defined. Therefore, 

p,(B)st = 0;’ (B)4n(B)[{d,1(B)~,1(B)jp,(B)st+atI 

with $,(B)gc(B)at=O, and 

pw(B)nt = ~;1(B)4s(8,[{$ (B)$ 

with &.,(B)&(B)bt=O. 
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Since the series st and nt are uncorrelated, the same is true of the 

trigonometrical polynomial series [+n(B)/&(B)]at and [+s(B)/$s(B)]bt. 

These two series must sum to zero, however, because the spectral distribution 

of pw(B)wt is continuous. Thus they themselves must be zero. Consequently, 

P,(B)st and pw(B)nt are stationary, as are 

and 

{G,l(B)d,l(B)}Pn(B) nt = 4;1(B)&(B)pwWnt . 

The fact that p,(B) and p,(B) have minimal degree now implies that the &polynomials 

are constant. Thus p,(B) is given by (5.1), as asserted. 

REMARK 1. If polynomial transformations to stationarity are considered for 

which the transformed series are not required to have continuous spectral 

distributions, then the analogue of (5.5) can fail when the component transformations 

have a common root: Let h satisfying 0 < h < n be given, along with uncorrelated, 

zero-mean, non-zero random variables AI, A2, BI, and B2, whose variances satisfy 

var Aj 4 var Bj (j=1,2) and var(AI+A2) = var(BI+B2). Then the component series 

xt and yt defined by xt = Alcosht + BIsinht and yt = A2cosht + B2sinht 
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are nonstationary, uncorrelated with each other, and have the polynomial trans- 

formation to stationarity given by p(B) = l-2coshB + B2. However, wt = xt + yt 

is stationary. 

REMARK 2. The uncorrelatedness assumption in (5.5) can be replaced by an 

independence assumption to obtain (5.1) when zt has infinite variance. 

(Bell (1982) addresses the widespread misconception that this must always or 

even usually be the case when pw(B) has a unit circle root.) 

We note, finally, that the results of this section extend readily to the 

situation in which wt is the sum of more than two components. 
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