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The analysis of response error models for categorical data that 

form an r x r contingency table is considered. Individuals are placed 

In the row and column classes on the basis of two interviews. It is 

assumed that the errors in the row and In the column classifications are 

I independent. It la also assumed that the error in the classification of 

an Individual depends only on the individual's true class. A parametric 

model for the probability that an individual belonging to the I-th class 

Is classified in the j-th class is proposed. 

Reinterview on one of the dimensions is conducted in order to 

estimate the classification probabilities. Two kinds of reinterview 

procedures are performed by the U.S. Bureau of the Census In the Current 

Population Survey. In the first kind, the relaterviewers are not given 

the original responses. In the second kind, the original responses are 

given to the reinterviewers and a reconciliation is made after the 

responses are collected in the reinterview. The Gauss-Newton procedure 

for the nonlfnear model is used to estimate the parameters of the 

classification model from data collected in the three interviews. 

The determination of the optimal number of replicates to observe 

for the estimation of the simple errors-in-variables model is 
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considered. It is assumed that the cost of obtaining an observation is 

the same for every unit. For a fixed total cost, the optimal ratio of 

the number of units with duplicated observations to the total number of 

units is obtained by minimizing the variance of the estimator of the 

slope- in the simple linear errors-in-variables regression model. 

Extension of replicated designs to three observations per unit is 

considered under the condition that all the units In the sample are 

observed twl cc. Tables of optimal designs are constructed for some 

specific values of the parameters of the model. The optimal design for 

the case where the observed values are dichotomous is also considered. 
i 
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I. INTRODUCTION 

jr. 
Data that are collected from individuals by personal interview are 

known to be subject to response error. ‘Nonsampling errors have long 

been recognized and dfscussed. In an expository paper on errors in 

survey samples, Demlng (1944) lists 13 different factors that affect the 

usef ulnas6 of surveys. Four of these fkctors are related to response 

errors : 

. 

(1) Variability in response; 
I 

(2) Bias and variation arising f ram the interviewer; 

(3) Imperfections in the design of the questionnaire; and 

(4) Processing errors involved in coding, editing and punching of 

data. 

The variability in a respondent’s responses in repeated interviews 

may be due to a lack of understanding of the questions, difficulty in 

determining his “true-value” for the question, or to the lack of 

information required to answer correctly. The interviewer may 

contribute to variability in responses by giving different 

iaterpretatious to questions and by falling to understand the subject 

and purpose of the survey. 

In a review paper on the effect of the question on survey 

responses, Kalton and Schuman (1982) discuss several studies which show 

that the survey responses are sensitive to the precise wording, format 
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and placement of the questions asked. The nature of question wording 

and form effects on response errors remains an important area of study. 

It Is generally assumed that the true values of characteristics 

under study exist for each individual. For variables such as age, sex, 

and total income, the definition of the individual true values does not 

present major problems. .However, for variables such as attitude toward 

. 

social Issues and preference for a certain product, it is more difficult 

to define the individual true values. Hansen, et al. (1951) suggest 

three criteria for the definition of the true value for an individual: 

* (1) It must be uniquely defined; 

(2) It aAUlt be defined in such a manner that the purposes of the 

survey are mt; and 

(3) It should be defined la terms of operations which can be 

carried through, even though it might be difficult or expensive 

to perform the operations. 

For a situation in which survey response for a given Individual can 

be considered as coning from a population of conceptual responses for 

that individual, it may be appropriate to define the individual true 

value as the expected response obtained under certain well-defined 

survey conditions. 

In this dissertation, It Is assumed that a random sample of n 

individuals is taken from a population of N indlvlduals and that all 

or part of the selected Individuals are interviewed twice. 

b 
b 



In Chapter III, we consider response errors in classificatory 

problems where individuals are classified in an r x r contingency 

table. Particular attention is given to the structure of response 

models for which the sample marginal proportions are unbiased estimators . 

of the corresponding population proportions. The response errors for 

the response in the row and column classes are assumed to be 

Independent. The response errors In the two responses from the 

interview-reinterview process on one of the marginal classes are assumed 

to be either independent or dependent, depending on the Interview 

* procedure. 

In Chapters IV and V, we consider the problem of determining the 

optimum (minimum variance) number of replicated observations and 

unreplicated observations for the estimation of a simple linear model 

where both the independent and dependent variables are subject to 

response errors. In Chapter IV, the response errors are assumed to be 

normally distributed. The case where the observed and tme values can 

take only the values zero and one is treated In Chapter V. 

b 

b 
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II. REVIEW OF LITERATURE 

Response errors, sometimes called measurement errors, have long 

been recognized as one of the major problems in surveys. The effect of . . 

response errors can be quite severe in statistical data analysis. It 

has been reported that there are interactions between respondents, 

interviewers and crew leaders which produce correlated meausurement 

errors, (e.g., Evaluation and research program of the U.S. censuses of 
w 

population and housing 1960: effects of interviewers and crew leaders, 

- (1968)). The recording of data for processing can also result in errors 

in the data. Pearson (1902) studied the measuring variability of human 

beings by conducting two experiments. From the study, Pearson (1902) 

found that 

(1) The mean errors differed significantly from zero; 

(2) For a given measurer, the size of the bias varied throughout 

the series of trials when the errors were grouped in successive 

sets of 25. 

(3) The errors were not, in general, normally distributed; and 

(4) The errors of two apparently independent observers in measuring 

the same quantity were positively correlated. 

Cochran (1968) gave a short description of the experiments conducted by 

Pearson (1902) in a review paper on measurement errors. 

Mahalanobis (1946) reported on the survey work of the Indian 

b 
b Statistical Institute, and in particular described efforts to measure 
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and control reporting errors. Interpenetrating samples were 

incorporated in crop surveys in order to measure the overall error and 

to measure the reliability of the enumerators. Sukhatme and Seth (1952) 

questioned the use of interpenetrating samples as a regular feature of 

sample surveys. They argued that 

(1) The limitation-on the size of the samples rendered replicated 

samples an ineffective tool for detecting discrepancies in 

field work; and 

(2) The cost of replicated samples was very high. 

I 
For the case where the nonsampling errors are likely to be large, 

Sukhatme and Seth (1952) recommended the use of interpenetrating samples 

only at the pilot stage for Improving the questionnaire and the nuathod 

of training the interviewers , rather than as an integral part of a 

large-scale survey. They further noted that if nonsampling errors could 

not be controlled by improving the questionnaire and training to the 

level of accuracy with which information is desired to be sought, one 

would hesitate to conduct a sample survey on a probability basis. 

Eckler and Prltzker (1951) reported that the U.S. Bureau of the 

Census attempts to develop programs for measuring the accuracy of all 

censuses and surveys which it conducted. The technique involved post- 

enumeration surveys In which more highly trained enumerators were used 

for the reinterviewing process. These studi’es led to i.Eprovemnts in 

the efficiency of the census and survey designs (Eckler and Hurwitz 

(1958)). 
b 
b 



6 

Hansen, et al. (1951) carefully discussed the concepts of response 

errors. They defined the individual response error as the difference 

between a sample response and the true value for the individual. The . 

response error had an expected value (individual response bias) and a 

random component of variation around that expected value. They 

presented a response model with the following assumptions: 

- (1) There is a population of N individuals and a population of 

K interviewers; 

(2) There is a true value for each Individual; and 
* 

(3) There is zero correlation between the random components of 

responses for two different individuals with two different 

interviewers. 

Under the response model, Hansen, et al. (1951) considered the 

estimation of the response variance due to interviewers, using survey 

data obtained from an interpenetrating sample design in which n 

individuals are randomly assigned to each of k randomly selected 

interviewers. For this design, the response variance of the individual 

respondents could not be estimated. 

Sukhatme and Seth (1952) discussed a general response model by 

expressing it as 

yijk =I xi f aj -9 fiij -5 E~,~ , (2.1.j 

b 
b 
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where yijk denotes the sample response obtained by the j-th 

enumerator (3 - l,L-, d from the i-th sample respondent (i - 

192 ,..., L) on the k-th occasion (k - 0,1,2,..., nil) ; 3 denotes . 

the true value for the I-th respondent who is selected randomly from a 

finite or an infinite population with maan IJ and variance u2 ; 
aj 

denotes the effect of the j-th enumerator in the en-ration of atany 

reipondents; 6 
il 

denotes the interaction between the j-th enmrator 

. and the 10th respondent and E 
Uk 

denotes the random deviation 

that Is not accounted for by interviewer and 
I 

associated with yijk 

interaction effects. Analysis-of-variance type estimators for (linear 

combinations of) the variance components In the model were presented for 

different types of sampling designs: (1) a unit is observed once only, 

(2) a unit Is observed p times by the same enumerator, (3) a unit is 

observed once by each of p enumerators, and (4) soma of the units are 

observed once and some are observed Mea. They also gave separate 

consideration to the cases where the interviewers were fixed and where 

they ware randomly selected from a larger population of enumerators. 

Hanson and Marks (1958) used the method of the analysis of variance 

to estimate interviewer effects in the enumerator variance study of the 

1950 census of population conducted by the U.S. Bureau of the Census. 

The study was based on the data obtained by 984 interviewers covering 

1,778 enumeration districts. They found that the significazlt 

interviewer effects were mostly due to (1) a tendency for the 

b interviewer to omit or alter the question involved or to assume the b 
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answer; (2) a relatively high degree of ambiguity, subjectivity, or 

complexity in the question; (3) a tendency to alter respondent replies 

because of additional questioning. 

Eckler and Rurwitt (1958) reported additional empirical 

investigations into interviewer effects on the 1950 census of 

population. The study involved about 700 enumerators in 125 strata with 

an-average population of about 6,500 each. The effect of interviewer 

variability was measured by comparing the between-enumerator and wlthin- 

enumsrator mean squares. An approximate F-test indicated that the 
II 

between-enumerator variability was statistically significant on nearly 

all of the item tested. The study also showed that the interviewer 

varfability was relatively large for a small area, but small for an area 

that was the responsibility of many interviewers. while these results 

indicated that there was a possible way of reducing the effect of 

interviewer variability, Eckler and Eiurwitz (1958) warned that attempts 

to reduce response variability may lead to an increase in biases. For 

example, resorting to self-enumeration in order to eliminate the effect 

of enumerator variability may result in many respondents misinterpreting 

the question of the questionnaire and giving results that are biased. 

Hansen, Eurwltz and Bershad (1961) presented a summary of the 

conceptual ideas and response model formulations that have evolved in 

the U.S. Bureau of the Census. They prescrrtkd zheir response model ?.c 

the context of estimation of the proportion of individuals that belong 

to a given class of a finite population. The model has been discussed 
b 
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and applied In several publications including Pritzker and Hanson 

(1962). Hansen, Hurwltz and Prltzker (1964), Bailar (1968), the U.S. 

Bureau of the Census (1968, 1972), and Beilar and Dalenfus (1969). 

Hansen, Eurwitz and Bershad (1961) assumed that a survey was 

conceptually repeatable under the same general conditions and that the 

responses from maple i;i+Viduals were described by som (uuknowu) 

probability distribution. An observatlou on the j-th unit in the survey 

Is designated by xj t , where xjt has the value 1 If the j-th unit is 

asrfgned to the partfcular class under coaelderation on the t-th trial, 
I 

and hes the value zero otherwfse. An estlmete of the population mean is 

(2.2) 

where n Is the number of units in the sample. 

The variance of pt is 

VWp,) - E(p t - $2 + 2E(p - F)(F - P) + E(F - P)2 
t , 

(2.3) 

where P’E(Pt) , 
pj 

j . 

The first term in (2.3) la defined ae the response variance which 

b can be expressed aa 
b 
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2 n 
0 -J - EE(pt -F)2} -E{( L 

t 
C djt)2} - E{(~t)2~ 9 

n j-l 

(2.4) 

where 
dlt - Xjt - Pj 

is the response deviation. 

The third term in (3.3) Is defined to be the sampling variance of 

pt- and the second term In ( 2.3) is twice the covariance of d; and 

F . The second term is considered to be trivial in Hansen, Hurwitz and 

Betshad’s (1961) discussion. 

* 2 
The response variance u -;i- can be expreseed as 

t 

2 
Q- 

dt 
= i $1 + Ph - 111 9 (2.5) 

N 
where 

od2 - EC+ 
9; c Pj(l - P ) is the simple response variance 

j-1 
1 

and P = E(djcdkt)/$ for j C k Is the intraclass correlation among 

the response deviations In a trial. 

Hansen, Hurwitz and Bershad (1961) found that the impact of even a 

very small intraclass correlation was substantial when the sample size 

n was quite large. This can be seen from an examination of (2.5). 

Two methods were suggested by Hansen, Hurwitz and Bershad (1961) 

for estimating the response variance. The .replication method repeats 

the survey procedure on the same sample. The method of interpenetrating 

samples divides the sample randomly into several subsamples with each 

' . interviewer assigned to one of the subsamples. 
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Hansen, Humtz and Pritzker (1964) defined the index of 

inconsistency aa the ratio of the simple reapoaaea variance to the total 

variance of individual reaponaea; that is, 

I - u2/u2 
d P, ’ 

(2.6) 

whare u2 - Var(p,) . 
Pt 

For a binomial random variable, the total 

variance u2 
% 

is P(1 - P) , where P is the expectAtfOn of the sample 

* mean. 

The response model defined by F’ellegi (1964) WAS similar to that of 

Eaasen, Hurwitz and Berahad (1961). His sampling design, however, 

involved both interpenetration and replication. Ee represented the 

aaaignmnta for the tuo surveys by {(Si(l), Si(2)> , I = 1,2,..., k} , 

where Si(1) and Si(2) denote the intetview aaafgnments for the i-th 

enumerator in the original and reinterview surveys, respectively. For 

any given intervlewer, Sicl) And Sic2) are not the same. 

In evaluating the reinterview procedures, Baihr (1968) followed 

the response model developed by Hansen, Hurwitz and Berahad (1961) to 

a tudy the effect of the time lag between the census or survey and 

reinterview and the effect of the reinterviewers havfng access to the 

original reaponaea. By comparing estimates of the simple response 

variance and estimates of the bias for several characteristics from 

three samples of the 1960 Census enumerated population, Bailar (1968) 

b 
’ concluded that the beet procedure was one in which the reinterview was 
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relatively ‘close in time to the original interview and one in which the 

reinterview did not hAVe access to the original reapoaeea. 

Bailar and Dnlenlua (1969) presented the statlatlcal theory and 

methods for measuring the contribution of response variability to the 

overall error of a survey. The method of replication and the method of 

interpenetration in the sample dimension are coneidered. In the trial 

dimeislon, Bailar and Deleniue (1969) considered cases where the same 

enumerator was used in all the trials or different enumerators were used 

la different trials. Mfferent sampling schema8 were discussed for 

eztimating the response variance and the correlated component. The 

choice of a sautpllng scheme was decided by the following factors: 

(1) The variance components that are to be estimated; 

(2) The coat of a survey; and 

(3) The change of the general conditions of A sumey due to the 

time lAg8 between trials. 

Bailar (1976) reported that a study of the components of error 

might lead to methods of improving the accuracy and reliAbllity of 

survey data. Suppose that one of the ~urpoees of a survey is to 

estimate a mean, c and the data are to be collected by k 

Interviewers, each with a random assignment of n sample units. Simple 

random sampling is used. By ignoring the finite population correction 

fac:ot% i the mean square error of the r?zple n~Gn, L P can be expressed 

98 
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u2 u2 
ME(;) -E+$ [l + (n - l)pR] + 2(k- ') uRs + B2 ,(2.7) 

where (kn)-’ U: is the sampling variance; (kn)-’ ui is the simple 

response variance; (kn);l ky$n - 1) is the VAriAbility caused by the ‘. 

correlition between response deviation of elements in the sample; 

2(kn)W1 (a - l)uRs is the covariance of response And sampling deviations 

of different units; And ‘B Is the bias of z . 

Equation (2.7) shows that the correlated component of response 

variance dt!CreASeS directly AS the number of intervlewera IncreAsea, but 

i not ~a the number of sampling units within an lntervlewer~a aeslgnmemt 

f ncreaaea . In this way, it la different from the aAmpling variance. 

Thus, the correlated component of reaponae variance nmy be larger than 

the sampling variance. BAilAr (1976) reported that a 1950 study of 

enumerator varlsnce showed that for areAa of 6,500 persona, this 

component of total variance for a complete cenaua by direct enumeration 

was At About the aaoa level ~a A sampling VariAnC8 for An eStimAte baaed 

on aelf-enumeratlon for a 25 percent aAmple of the population. The 

results were one reason why the Census Bureau turned to the use of eelf- 

enumeration techniques in the 1960 census. 

Bryaon (1965) studied the effect of mfaclaaaification on the bias 

of the maple proportion in the eatimete of the population proportion 

when the item in A aAmple is from a blnomlal population. The upper and 

lower bounds for the bias were derived baaed on aaaumptlona regarding 

magnitudes of the probability of mlaclAsalfication when each of the two 
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interviewers independently classified the itema in a single sample. Let 

the minimum values of p12 and p22 be denoted by p12 and ~~~ , 

respectively, where p12 - is the probability that an item is Classified 

in class A' by the ffrst interviewer given that it is in A1 And p22 is 

the probability that an item is classified in class A’ by the second 

interviewer given that it i-s in class A’. Bryson (1965) obtained the 

following inequality 

X Bias < (2.8) 

where X Bit38 is the upper bound of the ratio of the bias of the sample 

proportion in class A to the population proportion In class A; w, x, 

y and z are the proportions of the sample that are classified in 

class A by the first interviewer and In class A by the second 

interviewer, in class A’ by the first interviewer And In class A by the 

second interviewer, in class A by the first interviewer and in class A’ 

by the second interviewer, and in class A’ by both interviewers, 

respectively. The Inequality for X BOAS , the lower bound of % Bias , 

iS 
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EC+ + EWE(y) 

X Bias > - 
l?,&p7+-) 

UxMy) 
x 100 , 

EC-W) + 
IQ le&++- 

(2.9) 

where pl 1 And ppl are the probabilities that an item is ClASSifiSd 

in class A by the first.intertiewer and the second Interviewer, 

respectively, given that it is In class A and ell end e21 are the 

z minimum value that pll and p21 can take, reapectlvely. When the 

semple size is sufficiently large, the expected values can be replaced 

* by the observed values. tiiShUASWA8i.i and Nath (1968) extended the 

results to the =ltinomlal population. 

The methods of analysis of variance have been used by several 

authors to eatlmate the variance component eaaociated with 

enumerators. Examples are E&let and Hurwitz (1958), Hanson and bfarks 

(1958), Klsh (1962), Stock And Hochatlm (1951). Batteae, Fuller And 

HickmAn (1976) considered a simple components-of-variance prodel 

involving enumrator effects, sampling deviAtiOM and reapondent- 

response errors. Betteae, Fuller and HickmAn (1976) Ass-d that a 

simple random ample of rm(m-1) respondents WAS chosen from the 

population of interest And m enumerator8 were randomly selected from a 

large pool of Available enum8?rAtOrS. The aAmple respondents were 

randomly divided into m(m-1) groups, each‘of r reSpOUdent8. The 

i-th enumerator interviewed (m-l) respondent groups and reinterviewed 

another (m-l) respondent groups that were first interviewed by the 
b 
b 
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50th enumerator for j - 1,2,..., m , j f 1 . This interpenetrating 

and replicated survey design WAS assumed to be applied to several strata 

of the population of interest. 

Batteae, Fuller and Hickman (1976) expressed the model as 

‘jk2 
- yk + Bj + cjk2 , k - 1,2,..., r , (2.10) 

II 

where yikl denotes the response of the k-th respondent interviewed by 

the i-th enumerator at time 1 and Y jk2 is the response of the k-th 

respondent interviewed by the j-th enumerator at time 2; yk denotes 

the true value for the k-th respondent; 8, denotes the random ef feet 

of the i-th enumerator; 
=ikl and 'jk2 

denote the reSpOUdent-response 

errors that are associated with the interview and reinterview responses, 

respectively. They Also a88umSd that 8, and Cikt , t - 1,2 , are 

independently distributed with zero means And variances ui and 02 , 
k 

respectively; that Bi and 
'ikt 

are uncorrelated with the true 

values ; and the true value, yk , is equal to the sum of a stratum mean, 

IJ , and a "sampling deviation” ek . zhe sampling deviations for all 

Individuals in the population are assumed to have zero mean and variance 

o2 . 
e 

The response errors, 
Eikt 

and the sampling deviation, ek are 

assumed to have finite fourth moments. 
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Using a least-squares regression procedure, Battese, Fuller and 

Hickman (1976) obtained the estimators for the variances of enumerator 

effects, for the variance. of the sampling deviation and for the average 

of the respondents response variances. 

Hartley and Rae (1978) a88Umd that 

(1) the survey is of a stratified multistage design in which the 

last stage units are drawn with equal probabilities; 

(2) the errors are additive; 

(3) all correlations between the errors contributed by a 
* 

particular error source are generated through an additive 

model; and 

(4) there is no systematic bias from any of the error sources. 

They expressed tha model In the form 

‘Pa - npa + bi + cc + 6b + 6c 
Pe Pe ’ 

(2.11) 

where the index s labels the 80th elementary unit; the index p is a 

composite label indexing the last but one stage unit within the next 

higher stage unit . . . within a primary unit within a stratum; 
YPe 

i8 

the recorded observation for the elementary unit labeled (p, a) ; nps 

is the true content for elementary unit labeled (p, a) ; bi is the 

error contributed by the I-th interviewer common to all units, 

interviewed by the 1-th interviewer; cc is the error contributed by 

the c-th coder common to all units coded by the c-th order; 6b iS 
b PS 
b 
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the elementary interviewer error for the content item of unit (p, s) 

and 6cpa is the elementary coder error for the content Item of unit 

(P, 8) . They assumed that bi And cc are random samples from an 

infinite population of interviewer and coder errors with means zero and 

variances CT; and u: , respectively. LilSO, 6b and 6c 
Ps 

are 
Pa 

assumed to have means zero -and variances U2 
6b 

and ufc , respectively. 

The bi and cc are assumed to be independent of one another and 

* Independent of the n 6b 
Ps’ Ps 

and 6cps . No restriction is applied on 

6b 
npe' p8 and 6c 

P8 l 

i 

Using the simple mixed model ANOVA techniques, Hartley and RAO 

(1978) provided a method of estimating the overall variance of a linear 

estimator of the form c'(p)? , where f is the vector of prlmary- 

sample means - 
yP 

and the coefficient vector c(p) depends on the set 

of selected primaries p . 

BrOSS (19%) diSCUSS8d the effect Of mi8ClASSifiCatiOU on testing 

the hypothesis that the proportions of two independent populations were 

equal. Under the assumption that the same claaalflcation system was 

used in both samples, Brass (1954) found that the size of the ordinary 

chi-square test WAS not affected by ignoring misclaesiflcation, but the 

power of the teat WAS draStiCAlly reduced. 

Mote and Anderson (1965) considered two simple response models in 

an investigation of the effect of misclassification sn the size axd 

power of chi-square gOOdUeSS-Of-fit tests for CategOriCal data. The 

first model a88Umed equal probabilities of mi8ClaSSifiCatiOn into one 
b . 
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of r available categories. The second response model aSSUI8d that 

there were only misclassifications in classes adjoining the true classes 

to which individual8 belong. Mote and Anderson (1965) showed that, with . 

theae~responae models, hypothesis tests concerning' the class proportions 

that ignored classification errors had greater size and smeller power 

than tests that were modified to account for claaalfication errors. 

- Aasakul and Proctor (1967) considered two cases of the effect of 

misclaselflcation on the test of independence In a two-way contingency 

table. When errors of classification in the row direction were 
* 

independent of those in the column variable, Aasakul and Proctor (1967) 

found that the usual chi-8quare test had the announced level of 

stgniflcance, but the power of the test was smaller. When the errors 

for the marginal6 were not independent and under the assumption that the 

mi8clASSifiCatiOU probabilities were known, Asaakul and Proctor (1967) 

proposed a teat criterion. 

Koch (1969) studied the effects of nonaampllng errors on measures 

of association In a 2 x 2 contingency table under the model due to the 

U.S. Bureau of the Census. The sample estimate for a measure of 

a8sociAtion was expressed in the form of a Taylor series ApprOxiwtiOn 

involving cell probabllitiea. Then, the response model was applied in a 

term by term fashion. The relative effects of sampling errors and 

response errors on the variability of the estimated measure of 

association could be interpreted In terms of a sampling variance 

b component and a response variance component. 
b 
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Fleiea (1981) diSCUS the effect of classification error8 on the 

estimation of population proportions. A Clinical trial example is 

given. Methods of controlling and measuring the classification errors 

are also presented. 

The study of Mote and Anderson (1965) Is extended by Kern (1981) to 

contingency tables of dimenalon greater than two. Kern (1981) studied 

the effect-of the classification errors on the analysis of hierarchical 

log-linear models. It is Assumed that 

(1) For each dimension of the table, the conditional probability 

that an~ndivldual is observed with error at a particular level of that 

dimension, given its true level of that dimension, does not depend on 

the true levels of that lndlvldual in the other dimeU8iOM of the table. 

(2) Given its true levels in all the dimensions of the table, the 

conditional probability that An observation is misclassified Into a 

certain level of a certain dimension is independent of whether that 

observation was IAiSClASSified in the other dimenaiona of the table. 

In an I x J x SC contingency table, let t 
ijk 

be the probability a 

randomly chosen individual from a large population would be classified 

S.ato cell (ijk) of the table if observed with no classification 

error. 
Let 'ijk 

be the probability an individual is ClaSSified 

cell. (ijk) with classification error. Then -. 

into 

‘iJk - 
E 

I ‘j ‘k’ q1(i1’)q2(jj’)q3(kk’)Hi~j~k~ ’ b 
. 

(2.12) 
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. 

lfhere qr(ii*> 
is the conditionel probability that en individuel la 

observed in level I of dimension f given that its true level is 

1' . The fully saturated model for an I x J x K table la specified by 

log 'ijk - u + 'l(i) + u2(j) + u3(k) + u12(ij) + U13(ik) 

+ '23(jk) + U123(ijk) 
(2.13) 

subject to the usual ANOVA-like constraints. Elerrrchical log-linear 

* models postulate certain u terms in (2.13) to be identically zero with 

the condition that the lower order reletivea of every u term present 

in the model are also present in the model. A model la said to be 

preserved by claaaification error in diaenaion L if when w satisfies 

the model, T does also. 

Korn (1981) shows that A hierarchical log-linear Podel is preserved 

by cleaaificatioa error in dimanalon 8 of the table if And only Lf the 

minimal set containa emctly one u term having an a aa a subscript 

where the minimal sat of u terma for a hierarchical log-lfneer model 

is defined to be the set of u term such that the model is apocified 

by all the louar order relatives of this set. 

Kern (1982) provides en expreraion for the approximate upper bound 

of the eayaptotic relative efficiency of teats between nested log-linear 

models using miaclaaaified data versus those using data with no 

claaaification errors. This efficiency depends on the probabilities of 
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data being mieclaaaified into the wrong classes of the contingency 

table. It 1s shown that the loss of efficiency due to misclaaalficatlon 

can be SUbStAUtiAl. 

Giesbrecht (1957) considered the claa8ificatlon of individuals into 

the four groups defined by the presence or absence of two attributes. 

The presence (or absence) of the first attribute la denoted by A 

(or X) ; and the presence (or absence) of the second attribute is 

-denoted by B (or g) . The four classes involved are denoted by AB, 

jlB,fiandk8. 
* 
For this four-class eltuation, Glesbrecht (1967) defined ten 

conditional probabllltea from which the probabllitles of clae8iflcatlon 

are obtained for each of the four columns. By u8e of the abbreviation 

"ac" for actual classification and "tc" for true claaalfication, the 

conditional probabilities that were defined are 

% - 
Pr(ac is B(tc is B) 

j30 - Pr(ac is Sltc is BI) 

all - R(ac 18 mltc is AB and ac is B) 

c:ol = 
PR(ac iS qtc i8 XB and cc bs B) . 

b =10 - 
Pr(ac is AB(tc is 6 and ac la B) 

b 
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aoo - R(AC la hltc is E and AC is B) 

vll - Pr(ac la ti)tc is AB And ac is g) 

Vol - Pr(ac is ZItc i8 h And ac IS g) 

vlo - Pr(ac i8 aB'ItC i8 ti And AC i8 g) 

Voo - R(ac la bBltc is E and ac la 5) . (2.14) 

The ten conditional probabilities defined by Gleabrecht (1967) do 

not represent the moat general reapouae model for the twoattribute 

case. To obtain the probabilities of aaaigned claaaificationa for each 

of the true claaaea, the four probabilities R(ac is B(tc is AB), 

Pr(ac is Bltc is s) , Pr(ac is 6(tc is 6) and Pr(ac la 6(tc la m) , 

need to be daffned. Gieabrecht lmplicitp assumes that 

Bl - R(ac is Bltc la AB) - Pr(ac la B(tc is b) 

and 

B. - R(ac la 61tc is 6) - R(ac ia 6(tc is z) .(2.15) 
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These assumptions reduce the number of independent classification 

probabilities from twelve to ten. 

However, even with Giesbrecht's reduction of parameters from 

fifteen to thirteen, the response model cannot be estimated from an 

experiment with independent classification of sample individuals at two 

trials of a survey. 

- Bershad (1967) studied the effect of response errors on "gross 

change" tables under a simple response errors model. The assumptions of 

his Prodel are: 
* 

(1) At any point in time , each individual in the population belongs 

to one of the two groups, U or v'; 

(2) Individuals in a sample are classified into the two classes 

such that different classifications are (1) independent of one 

another; and (ii) dependent only on the true status of the 

individual at the time of classification; 

(3) The sample proportion of group U is an unbiased estimator for 

the true proportion of group U at that time; and 

(4) The proportion of group U in the population is the same in 

the two months considered. 

Under these assumptions, Bershad (1967) showed that the expected 

proportion classified in group U in the first month but in group c 

in the second month, a12 ' was not equal to-the true proportion, 

*12 l 

The relationship between the true proportion, Al2 , and the 

expected proportion al2 ' is given by b 
b 
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Al2 - [al2 - PC1 - P)II/(l - 1) , (2.16) 

where P is the proportion in group U in a given month; and I is 

the index of inconsistency. 

Koop (1974) considered a linear estimator of the form 

T(s) = c S(i, SIXit (2.17) 
iur 

I for estimating the population total subject to response errors where 

s is a selected sample and xit is the response of the I-th unit at 

trial t . When qt is free from error, it is well-known that the 

estimator T(s) will be unbiased for all x if 

C S(1, s)p(s) = 1 for F - 1,2,..., N . (2.18) 
ES : iss) 

Koop (1974) showed that a linear estimator with coefficients, S(i, s) , 

satisfying (2.18) and having the least mean square error did not exist 

except for the uni-cluster design. He also showed that the estimators 

of the variance of linear estimators given by standard theory were 

always negatively biased. 

Battese and Fuller (1974) obtained estimates of the response 

probabilities from categorical data by assuming an unbiased response 

model. P, response model is said to be unbiased if the expected value of 

the sample proportion is equal to the population proportion. Battese 

b and Fuller (1974) suggested a model for the response probability B 
b iii ' 



26 

where 0 
il 

is the probability that a randomly selected individual 

belonging to the j-th class is classified in the I-th class. The 

Battese-Fuller model is - _ 

@lj = 1 
-a+aP 1' i=l 

=aP 
i , 1')) (2.19) 

where Pi is the population proportion of the I-th class. .In this 

model, the probability of incorrect response depends upon the true 
i 

probabilities and upon the parameter a . 

With each individual classified twice and assuming that the first 

and the second classification are independent, Battese and Fuller (1974) 

show that the expectation of pij is a nonlinear function of a 

and of the Pits , where 
pif 

is the proportion of the sample which is 

classified in class 1 at the first trial and in class j at the 

second trial. Using the Gauss-Newton method of nonlinear estimation, 

Battese and.Fuller (1974) obtained estimators of a and of the Pi's 

and the asymptotic properties of the estimators. 
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III. A RESPONSE MODE, FOR CATEGORICAL DATA 
CLASSIFIED IN A TWO-WAY TABLE 

- A. Introduction 

It. is assumed that each individual in a sampled population belongs 

to one of a set of r2 classes. Let Pij be the proportion la the 

10th row class and j-th.column class of the populatioa. Let Pi and . 

P.j be the marginal proportions for the i-th row class and j-th column 

class, respectively. Thus, 

pi. 

- E P 
j=l ij 

and 

(3.1) 

Assume that a sample of else n is selected and is Interviewed 

Mce. On the basis of the two interviews, the n individuals are 

classified into one of the r2 classes. In the first interview, called 

'Trial-l,' individuals are placed in the r row classes and In the 

second interview, called 'Trial-2,' individuals are classified into 

the r column classes. The sample classification and the true 

classification E~:C not necaenarily the same.' 

It Is assumed that the probabilities of classification depend on 

b the true classes to which the individuals belong and are characterized 
. 
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by the classification probabilities 
yW> and %(j ) ' 

i,j,k,A - l,..., r , where YkCiI is the probability that an individual 

belonging to the I-th row class is classified into the k-th row class 

and 
Q(j 1 

is the probability that an individual belonging to the j-th 

column class is classified in the a-th column class. because all 

individuals are placed in one of the classes, it follows that 

cm1 yk(i) - 1 and EL1 racj) - 1 for all i,j - 1,2,..., r . It is 

also assumed that the classifications on the two trials are independent. 

i 
If the classification probabilities ykCiI and 

Icw > 
are known, 

then an unbiased estimator for the P 
ij 

can be obtained from the two 

trials survey. Let pij be the sample proportion of i-th row class and 

j-th column class. We have 

r 
g(pij) - : 

LI1 kf1 'UW 'j (a> 'kg 

Let 

R’ - (p11* p21 ****9 P rl ***-* Plr' P2r'"" P,,) 

and 

(3.2) 

b 
b 
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Let c and ,K be two r by r matrices such that their (l,j)-th 

elements are Y~(~) and Ki(j) , respectively. Then Equation (3.2) can 

be expressed as 

E(R) - (5 m DP, , (3.4) 

where l is the Kronecker 

an unbiased estimator for 

product. If the inverse of ,K R E exists, 

E is 

. (3.5) 

In most cases, the classification probabilities are unknown. Thus, 

a reinterview procedure is incorporated into the survey procedure to 

study the classlflcation errors. Individuals in the sample are 

classified in the r column classes by a reinterviewer. No original 

interviewer is used to reinterview his/her own interview cases. The 

reintervfew is called 'Trial-3.' 

Two Wnds of reinterview processes are conducted by the U.S. Census 

Bureau in the reinterview program of the Current Population Survey. In 

the first, the reinterview is conducted with'no reference to the 

original responses. In this case, the classification is characterized 

b by the classification probabilities 
b 

'r(j) ' where Q(j) ' 
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a4 - 1,2,..., r , is the probability that an individual belonging to 

the j-th column class is placed In the a-th column class in the 

reinterview. In this case, the classification in 'Trial-3' is assumed 

to beindependent of the previous two trials and the data collected from 

the three trials are called unreconciled data. 

In the second type'of reinterview process , reinterviewers are given 

the original responses and are instructed to consult them after a first 

reinterview response has been given. Reconciliation is done on a 

separate form containing the original responses. In this case, the 
* 

original interview classification and the reconciled reinterview 

class1ficatlon are not independent. The data collected from the three 

trials survey are called reconciled data. A suggested model for the 

probability that an individual Is classified in the t-th column class by 

the reconciled reinterview, given that the indlvldual is in the j-th 

true column class and is classified in the a-th column class on the 

original interview is 

Wt(jr) - 4 + Cl - +)rt(j) , 11 P t 

- (1 - T(j) , t f t, j,R,t - 1,2,..., r , 

b 
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where 0 < 0 < 1 . That is, for 0 of the time the response in the 

reinterview is the sama as that reported on the original response and 

for the remaining (1 - 0)‘ of the time the response in the reinterview . 

follows. the classification probabilities ftcj) . Thus, 0 is a 

measure of the persistence from the first interview to the second. 

Let pijk be the proportion of the sample which is classified in 

the i-th row class at Trial-l, in the j-th column class at Trial-2 and 

in the k-th column class at Trial-3. Then for unreconciled data, 

r 

'ijk f %Pijk) 
- i 

Rg1 fl Pf=yi(g> 'j(m) "Hm) 
(3.7) 

and for reconciled data 

r 1: 

'ijk = g(pijk) - g 1111 mtl Phyi(P)Kj(m)[' 'jk + (' - ')rk(m)] ' 

(3.8) 

where 6 
jk 

is Kroneckerls delta. 

The general classification model contains 4r(r-1) + 1 independent 

classification probabilities and r2 - 1 independent population 

proportions. We develop a classification model in which the 

claesification probabilities are expressed as' functions of a reduced 

number of independent parameters. 

b 
b 
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B. The Classification Model 

Battese and Fuller (1974) consider a classification model for 

classifying individuals to a one-way table. They assume that the sample 

response is a function of the population parameters Pi , 

1 - 1,2,..., 1: . The classification probabllilties, 
%j ' 

ibj - 1,2,..., r suggested by Battese and Fuller are 

%j - 1 -a+aP i* 1-j 

-aP I ’ i*j, (3.9) 

where B 
tl 

is the probability that an individual belonging to the j-th 

class is classified in the 10th class and a is a constant In the 

interval [0, 11 . For this classification model, the sample proportion 

for any given class unbiasedly estimates the true proportion belonging 

to the class. We propose a classification model which is an extension 

of the Battese-Fuller classification model. 

Assume that the marginal population proportions Pi and 
. 

Yj ’ i,j - 1,2,..., r , are positive. Let the probability that an 

individual belonging to the I-th class Is classified in the j-th class, 

i*j 9 be proportional to the conditional population proportion of the 

j-th class given that the element belongs either to the i-th or j-th 

class. Let the constant of proportionality be a 
is 

. Then the proposed 

classification probabilities $(I) and Ka(j) , i,j,k,a - lr2,*-•r r 

b are 
b 
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‘k(i) - I1 t-l - Z atiPt (P 
. t. + ‘k.’ 

-1 
16ki 

+ %-Pk (Pk + Pi )-' , i,k - 1,2,..., r 
. . . 

(3.10) 

arid 

K&(j) - l1 - ; a P (Pet + Pep)-lJ6 
t-1 tj l t aj 

+ aLjp.dp.IL + p.j) 
-1 

. bj - LL.-, r . 

(3.11) 

where 6 
ij 

is Kronecker's delta, aii - 0, a 
13 -Qli' 

i C j and 

ail’ Lj - LL.., f are constants in the interval [O,l] . 

The classification probabilities defined in (3.10) and (3.11) are 

such that the row and column marginal sample proportions obtained at 

Trial-l and Trial-2 are unbiased for the row and column marginal 

population proportions, respectively. That is, 

r 
Upi > = . . I:1 Pg.Yl(a j 

- E P,([l- 
r 

-1 

11-l l 

c atRPt (Pt 
t-1 . . + pi.) &a 
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+ alaPi (Pi + Pg >-‘I 
. . . 

-P - -E ataPi Pt (Pt -1 
i. tgl . . . + pi.) 

+E a P P(P -1 
agl ia I. e. I. + Pr.) 

-P 
I. (3.12) 

* and similarly 

E(P .j. 1 -p .j l 

(3.13) 

When r - 2 , Equation (3.10) and (3.11) are the classification 

probabilities defined in the Battese-Fuller model. 

It has been observed that the sample proportions obtained from the 

reinterview are not the same as the sample proportions obtained from the 

original Interview. In order to preserve the form for the response 

probabilities defined in Equation (3.11), we replace the P 
l 3 

by 

different parameters in the classification probabilities of the 

reinterview. Thus, for the unreconciled data the v 
i(j) ' 

&ll - 1,2,..., r , are written as 

“a(j) - [I - I a U (U + Uj)-']6 -1 

t-1 tj t t aj 
f agjUgWg + Uj) 

b 
b 
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&Cl - 1,2,..., r , (3.14) 

and for the reconciled data the T g(j), a,j - 1,2,..., r , is expressed _ 

as 

%(j> - [l 
- i a R (R + Rj)-l]6 -1 

t-1 tj t t aj 
+ agjRg(Rg + Rj> 

fitj - 1,2,..., r . (3.15) 

Two submodels can be considered. In one, the Us and the Rs satisfy 

Ii-1 uj 
- 1 and Zig1 Rj - 1 , while in the other model the Us and 

Rs are unrestricted. 

From Equation (3.14), the expectation of the sample proportion in 

the j-th class obtained from the reinterview procedure without 

reconciliation is 

r 
c P v 
til l ☺t jw 

- ; P*J[l - 
r 

&=l 
E atRUtWt + Ue)-’ lbgj 

t-1 

+ ajaUj (Uj + U,Z-~ll 

b 

b 

=P 
-1 

- ii a (U + Uj) 
t-1 tj t 

-l u P 
t -1 
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+ i a,,(U, + Up)-' U P 
1 *a g-1 J” J 

-P 
l 1 

- 'c a (U + Ut)-' 
t-l� _ tg 1 (UjP.t . - up j) l (3.16) 

Also from Equations (3.6) and (3.15) the expectation of the sample 

proportion in the j-th class obtained from the reinterview procedure 

with reconciliation is 

p*l - (1 - 8) 'c a (R + Rt)-'(R P t-1 ta j j.t . - R,P j) . (3.17) 

Thus, the column marginal sample proportions obtained from the two kinds 

of reinterview procedures are not unbiased for the column marginal 

population proportions unless P.jP:: - "JR;' and P.jPI: - UjU;' . 

By substituting Equations (3.10). (3.11), and (3.14) into Equation 

(3.7) for the unreconciled data and by substituting Equations (3.10), 

(3.11) and (3.15) into Equation (3.8) for the reconciled data, the 

expectations. of the sample proportions pijk for the three trial survey 

can be expressed as a nonlinear function of aij , 1 < j - 1,2,..., r ; 

Pi.; Pej; Uj; and Pij, I, j = 1,2,..., r-l ; for the unreconciled data 

andof +;a 
ij ' 

i <j - 1,2,..., r ; Pi ; P ; R . l j j ; and Pij , 

lb1 - 1,2,..., r-l for the reconciled data. Thus, the Gauss-Newton 

procedure can be used to obtain estimates of.the paranaters. 

Let 

b 
b 
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,y - (Pill’ Pl12’***’ Pllr’ 521’ 52y*- ‘12r l~..l 
P 
rrl ?***b 

P 
rr,r-1 1’ 

(3.18) . 

be the vector of observed proportions, and let 2 be the vector of 

parameters, where the pkmeters are Pij’ %.’ p.j, 

i,j - 1,2,. . . , r-l and a 
il ' i<j - 1,2,..., r . Then 

x - $@I + g b (3.19) 
I 

where $9 denotes the vector of expected values of the sample 

proportlono in x expressed as functions of the vector 2 ; and ,e 

denotes the vector of deviations of the observed proportions from the 

expected proportions. Let ,V be the covariance matrix of 2 . Then 

(3.20) 

Let z be an initial estimate of 2 . Then the one-step Gauss- 

Newton estimator for 2 , denoted by h , 1s 

(3.21) 

where 

b 

b 



(3.22) 

g(i) denotes the matrix-of partial derivatives of E(z) with respect . 

to i- evaluated at 5 , and 

(3.23) 

Assume that the initial estimator, 2, satisfies the condition 

Z-S - 0 (n- 
P 

‘/2 ) (3.24) 

and the matrix ~'(~")~o' I?($O) is nonsingular for every i" in an 

open subset of B of the parameter space where the true parameter i 

belongs to B . Then, it can be shown that (see, for example, Fuller 

(1976, Chapter 5)) 

n 2(i 4 
- 2) L> N(Q, ig’ Qlf’ EQ> I-‘) (3.25) 

and 

S2 - Iy, - E(i)] ‘i-‘[; - p&1 (3.26) 

converges in law to x2 , where x2 is distkibuted as a chi-squ&re 

random variable with 2-l(r-1)(2r2 - r - 2) degree of freedom. 

b 
b 
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The statistical package SAS (1982) provides a quite efficient 

program for nonlinear estimation. In practice, several iterations are 

performed by the program until the reduction of the residual sum of squares 

for two consecutive iterations is less than a specified constant. 

c. Example 

In the monthly CPS sample conducted by the U.S. Bureau of the 

Census, information on the employment status of individuals is 

collected. In a given month, each individual is classified into one of 

* the following categories: Employed, Unemployed and Not in the Labor 

Force (NILP). As a part of the quality control procedures, about 1 of 

18 units in the monthly CPS sample is reinterviewed. The original 

interviewers do not know which household will be reinterviewed by senior 

interviewers and supervisors during the reinterview. No original 

interviewer is wed to interview his/her own interview cases. 

In the reinterview process, a reconciliation is done for 80 percent 

of the reinterview sample. Reinterviewers are given the original 

responses and instructed to consult them only after the reinterview 

responses have been given. Reconciliation is done on a separate form 

containing the original responses. For the other 20 percent of the 

sample, no reconciliation is made. 

The survey responses in January and two interviews in February of 

1979 with reconciliation and no reconciliation in the reinterview are 

given In Table 1 and Table 2, respectively. The size of the sample is 

bb 3,198. 
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Table 1. Reported employment status in January, February 
and February reinterviews, where reconciliation is 
made in the reinterview process 

Employed in January at Trial-1 

February 
Trial-2 
class 

February Trial-3 class 

Employed Unemployed NILF Total. 

&loped 1,428 4 12 1,444 

Unemployed 2 19 2 23 

NILF 6 1 43 50 

I Total 1,436 

Unemployed in January at Trial-l 

February 
Trial-2 
class 

February Trial-3 class 

Employed Unemployed NILF Total 

Employed 22 2 0 24 

Unemployed 3 34 2 39 

NILF 1 2 15 18 

Total 26 38 17 81 

NILF in January at Trial-l 

February 
Trial-2 
class 

February Trial-3 class 

Employed Unemployed NILF Total 

Employed 39 1 . . 7 47 

Unemployed 0 21 5 26 

NILF 9 16 1,003 1,028 

b Total 48 38 1,015 1,101 
b 
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Table 2. Reported employment status in January, February and 
February reinterviews, where no reconciliation is made 
in the reinterview process 

Employed in January at Trial-1 

February 
Trial-2 
class 

February Trial-3 class 

Employed Unemployed NILF Total 

. 

. 
Employed 248 2 6 256 

Unimployed 0 3 0 3 

NILF 2 0 8 10 

Total 250 5 14 269 
I 

Unemployed in January at Trial-l 

February 
Trial-2 

class 

February Trial-3 class 

Employed Unemployed NILF Total 

Employed 6 0 0 6 

Unemployed 0 8 0 8 

NILF 0 2 1 3 

Total 6 10 1 17 

NILF in January at Trial-l 

February 
Trial-2 

class 

February Trial-3 class 

Employed Unemployed NILF Total 

Employed 8 0 . 0 8 

Unemployed 0 4 . 1 5 

NILF 8 1 191 200 

Total 16 5 192 213 
b 

b 
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Additional data on the reinterview process from the second quarter 

1978 to the fourth quarter 1980 are also available. The responses to 

the original interview and reinterview during that period with no 

reconoiliation and with reconciliation in the reinterview are given in 

Table 3 and Table 4, respectively. 

Let the three categories Employed, Unemployed and NILE be indexed 

by 1, 2, and 3, respectively. It is hoped that the 
Qij 

parameters of 

the model proposed in Section B will remain relatively constant over 

time. Then, estimates of the a '8 can be obtained from data 
* 11 

collected during the period beginning with the second quarter of 1978 

and ending with the fourth quarter of 1980. It is assumed that no 

individual was reinterviewed more than once during that period of 

time. This is a policy of the Census Bureau. 

The classification probabilities suggested in Equations (3.11), 

(3.14), and (3.15) are used for the original interview and reinterview 

of the grouped data and also for the original interview and reinterview 

of the unreconciled data. The a's are assumed to be the same in the 

classification probabilities for both data sets. For the reinterview on 

the reconciled data, different 
a13 and '23 

are used for the two 

interviews. We also assume that Zig1 Ui - 1 and Z:-l Ri = 1 . 

Let pij be the sample proportion in the 10th class on the 

original Interview and in the j -tF, class on‘the reinterv?eu. Let 

b 
b 

I2 * (Pll' P129 P139 P219 P22* p23' p31' p32)' ' 
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Table 3. Employment Status, Original Interview by Reinterview with No 
Reconciliation in the Reinterview, 2nd Quarter 1978 Through 
4th Quarter 1980 

Original 
IntervIew Employed 

Reinterview 

Unemployed NILF Total 

Employed 15,619 123 405 16,227 

Unemployed 114 770 195 1,079 

NILF 416 275 10,307 10,998 

Total 16,149 1,168 10,987 28,304 

rTable 4. Employment Statue, Original Interview by Reinterview with 
Reconciliation in the Reinterview, 2nd Quarter 1978 Through 
4th Quarter 1980 

Original 
Interview &ployed 

Reinterview 

Unemployed NILF Total 

Employed 77,535 112 264 77,911 

Unemployed 155 4,913 140 5,208 

NILF 864 592 50,858 52,314 

Total 78,554 5,617 51,262 135,433 

The covariance matrix, 1 , of 2 is obtained under the assumption that 

the sample observations are distributed as unaltlnomial random 

variables. Thus, 

b 

b 
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t - no1 [Diag(Q) - E 2’1 . 

This is a gross approximaklon because the sample is selected according 

to a multistage sampling scheme. Also, within every selected household ' 

every member is interviewed. Thus, there exists the cluster effect. 

Another effect that could not be identified from the availabfe data 

includes interviewer effects. It is hoped that these effects are small 

enough so that the multinomial approximation wlll be adequate for the 

* computation of estimates. With this estimator of x , the computational 

procedure for the nonlinear model is simplified a great deal. The 

estimates obtained using the Gauss-Newton procedure for the nonlinear 

model are 

A A 

al2 - 0.0564 , 
(0.0053) 

al3 - 0.0344 , 
(0.0013) 

b 

b 

A 

a23 - 0.1192 , 
(0.0096) 

- 0.0384 , 
(0.0017) 

Ul 
- 0.5315 , 
(0.0382) 

v2 
- 0.0570 , 
(0.0092) 

b 

R2 
- 0.0271 , 
(0.0148) 

i! l 1 - 0.5749 , 
(0.0020) 

Rl 
- 0.9729 , 
(0.0151) 

; - 0.7289 ,. 
(0.0137) 

A 

a93 
- 0.0412 , - 0.0326 , 
(0.0038) (0.0036) 
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A A 
where aI3 

and 
a*23 

are the estimates of the parameters 
a13 

and 

‘23 
that appear in the reinterview classification probabilities 

kj > 

of the reconciled data. ‘@e residual sum of squares is 8.34 with 4 

degrees of freedom. The 5 ‘percent point of the chl-square distribution . 

with 4 degrees of freedom is 9.49. Thus, the fitted model is consistent 

with the observed data. The standard errors of these estimates are 

calculated under the multinomlal assumption. Because of the clustered 

nature of the sample, it is expected that the standard errors are biased 

downward. 
I 

To analyze the data obtained in January and February 1979, we 

combine that data with the grouped 1978-80 data. Before doing so, a 

careful look at the data set reveals that the marginal proportions of 

the reinterview in February on the reconciled data are not consistent 

with the corresponding marginal proportions of the grouped 1978-80 

data. Thus, only the parameters of a13, a12, a23, Ul and U2 are 

assumed to be the same for the grouped data as for the 1979 data. In 

constructing estimated standard errors, it Is assumed that the grouped 

data are independent of the sample data collected In January and 

February 1979. 

Let pijk be the sample proportion of the I-th class of January, 

j-th class of February and b-th class of February reinterview. T..et 2 

be the coluum vector of P 
ijk� l 

Due to the fact that there are aol~le 

zeroes in g , we propose an approximate estimate of the covariance 

matrix, 1 , of R . .TAet 
b 
. 
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b - (n + 27)-'(n E + 1) . 

Then, an estimate of x Is 

With this i , the Gauss-Newton estimates for the parameters are 

_ - 

A A 

al2 - 0.0558 , O13 
- 0.0334 , 

(0.0049) (0.0012) 

A 

a23 - 0.1161 , 
(0.0087) 

- 0.5267 , 
(0.0348) 

a * 
u2 - 0.0572 , = 0.4917 , 

(0.0082) (0.0901) 

i 
= 0.0853 , ; - 0.6381 , 

(0.0312) (0.0703) 

1 A 

a?3 - 0.0462 , a$3 - 0.2405 
(0.0135) (0.0916) 

A A A 

with Pi,, Pi. and P., , i,j - 1,2,3 shown in Table 5. The sum of 

squares of the residuals for the nonlinear lPode1 is 33.53 with 39 

degrees of freedom. The usual chilrquare value can be calculated by the 

following equation 

where n p 
Uk 

is the observed value of the I-th class la January, j-th 

class in February and k-th class in February-reinterview and n P 
b b 

i j&b 
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is the expected value of the i-th class in January, j-th class in 

February, and k-th class in February-reinterview. With these estimates 

of the parameters, the chl-square value is 39.49. The 5 percent value 

of a chl-square distribution with 39 degreea of freedom is 53.56. Thus, ' 

the model fitted is consistent with the observed survey response of the 

employment status in January and February of 1979. 

_ The usual maximum likelihood estimates of P ij' i,j - 1,2,3 , based 

on the original interviews conducted IA January and February 1979 are 

shown In Table 6. Table 6 is constructed under the assumption that no 

* classlficatlon error exists. The size of the sample Is 3,198. By 

comparing the figures in Table 5 and Table 6, one sees that the 

estimates of the diagonal elements pii adjusted for the classification 

error are larger than the maxi-m likelihood estimates constructed under 

the assumption of no response error. The ertlmates of the off diagonal 

elementis, Plj ' adjusted for the classification errors are, In general, 

smeller than the simple proportions. The biggest differences are for 

the proportions changing classes between NILF and employed from January 

to February. The differences are about six times the standard 

deviations of the simple proportions, where the standard deviations are 

obtained under the uultlnomlal assumption. The two estimated movements 

between unemployed and NILF are also reduced substantially, while the 

estimated movements between employed and utiemployed are only slightly 

smaller than the original sample proportions. One expects the Gauss- 

Newton estimates of the row and column marginal probabilities to be 



48 

Table 5. Gauss-Newton Estimates of Probabilities 

February 

January Employed Unemployed NILF Total . 

Employed 0.5499 0.0066 0.0042 0.5607 
(0.0081) (0.0018) (0.0023) (0.0081) 

Unemployed 0.0081 0.0200 0.0010 0.0291 
(0.0018) (0.0028) (0.0015) (0.0029) 

-N&F 0.0019 0.0053 0.4030 0.4102 
(0.0022) (0.0019) (0.0080) (0.0080) 

Total 0.5599 0.0319 0.4082 1.0000 
* (0.0081) (0.0030) (0.0080) 

Table 6. The Maximum Likelihood Estimates of Probabilities, Assuming 
No Classiflcatlon Error 

February 

January Employed Unemployed NILF Total 

Employed 0.5316 0.0081 0.0188 0.5585 
(0.0088) (0.0016) (0.0024) (0.0084) 

Unemployed 0.0094 0.0147 0.0066 0.0307 
(0.0017) (0.0021) (0.0014) (0.0031) 

NILF 0.0172 0.0097 0.3839 0.4108 
(0.0023) (0.0017) (0.0085) (0.0087) 

Total 0.5582 0.0325 0.4093 1.0000 
(0.0089) (0.0031) (0.0087) 
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equal to the simple proportions of the row and column marginal 

probabilities due to the fact that the classification probabilities 

satisfy the marginal unbl-ased property. Our estimates came out slightly 

different because the Gauss-Newton estimates are obtalned from the 

reconciled and unreconciled data sets and the simple proportions are 

calculated by using the. first interviews in January and February of the 

&mblned data set. The estimate of az3 is the largest of the 

estimates and Indicates that mistakes in classification between 

unemployed and NILF have the highest probability. 
I 

The claarlflcatlon probabilities for January and February are shown 

In Table 7. The probabllltiee are constructed using the January and 

February marginal8 from Table 6. From these two sets of classification 

probabllltfea, one can also obtain estimates of Pij by using the 

Equation (3.5). That Is, 

where E and k, are the matrices of classification probabllltles of 

,January and February, respectively, and g and g are defined In 

Equation (3.3). 
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Table 7. Estimated Classification Robabilities 
for January and February 1979 

Reported 
class 

True class 

&played Unemployed NILF . 

Employed 0.9829 0.0529 0.0192 

January Unemployed 0.0029 0.8391 0.0081 

NILF 0.0142 0.1080 0.9807 - _ 

Employed 0.9828 0.0527 0.0193 

February Unemployed 0.0031 0.8397 0.0085 

* 
NILF 0.0141 0.1076 0.9722 

. , 
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IV. AN ERRORS-IN-VARIABLES MODEL WITH REPLICATED 
OBSERVATIONS ON SOME UNITS 

A. Introduction 

Consider the folIowIng errors-in-variables model 

Yt - a0 + B1xt + q, , 

- =t -yt+wt 3 

II 

X, - xt + ut , t - 1,2,..., n , 

here 

a 0 0 0 

0 
aw 

0 0 

0 0 a a 
wu 

0 0 a a 
uu 

1. 

and 

(4.1) 

Id xt and 4r, are the true values of the variables of Interest which 

innot be measured exactly. Instead, Yt and X, are observed. Under 

iis setup, the random variable q, is the error in the equation and 

me I,andom varibles wt 2nd ut zre the measurement errors if y, 

td xi: , respectively. 

> , 

, 

. 
b 
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Tat (S,,, s,s S,) be unbiased estimators of (a 
uu’ 

aww, auw) , 

where the matrix 

S S 
uu UW --! ‘I z- 

%u %3w 

is distributed as a Wlshart distribution with d degrees of freedom. 

Let vu,, s,, Suw) and (q, Yt) be Independent for 

t = 1,2,..., n . Fuller (1980) obtained an estimator, , of 8 1 
and 

the limiting distribution of ii1 . The estimator s1 is 
* 

e1 - ‘“xx - suu)-+~ - Suw) , (4.2) 

where k - A-l qmr(xt - Tip , "xn - n -l $JXt - f)(Y, - T, , 

ii-A -’ cm1 Xt , ? - A-~ ZFml Y, . The limiting distribution of 

n 42 Cs, - 8,) is N[O, V(n 42 ill I , where 

4^ 
v(A 281) = a~b,avv + auuavv + atv •t dauuarr + a&)1 9 

(4.3) 

a -a 
vv rr + a qq ’ . 

a -a 
rr 

ww + 8: uuu - 28puw 9 
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a -U -U 
uv ur uw - 61auu ' 

and TI - ad 
-1 

Is a fixed number. 

Suppose that among the n units, d units are observed twice. 

Without loss of generality, let them be the first d units. Then 

Y 
ti - pt + "ti 

. 

and 

II 

X 
ti 

-xt+u 
tl ' 

I - 1,2, t - 1,2,..., d , 

where (Wti, Uti) 9 I - 1,2, t - 1,2,..., d , (w,, ut) , 

t - d+l,..., n are independent blvariate normal vectors with mean zero 

and variance-covariance matrix 

a a L w a a 
uu 

Let 

d 

%w 
- (2dj-1 C (Ytl - Yt2>2 

t-l 

b 
. 
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and 

d 
S 
uu - (Pd)” til%l - Xt2)2 

_ . 

d 
S 
uw - (2d)-1 tfl(xtl - Xt2>Vtl - Yt2> . (4.4) 

Then h, S,, and S, are unbiased estimetors of u a 
ww’ uu and 

U 
uw' 

respectively. 
w 

Let ‘p, , . it > be the mean of Utl, Xtl> and (Yt2, X,.2) for . 

* t - 1,2 ,..., d . From (4.11, the model becomes 

Y’t - $0 + Bpt + Q, 

It . - Y, + 4 . 

it -xt+; t - 1,2,..., d , . t. ’ 

where 

5 -2 
t. 

-+w 
t1 + wt2) 

(4.5) 

Ut. - 2-+utl + ut2> 

and 

, b 

. 
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Under the normality assumption, (ft , zt > and (S,, Suu, h> 
. . 

are Independent for t - 1,2,..., d . Thus, from (4.2) and (4.31, the 

estimator for Bl based on the first d units is 

I 

(4.6) 

with asymptotic variance 

A 
vt61,d) - axx -2{6-‘[0,(aqq +l/prr) +4puu(aqq +42arr) +1/4atr] 

+44d%,arr + a&>) , 

where 

pj? x’ - d-l ,i,(if. -z )2, . . 

5 p - d--l t;l(zt. -ii )(f, -f > , . . * . . 

d 
't - d-l C zt , 
. . 

t-l l 

(4.7) 
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d 
? - d-l C $ , 
. . 

t-l l 

. _ 

a -a 
rr 

- 28pwu + 0: auu , 

a -a 
ur m - fy, l 

Slmllarly, since (Y,, Xt) and (S,, Suu, &) are Independent for w 

t - d+l ,..., n , the estiaetor for B1 based on the lest n-d units is 

* 

ii 
1,n-d - '5 - suu)^l("xy - SW> (4.8) 

with asymptotic variance 

A 

V(*l,nd) - axx 02~b3)-'Ia~(aqq + arr) + auu(a 
99 

+ artI + u&l 

+ do1 lauuarr + a$>) , 

where 

pxx 
- (n-d)‘1 % (Xt - jij2 , 

td+l 

5Y - (n-d)-' Z 
t-d+1 

(Xt -i)(Y,-f), 
. 

(4.9) 

“x - b-U -l % x 
t-d+1 t 

, 
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P - (n-d) -l ; Y 
t-d+1 t 

. 

Also from the result of Appendix A, the asymptotic covarlance of 

il d and il n+ is 
, , 

A 

Cov(Bl,d, 1,n-d 1 - a~Wd)%uuarr + a&>1 . (4.10) 

The covarlance Is positive because both 
I 

covarlances (S,,, S,, S,) . 

Let 

estimators use the estimated 

a 

vll - '(Bl,d) V 

and 

52 - covti1 d, 
, 1,nd) l 

To find the optimal linear combination of the two estimators, let 

‘1 p - P 81 d + (1’p)B1 A-d , 9 9 , 



where ‘i ia to be determined. From the results of Appendix B, the p 

that minimizer the variance of i 
l,P is 

_ . 
-1 

p* - (Vll - 2V12 + v22) (v22 - V12) . 

. . 

(4.12) 

A 

and the variance of p*il. d 
, 

+ wP*)Bl,n+ ia 

@ll + v22 - 2v12) 
-1 

(vllv22 - vi21 l (4.13) 

* B. Determination of Number of Duplicate Measurements Units 

Assume that the cost of obtaining one observation Is c units. 

Then the total cost, T , for the eurvey Is 

T - c(n+d) , (4.14) 

where d Is the number of the units that have duplicate measuremnts. 

We assume that it la not practical to observe a unit more than twice. 

Let 

-1 
n-nd . (4.15) 

Given the Lotal cost T p the value TI that ‘minimizes the variaoce 

(4.13) is obtained as follows. From (4.14) and (4.15), (4.13) becomes 
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c(n+l) [A + (n-1)Dl D +‘/I D1 - ‘h (rl-l>ti 

T a& 
A+(B ++'4 D)(s-1) 

> 

3 f (,,) 
, 

- _ 

(4.16) 

whire 

A-a (a 
xx w 

+ at.) + auu(a + arr> + azr . 
w 

B - axx(aqq + 42 arr> + 42 auu(aqq + 42 urr) + ‘/4a& , 

D-u 
uu'rr 

+ a2 
ur l 

(4.17) 

Differentiating f (rl) with respect 

derivatives equal to zero, we have 

to r\ and eettfng the 

Wn) - c (n-1 )2+2ABD(~-l)+A2(Bi++2ABD-2A(B+$2 

an uLT M+(B+ (n-1) I2 

-0. 

Solving the equation (4.18) for n , we get 
’ b 

(4.18) 
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n-1 - [BD(+) ]-hBD f [ABD(B+)2(2B + l/2 D - A)] '/2 1 . 

_ . 

The second derivative of f(n) with respect to 11 la 

(4.19) . 

(4.20) 

which la poaltlve when 

II-1 - [BD(B +;)I-' (-ABD + [ABD(B 0l/4D)~(2B +l/2SA)] ‘/2 ) . 

(4.21) 

ma, f(n) is a minim when (4.21) holds. 

From (4.15), rl > 1 , since d < n . It follows that 

n - 1 if [BD(B + f) ]-‘(-ILBDC[A.BD(B - li4 ~)2(2~ +l/2 D-A) ] 92 I<0 

- l+[BD(B + +) ]-+-ABDC[ABD(B - Ii4 D)Z( in +lj2 D-A) ] 92 } otherwise. 

(4.22) 
b 'b 
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Let 

<-> -ABD(B + f][AB + F + B D - 2B2 D2 
-+< 0 

<-> AB + F D2 +BD-2B2-T>0 

<-> MB +;) - 2(B - +)2 > 0 

<->l/2D2 + [3U U 
XJE w + 2 ‘xx’rr 

+2a a ]D 
uu w 2 

- [“xx(uqq +4prr) +4,a 0 lu u 
uu qq 

xx qq > 0 .(4.23) 

E - an(aqq + ‘/2 arr) + 42 Q a 
l uu QQ 

Then, Equation (4.23) can be written as 

(4.24) 

[D + (2E -+) - 
u2 u2 

(4E2 ++=) 4 2][M(2E -+) 

u2 u2 
+ (4E + =qq 421 >o. 2 ) (4.25) 
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The lnequellty (4.25) holds if and only if 

axxaQ4 
a2 u2 

D>-(2E- 2-m ) + (4E2 + -,lR,129p) '/2 (4.26) 

since D-u 
uu%r 

+ uzr Is porltlve. 

Eience, we conclude -that 

0 a a2 a2 
4 n-1 If D>-(2E-9$+(4E2+~9) 2 

9 

- l+[BD(B+$]-'{-ABD+[ABD(B o~/~D)~(~EI +1/2D-A)] 4 2}, otherwise, 

(4.27) 

where A, 0, D and E are defined In (4.17) and (4.24). 

Tables for the optimal II corresponding to certain values of 

Bib urn, uuu, aqq and axx are tabulated and are shown In Table 8. 

With known u-, auu and am , (w, u) can always be transformed into 

two Independent random variables with equal variances. Therefore, 

wlthout lose of generality, the tables are for aW - auu and 

U - 0 . From the tables, it can be seen that r\ la decreeelng with 

. . 
respect to a 

-1 
xx auu ' 

which shows that when measurement errors are 

large, more units with replicated observations are needed in order to 

obtain a better estimate for the errors. 
b' 
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b 

63 

Table 8. The optimal values of rl - Ad -1 for given 0, u;fauu, a’lu 
l ⌧⌧ qq 

,-l 
xx %l 

‘0.05 

0.10 

0.30 

0.50 

0.70 

0.90 

a-’ a 
xx uu 

0.05 0 10 0.20 0.30 

4.79 2.14 1.00 1.00 1.00 1.00 1.00 

6.72 3.25 1.28 1.00 1.00 1.00 1.00 

11.36 5.72 2.72 1.61 1.00 1.00 1.00 

14.54 7.36 3.62 2.27 1.54 1.07 1.00 

17.14 8.67 4.32 2.77 1.94 1.41 1.04 

19.38 9.81 4.91 3.19 2.28 1.70 1.29 

$1 
- 0.20 

U-l 
xx Ouu 

a-l 
xx Qsn 

0.05 0.10 0.20 0.30 -----l 
0.40 0.50 0.60 

I 

4.60 2.03 1.00 1.00 1.00 1.00 1.00 

6.47 3.11 1.20 1.00 1.00 1.00 1.00 

10.94 5.50 2.60 1.52 1.00 1.00 1.00 

14.00 7.08 3.47 2.16 1.45 1.00 1.00 

16.50 8.35 4.14 2.65 1.85 1.33 1.00 

18.66 9.44 4.72 3.06 2.18 1.61 1.21 
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Table 8. (continued) 

a: Qsq 

0.05 

0.10 

o.;o 

0.50 

0.70 

0.90 

Uiit uqq 

0.05 

0.10 

0.30 

0.50 

0.70 

0.90 

I- 

% - 0.60 
- - 

a-l a 
xx uu 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 

?,57 1.44 1.00 1.00 1.00 1.00 1.00 

5.11 2.35 1.00 1.00 1.00 1.00 1.00 

8.70 4.33 1.94 1.03 1.00 1.00 1.00 

* 11.13 5.60 2.66 1.57 1.00 1.00 1.00 

13.11 6.61 3.22 1.99 1.31 1 .oo 1.00 

14.82 7.48 3.69 2.33 1.59 1.11 1.00 

% - 1.00 

u-l a 
xx uu 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 

2.58 1.00 1.00 1.00 1.00 1.00 1.00 

3.82 1.61 1.00 1.00 1.00 1.00 1.00 

6.62 3.21 1.29 1.00 1.00 1.00 1 .oo 

8.47 4.21 1.88 1.00 1.00 1.00 1.00 
. 

9.97 4.99 2.33 1.33 1.00 1.00 1.00 

11.26 5.66 2.71 1.61 1.01 1.00 1.00 

b b 
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Table 8 (continued) 

% 
- 1.40 

u-l ,u 
xx uu 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 

0.05 

-0.10 

0.30 

0.50 

0.70 

0.90 

1.86 1.00 1.00 1.00 1.00 1.00 1.00 

2.90 1.06 1.00 1.00 1.00 1.00 1.00 

5.18 2.41 1.00 1.00 1.00 1.00 1 .oo 

6.65 3.23 1.31 1.00 1.00 1.00 1.00 

7.82 3.87 1.69 1.00 1.00 1.00 1.00 

8.84 4.40 2.00 1.08 1.00 1.00 1.00 

% 
- 1.80 

U-l 
xx Ouu 

U-l xx %4 0.05 0.10 0.20 0.30 0.40 0.50 0.60 

0.05 

0.10 

0.30 

0.50 

0.70 

0.90 

1.34 1.00 1.00 1.00 1.00 1.00 1.00 

2.24 1.00 1.00 1.00 1.00 1.00 1.00 

4.18 1.84 1.00 1.00 1.00 1.00 1.00 

5.41 2.54 1.00 1.00 1.00 1.00 1.00 

6.37 3.08 1.22 1.00. 1.00 1.00 1.00 

7.20 3.53 1.49 1.00 1.00 1.00 1.00 

b 
b 
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To illustrate the use of the tables, we assume that one has enough 

money for 1,000 observations. For design purposes, It is assumed that 

al-l, the variance of the measurement error in X and Y is 10 

percent of the variance of- x and the variance of the error in the 

equation is 50 percent of the variance of x . Then, the optimal value 

of n la 4.21. This means that 

- - d - (4.21)-l n 

1000 - n + (4.21)-l n 

* and, hence, 

n - 808 

d - 192 . 

The optimal design la to select 808 lndividuala and to make 

duplicate measurements on 192 of those individuals. 

c. ktension of I)upllcate Measure~nta to Triple Measuremanta 

Given an errors-ln-varlables model (4.1) and the simple coat 

function (4.14), the value of n - d -1 n that minimizes the variance of 

;1 
wae obtained in Section B, where n is the total number of units 

selected In a sample and d la the number of the sampling units that 

bb 
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are observed twice. Table 8 contains the optimal value of rl 

corresponding to specific values of Bl, am, uuu, u and 0 
w ⌧⌧ l 

For certain values of B1, aww, Quu, o and u . 
qq 

, the optimal 

value of n is equal to one. That is, all the sampling units should be 

observed twice. We now determine if triple observations should be 

obtained for certain paremeter conflgurationr. The cost function 

described In (4.14), where the cost of obtaining one observation is 

= , will be used. The result is developed in a general case, where the ' 

nrnrber of units with k+l obae~atlone is determined given that all the I 

units are observed k times, for k - 2,3,4,... . 

Assume that at least k observations are obtained for each.of the 

n sampling units. Let d be the number of units for which k+l 

observations ere obtained. Without loss of generality, let them be the 

first d units. Then 

Y 
ti - pt + wtl 

and 

X 
ti - ltt + Utl 

for i - 1,2,,.., k-t-1 5.f c = 1,2,..., d and i - 1,2,.,.$ k 'cf 

t - d+l,..., n , where (wt., uti) , I - 1,2,.., k+l , 

b t 9 1,2,..., d , (wtl, utl) , i - 1,2,..., k , t - d+l,..., n are 
b 
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. 

independent bivarlate normal vectors with mean zero and variance 

covariance mcrtrix 

- . 

a a 

E “) 

. 

a a 
uu 

Let 

* d Ml a k 

%3w 
- [n(k-l)id]-’ [ C E (Yt& )2 + C c u 

t-l I-1 . ti-Tt j21 , 
t++l i-1 l 

b b 

d k+l n k 
S 
uu 

- [n(k-1)-M]-‘[ C E (X 
t-1 I-1 

ti-it >2 + c c G . 
t-d+1 1-l 

& I21 , . 

and 

d k+l 
S 
uw 

- [n(k-l)+d]-‘[ C 
c (Xti 

t=l i-l 
- it )(Yti - iit ) . . 

tl k 
+ c 

c (xti - ii, >(Yti - it >I , 
(4.28) 

t=d+l i-1 
. . 

where 

k+l 

5 . 
- (k+ij-’ Z Iti , 

1-l 

k+l 

3 . 
- (k+l)‘l Z Xti , t - 1,2,. . . , d , 

5.91 
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and 

k 
?, 

. 
= k-l C Yti , 

i-1 - 

k 
ii, - k--l C X 

* 
i-l ti , t * d+l,. . . , n . 

Then SW, Suu and S, are unbiased estimators of aWPS , auu 

and am , rerpectively. 

For the first d units, the model can be rewritten as 

I 

pt 
- 00 + O1xt + Q, 9 

% . - Yt + Gt s . 

iit 
. 
= xt + iit , t * 1,2,..., d , 

. 

where 

ii t - e+o 
-1 k+l 

. c wti 8 
t-1 

(4.29) 

-1 k+l 
ut - (k+l) C 

. i-1 
Uti 

and 
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s 

0 

0 

0 

9 
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u 0 0 

0 
aQq 

0 
_ . 

0 0 (1,+1)-l aW 

0 0 (k+l)-’ am 

0 

0 

(k+l)-’ awu 

(k+l)-1 uuu 

. 

Under the normelity assumption, (Tt , iit ) and (Sww, SuuI Swu) 
. . 

are independent for t - 1,2,..., d . Thus, from (4.2) and (4.3), the 

estCmetor for 5 
based on the first d units is 

‘1 d - ‘PTi ji,d 
- (k+l)-’ 

. 
suu)-l(~,d - (k+l> 

(4.30) 

with tsymptotic variance 

L 

‘(‘l,d) 
- {d-l{axx[aqq + (k+l)-’ urrl 

+ (k+l)-’ uuu [aqq + (k+l)‘l arr] 

+ (k+1)02 uir) + f [n(k+l)+d] (k+l )2)-1(u,I,u,, 

(4.31) 
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where 

y jz,d - d-l tfidt. - zJ2 , 

Ti,d - d-1 rql,%. -i )(T, -y’ ) , . . . . . 

d. 
iz - d-l C iit , 
. . 

t-l l 

. 
d 

i - d-l C it , 
. . 

t-l l 

a -u 
rr ww + 0: auu - 28pwl , 

and 

0 -a 
ur wu - Blauu l 

Similarly, the estimator for B 1 based on the last n-d units Is 

ii 
1,nd - “~ii g,nd - k-l Sit, ‘“jz ~l,~+ - k-l Sm) (4.32) 

with asymptotic variance 

A 

v(B~,~~) - i(n-d)-‘[an(uqq + k-l art> + k-l ~~~~~~~ + k-l arr) 
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+k O2 u:~] + {[n(k-1) + dlk21-+auuarr + a$)jaii , 

- . 

where 

-1 n 0 - _ mf i&4 - (n-d) &(Xt* - Q2 s 

Yi &n-d - (n-d tj+l(zt. - x^ )(P, - n’ ) , . . . . . 
* 

n 
I 
. . 

- (n-d)-1 c qt. , 
t-d+1 

and 

i - (n-l) 
-1 ; i 

. 
. . 

t-d+1 t* 

Also, the asymptotic covariance of i1 d and il nd is 
s S 

A 

cov(f+ ,d. i 
1,0-d) 

- {k(k+l) [n(k-1) + dll” (auuarr 

+ ai,)az . 

(4.33) 

(4.34) 

b . 
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A - u=( uqq + k-l urr ) + k-l uuu ( aqq + k-l urr ) + ko2 atr , 

B-a [u + (k+l)-1 arr] + (k+l)-1 u [u 
=qq _ uu qq 

+ (k+l)-’ art] 

+ (k+l) O2 g2 ur 

D-a uu’rr 
+ a2 

ur l 

(4.35) 

Then, Equations (4.31), (4.33) and (4.34) can be expressed as 

& 

vll - V(81,d) - Id 
-’ B + (k+1)-2[n(k-1) + d]” D)ao2 

xx ’ 

A 

v22 * V(81,nd) 
- E(n-d)-l A + ko2[n(k-1) + d]‘l D]ao2 

and 

A 

v12 - cov(Bl,d’ 
ii 
1,n-d 

) - k-l(k+l)-l[n(k-l) + d]” D u;z . 

(4.36) 

A 

From (4.13), the variance of p* ~3~ d %. ( !.-s*)el n-d is 
, , 
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(vll + v22 - 2v12) 
-1 

(vllv22 - vi21 , (4.37) 

where P* - (vll - 252 +. 52) 
-1 

32 - V12) is the optimal value of 
. 

p that. minimizes the variance of 

- If the cost of obtaining an observation is c units, then the 

total cost, T , for the survey is 

* 

T - c&n + d) . 

Let 

-1 
n-nd . 

(4.38) 

(4.39) 

Given the total cost T , the value n that minimizes the variance 

(4.37) is obtained as follows. From (4.38) and (4.39), (4.37) becomes 

+ [k(k+l)l-2[(s-l>(k-l)+k]-1(~-l)D}-1 
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3 f(n) . (4.40) 

Further simplification shows that f(n) can be expressed as 

’ f(s) - (- ){ [k(k-1)AB + k-l BD] (q-1)2 
Ta& 

+ [ (2k-l)AB + ko2(k+l)BD 

+ (k+l) O2 kAD] (n-l) + k(k+l)AB 

+ (k+l)-’ ADI{(k-1)B(n-1)2 + [(k-l)A + LB 

+ ko2(k+1)02 Dl (n-l) + kA)-l . (4.41) 

Let 

al - k(k-1)AB + k-l BD , 

bl - (2k2 - 1)AB + ko2(k+1)BD f (k+1>02 kAD , 

cl - k(k+l)AB + (k+l)-l AD , 

a2 
- (Is-1)B , 
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b2 - (k-l)A + kB + ko2(k+l)02 D , 

. . 

c2 
-kA. (4.42) 

Then, Equation (4.41) becomes 

f(n) - G-J 
al(n-1)2 + bl(n-1) + cl 

. 
Ta& a2(rl-1)2 + b2(n-1) + c2 

(4.43) 

Mfferentlating f(n) with respect to rl and setting the 

derivative equal to zero, we have 

af(n> * ( c ) (alb2 
- a2bl)h-U2 + 2(alc2 - a2ct)(wl) + blc2 - b2c1 

r Ta2 
xx [a2(Wl)2 + b2(n-1) + c212 

20. (4.44) 

Solving the equation (4.44) for rl , we get 

n-l = (alb2 - a2bl) -l{-(alc2 - a2c;) + [/,zlCT - a*c112 

- blb2 - a2bl)(blc2 - b2c1)1 l’2 ) . (4.45) 
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Further checking on the second derivative of f(n) with respect to rl 

shows that f(n) is a minimum at 

n-1 - (alb2 - a2bl) %alc2 - a2cl) + [(ale2 - a2c112 

-. (a1b2 - a2bl)(blc2 - b2c1)] l’2 ) . (4.46) 

Since d C n , It follows that n > 1 . Let 

Q - talc2 - a2cl)' - (a1b2 - a2bl)(blc2 - b2c1) . (4.47) 

Lf Q<Os then two cases are to be considered. 

Case I. 
If "Ib2 

- a2bl > 0 , then af(n) -> 0 for all rl which aq 

implies that f(n) 1s a monotone Increasing function. Thus, 

for rl>l, f(n) 1s a minimum at rl - 1 . 

af(n) Case II. If alb2 - a2bl < 0 , then 7 < 0 for all q which 

implies that f(n) is a 

for rl > 1 , f(n) is a 

monotone decreasing function. Thus, 

mInimum at n-0,. 

For the case where Q > 0 , if 

(a1b2 - a2bl) -l b(Ll,C, - a2c1) f Q .‘/2 
l>O, 

b then 
b 
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n -l+(ab 
12 

- a2bl) 
-1 

I-talc2 - a2ci) + Q l/ 2l ; 

if 
. . 

(alb2 - a2bl) 
-1 

(-talc2 - a2c1) + Q 
4 
210, 

then n-1 when a 
-1 
2 

al<c 
-1 
2 c1 

and II - - when a;' al > c;’ cl . 

To find out if triple observations are needed for some units when 

it is knowu that replicated obeervatlons are obtained on all the units, 

* let k-2. Tables for the optimal rl corresponding to certain values 

of els a+ auus a and a 
qq 

xx are tabulated and are shown in Table 

9. Without loss of generality, the tables are for uW * uuu and 

U - 0 . From the tables, the optimal value of rl is decreasing with 

respect to uuuaz . When rl--,thatls, d-0,onlytwo 

observations are to be taken on all the sampling units. 

. 
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c 

Table 9. The optimal values of rl - nd 
-1 

for given values of 

-1 -1 
f$. uxx auu and axx uqq under the assumption that at least 

two observationi-are taken on all sampling units. 

By 
- 0.00 

a; aqq 

0.05 

0.10 

0.30 

0.50 

0.70 

0.90 

a-l xx Ouu 

0.10 0.20 0.30 0.40 0.50 0.60 0.71 

a 4.40 1.00 1.00 1.00 1.00 

0 10.39 1.25 1.00 1.00 

OD 0 0 8.06 

0 0 

QD 

0 

U-l 
xx Qss 

% - 0.20 

u-l a 
xx uu 

0.10 0.20 0.30 0.40 0.50 0.60 0.7( 

0.05 0 3.02 1.00 1.00 1.00 1.00 

0.10 0 5.52 1.00 1.00 1.00 

0.30 Q) L3 co 4.75 

0.50 a a a 

0.70 a 0 

0.90 a 
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Table 9 (continued) 

. 

a; Q9q 

0.05 - - 

0.10 

0.30 

o.sb 

0.70 

0.90 

uz Q4q 

0.05 

0.10 

0.30 

0.50 

0.70 

0.90 

f 

T 

C 

u-l a 
xx uu 

0.10 0.20 0.30 0.40 0.50 0.60 0.7i 

0 1.00 1.00 1.00 1.00 1.00 

0 15.96 1.00 1.00 1.00 1.00 

* OD 2.35 1.00 

% - 1.00 

a-l a 
xx uu 

0.10 0.20 0.30 0.40 0.50 0.60 0.7( 

0 1.41 1.00 1.00 1.00 1.00 1.00 

Q 1.00 1.00 1.00 1.00 1.00 

0 9.80 1.. 26 1.00 1.00 

a 0 23.66 2.00 1.00 

Q) 0 14.21 2.20 _ 

0 a 7.79 
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Table 9 (continued) 

% 
- 1.40 

u: Osq 

a-l 0 
xx uu 

0.10 0.20 0.30 0.40 0.50 0.60 0.7 

0.05 

0.10 

0.30 

0.50 

0.70 

0.90 

0 1.00 1.00 1.00 1.00 1.00 1.00 

2.86 1.00 1.00 1.00 1.00 1.00 

0 44.57 1.09 1.00 1.00 1.00 

* 11.45 1.32 1.00 1.00 

* * 4.81 1.22 1.00 

0 0 2.81 1.03 

$1 
- 1.80 

I 

u-l 0 
xlt uu 

a: Q4q 0.10 0.20 0.30 0.40 0.50 0.60 0.7( 

0.05 54.82 1.00 1.00 1.00 1.00 1.00 1.00 

0.10 0 1.00 1.00 1.00 1.00 1.00 1.00 

0.30 0 1.76 1.00 1.00 1.00 1.00 

0.50 Q 0 1.43 . _ 1.00 1.00 1.00 

0.70 a 5.71 1.04 1.00 1.00 

0.90 * 0 2.29 1.00 1.00 

* ’ . 
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v. ON THE DETERMINATION OF TRE NUMBER OF REPLICATED 
OBSERVATIONS FOR AN ERRORS-IN-VARIABLES MODEL 

WITH BINOMIAL OBSERVATIONS 

A. Introduction 

In the previous chapter, we considered a simple errors-in-variables 

model with the assumption that the response errors are normally 

distributed. The model of the previous chapter was 
_ - 

JIt 
- flo + BiXt + 9, s 

I 

yt 
* Yt f Wt s 

Xt - xt + ut , t - 1,2,..., n , 

where 

:, 

\ 
Xt 

Qt 

Wt 

Ut 1 

N NI 

0 0 0 0 

0 a 0 0 
94 

0 0 aw awu 

0 0 a a 
uu 

(5.1) 

and xt and yt are the true values of the variables of interest which 

cannot be measured exactly. 

If the true values x and y are restricted to the two values, 

zero and one, and if the observed values X* and Y* are also 
b) 
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restricted to be zero or one, then any measurement errors must be 

correlated with the true value x . 

Let u: and tit be the dlf ference between the observed value Xt 

and the true value xt and the difference between the observed value . _ 

Yz and the true value of yt , respectively. Then 

q-y-x 
t 

and 

w*-Y*-y 
t t t’ (5.2) 

tit u$xts Y,) and -$x,, yt ) denote the conditional random 

variables of ut and q given (xt, y,) , respectively. Assume 

that u:((xts Y,) and ql (xt y,) are independent and ut 1 (xt , yt ) 

and +(xtr Y,) are distributed as $1 xt and q I yt , respectively. 

That ls, the response error u: depends on the true value of xt only 

and the response error q depends on the true value of pt only. 

Let Y j(&)be the probability that 9 - j given that xt - I and 

Kj (1) be the probability that F - j given that yt - i , for 

i,j - 0,l . kt the fractiou of the populatfon whose true value of x 

Is i and whose tnm value of y is j .bee Pij, i,j - 0,l . Let the 

fractioa of the population whose true value of x la one be P1 and . 

let the population fraction of the observed X-values that are one be 
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p⌧ l 

Also, let the population 

value one be Pel and let the 

that have the value one be - . pY 

pl. - pll + plo 

_ - 

p.l - po1 + pll 

. - 

Px - P 
l.yl( 1) + po.yl(o) 

and 

fraction of true y-values that have the 

population fraction of observed Y-values 

. Then 

Py - P 
.lK1(l) + P.oKl(o) ’ 

where 

PO. - 1 - P1. and Pea - 1 - Pel . 

Let 

xt -ax(P -bx> , t 

Yt -a(Y*-b), Yt Y 

(5.3) 

(5.4) 

. b 
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where ax * (Y 
-1 -1 

l( 1) - Yl(O)) , bx - Y,(O) , ay - (Kl(l) - Kl(o)) ’ 

and b * K 
Y l(O) l 

Then, by expressing 

Ut -x ‘X t t ’ 

wt =Yts. -Y 

. we have 

E(Xtlxt) - xt s 

E(Xt) - P1 , . 

E(Y,ly,) - Yt , 

E(Yt) - Pm1 , 

and 

(5.5) 

b 
cMut, q,> - 0 

b 



86 

and 

-1 
B. - po. po1 . - 

B. + B1 - P;: Pi1 . (5.6) 

. 

_ - B. The Variances of Estimators of B1 

From Equation (5.4) and (5.5), the response model (5.1) ts written 
w 

as 

Jt - 8o + BIXt + q, 

yt - Y, + wt 

xt - xt + ut s t - 1,2,3 ,..., n , (5.7) 

where (xts qts wts ut> are independent for t - 1,2 ,..., n , 

Utl Gts Y,) and wtl(xts Y,) are independent with ’ 

E(ut) - E$) - 0 , 

cov(xt, Ut> - cov(xts wt> - Cov(up 9, ,) - y,. 

and 

bb 
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% - (pll . . . - P1 P.l)[P1 (1 - P1 11-l l 

Suppose that among the n units, d units are observed twice. 

Without loss of generali&-, let them be the first d units. Then 

Y ti - Yt + Wtl 

and 

xti - Xt + Uti ’ i - 1,2, t - 1,2 ,..., d , (5.8) 

where (Wti’ Uti 1 t I - 1,2, t - 1,2 ,..., d , (w,, ut) , 

t - d+l,..., n are independent. 

From the previous chapter , we consider estimators of Bl based on 

the first d units and the last ad unltr. The two estimators are 

il 
. 
d - ‘5 x’ - 42 sup ‘5 y’ -v2solu) , 

and 

; 1 ,n-d “%’ Suu)-l(~ - SW> 9 (5.9) 

where 

b 
b 
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bb 

d 
S 
uu - (Zd)” tytl - Xe2J2 , 

- %w - (2d)-’ 
d‘ 

yt1 - Xt2)(Yt1 - yt,> , 

“xx 

TKY 

i 

i 

* (a - 4l.O' ,Bl(Xr - iz12 , 

- (n - d)” 
n 
c ‘Xt 

t-d+1 
- i)(Yt - y’) , 

n 
- (n - d)” C Xt , 

t-d+1 

n 
- (n - d)” C Yt , 

t-d+1 

5 it’ - d-1 tql(zt. -2 12, . . 

SP’d-lt~l(ft. . . . . . - i )(f, - P 1 , 

% . - 2-+xtl + Xt2) , t - 1,2,..., d 

P, - 2-l 
. et1 + 52) s t - 1,2,..., d 

d 
ri .= d -l c tit , . . 
. . 

t-1 l 

d 
7 - d-l E ii , 
. . 

t-1 e* 

. . 
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and (Xt, Yt> is defined in (5.4). The fourth moments exist for the 

random variables uti, wt. , 1 - 1,2, 5 , t - 1,2,..., d , uts 'tt 

%, t - d+l,..., n . Thus, following Fuller (1980), the asymptotic 
A 

variances of_ Bl,d and ii 
l,n4 

and the asymptotic covariance of 

and ; 

'1 d , 

l,n4 are 

1 
1 

v(fi,,,) L vll - kB + &D - & PI HP1 (1 
. - Pl*)rZ , 

V(Bl,n4) 
1 022- [=A+ + Dl [P1 (1 

. - Pl*N-2 t 

cov(in4, id, k v12 - [& D - + PI P1 (1 - p1*r2 . 

A - V{[xt - E(xt)Jqt + QtUt + [X, - E(Xt)lrt + Utrt - 'ur' 

B - V{[x, - E(xt)]qt + qtzt + [xt - E(x& + Gegc 

D - V{' 
Utl - ut2)(rtl - rt2) - fJuJ 

F - Gdht _ + q,;, + [x, - E(xt)]ft + ‘t’t -1’2 ‘Ur ’ 

$ cut1 - ut2)(rtl - rt2) - a ur 1 , 

b 
b 
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rt IWt - BIUt t 

90 

'( tt "2: rtl + rt2) , 

and -- . 

a ur - Cd+ rt) . 

Further simplication of A, B, D , and F ehowr that 

A - EI [xt - B(: ) 12 42 + q2 ~2 + 
t t t t 

[X 
t 

- B(x 
t 

) I2 r2 + u2 r2 - a2 
t t t ur 

+ 215 - Uxt)lr~ u,) , 

B - Wxt - B(rt)j2 qt +iqt u: +i [xt - ~(xt)12 rt + GE 5 

‘T ur+2 
’ a2 L [Xr - Wxt)lr~ utI v 

D - B(i u: rt + utlrtlut2rt2 +i u~lr~2 - a&) , 

bb 
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F - Id 
2 [ 

1 
Xt 

- E(xt)]utrt + + u:rt - i I$ r2- 5 u~lu~2 - 3 at,} , 

(5.11) . 

where 

EE bt - E(x 
t 
)I2 q21 - P 

t l.(l . - P1 )[Bo(l - so> + 6,(1 - S,)(l - Pi.) 

- 2 e,s,(l - Jyl , 

E(u2 q2) - a2 b (1 - b )[P 
t t x x X .l 

(1 - P 
.l 
) + B2 P (1 - P 

1 1. 1. 
) 

- 2 61(p11 - pi p*1)1 . 

+ bx(l - 2ylcl)) + ~lP1l~loP~i , . 

E{ ht - E(x )I2 r2} - [a2 b 
t t Y Y 

(1 - b ) 
Y 

+ 8: a: bx(l - b )]P (1 - P 
x 1. 1. 

) 

+ B$ax(l - til(l) > + ll(l . - p1 j2 P1 . 

+ [a,(1 - 2Kl(l> > +. 11[(1 - 2P1,)Pll + p21JJl , 

E(u2 r2) 
t t 

- atby< - by)aglIx(l - bx) + a:bx(l - 4bx f 6b2 - 3bi) X 

b 

b 
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+ [ay(l - 2Kl(l) > + llIa~bx(l - bxPl 

+ [ox(l :-Q)) + llPil~ 

+ i$by(l - byI iax0 - 2Y,(,)) + 11 

_ - 
+ S:a:Cl - 4bx + 6b: - 4b:)(yl(lj - Y,(~>) 

w 

- 8:[4a:(l - 3bx + 3b:) 

I 

- 6az(l - “x) + kxlyl(l) 

+ 8:[4azbf + 6a:bz + 4axbx + IjIP1 9 . 

E(: [Xt - E(xt)lutr~l - [a:(1 - 3bx + 3b~)(YlclI - Ylto)) 

- 3az(1 - 2bxhl(l) 

+ 3a y 
x l(l) 

- 3a2b2 - 3a b - l]Pl (1 - P1 ) 
xx xx , . . 

a - - - + [a,(1 - ~1~1~) + llPl 1 , 

. 

E(J2Pj 
t 

i + + ’ 

bb 
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E(uE1rt2) - a2 b (1 - b 
x x 

(1 - b ) [a2 b 
X Y Y Y 

) + 8: a: bx(l - b ) 1 
X 

+ azbxC1 -- bx)[ay(l - 2Kltlj) + llPel 

+ 

+ 

+ 

I 

+ 

azbx( 1 - bx)8~bx(l - 2~~(~) + UP1 . 

[a,(1 - 2r,~,~ ) + 1 l{iaib,(l - by) + 8fa:bx( 1 - bx) 

f$[ax(l - 2r,(,)) + lIIPl . 

[a,( 1 - 2Kl(l) 1 + ‘lPllI s 

* 8:B(u~1~~2) t 

and 

E(u2 u2 ) - [a2b (1 - b )I2 + [a 
t1 t2 xx X X 

(1 - 2Y 1(1)) + llC2+bx(l - bx’ 

+ [ax(l - 2Ylclj) + lllP1 . . 

From Appendix B, the 8 that minimizes the variance of ii1 e is 
S 

given by 

e* - (Vll - 2 V12 
-1 

+ v22) (v22 - V12) t (5.12) 

b where + (1 The variance of 
b i,e* Is 
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(Vll + v22 - 2v12) 
-1 

(v11v22 - Vf2’ 

- Cd p: (1 : p1.12[A + (n - i)(B +l/,D ++ ~)l~-i EIA . 

+ (11 - lIDID +l/,D -1/2Fl - (n - 1)(1/2D - F>2) , 

(5.13) 

where 

I 

-1 
n-nd . (5.14) , 

c. Determination of Number of Replicated Measurement Units 

Assume that the cost of obtaining an observation is c per unit. 

Then the total coet, denoted by T , for a survey of n units in 

which d are observed Mce is 

T - c(n + d) , (5.15) 

where d is the number of the units that have replicate measurements. 

Suppose that the total cost T for the survey is fixed. The value 

where 
-1 . 

0 , rl-nd , that rrini&.zes the variance (5.13j xbject tcr thF: 

cost function (5.15) is obtained as follows. From (5.14) and (5.15), 

(5.13) becomes 
b b 
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c(n + 1) 
T P: (1 - PI )2 

. . 

l)DI[B +4~0 +P] - (0 - 1)(4, D - P)2 

A+(n- l)(B +l/,D + + F> 

z f(Tl) . (5.16) 

Mffcrentiatlng f(n) with respect to n and setting the 

derivative equal to zero, we have 

a f(n) I C 

I a n [A + (11 - 
P; (1 - Pl )2T 

l)(B +v4D + f F)]-2{[DB(B +l/bD) 

. . 

+(2B+$ D)DF + ( 1/2D - B)F2 - $ F%l - 1>2 

+ [MD + ADp - 2hp2](n - 1) +- A2(B +l/4D) 

+2ABD- 2A(B +1/4D)2 I= [U( 44D - B) 

-1/2A2]F -‘/2 AF2 - 0 . (5.17) 

Let 

A* - DB(B +$D) + (2B + + D)DF f (1/2D - B)F2 -; P3 

B* = ZUD+ADF-UF2, 
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c* - A2(B +l/4D) + 2ABD - ZA(B +1/4D)2 + [U(l/4D - B) -l/2A+ 

- l/2 AT2 . (5.18) 
. . 

Solving the Equation (5.17) for TI , we get 

r\ -I- (u*)-‘[ - B* f (B*2 - 4A*C*) 4 21 . (5.19) 

Tm cases are to be considered. If B*2 - 4A* C* > 0 , then the 

* rl in Equation (5.19) is a real number. The second derivative of f(n) 

with respect to rl is 

a2f(tl) - 
a4 

C f 2A*cll - 1) +B* 

P; (1-P: )2 T [A + (rl-l)(B + l/4 D + 3/2 P)]2 
. . 

_ 2[A*(n - 1)2 + B*(rl - 1) + C*](B + l/4 D + 3/2 F) 

[A + (n - l)(B + l/4 D + 3/2 F)13 

(5.20) 

rl -I- (a*)-l[- B* f (B*2 - 4A* C*) 4 2 ] . (5.21) 
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But n>l, it follow8 that 

TJ I 1 if (2A*)-l[- B* + (B*2 - 4A*C*) 4 2 ] < 0 

4 I 1 + (2~)‘~ [- B* + (B*2 - 4A*C*) 2 ] otherwise . 

(5.22) 

When B*? - 4A*C* < 0 and A* > 0 , it can be shown that 

* a f(n) 
an is greater than zero for all II > 1 , which Implies that . 

f(n) ie a monotone Increasing function. Thus, for rl > 1, f(n*) 

is a minim when n* = 1 . 

When B*2 a fm - 4A*C* < 0 and A* < 0 , then a ~ is lee8 

than zero for all ?I > 1 , which lmpliea that f(n) is a monotone 

decreasing function. This situation would not occur because at least 

one unit with replicate observations is needed in order to estimate the 

variance8 of the errors. 

Table 10 contafne the optimal value of TI where the response 

probabilities are given by the unbiased response model proposed by 

Batteee and Fuller (1974). The Batteee-Fuller model is 
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Ki(j) - 1 -a+aP .i i-l 

-aP 
.i i*j , 

_ - 
(5.23) 

where a is the parameter of the model. 

The tables show that when a increases, the optimal value of 

?I -decreases. Intuitively, It says that if the probability of making a 

correct classification 1s small, more units have to be observed twice. 

For example, assume that one has enough money for 1,000 observations. 

Yor design purposes, it Is a88uPred that Pll - 0.50, Pl. - 0.80 and 

Pel - 0.60 . If a - 0.05 , then by using Equation (5.23), 

5( 1) 
- 0.99 and K 

l(1) 
- 0.98 . The optimal value of rl is 8.37, and 

thus, n - 893 and d - 107 . If a-0.15, then y 
l(1) 

- 0.97 and 

Kl( 1) 
- 0.94 , which are smaller than the classification probabilities 

obtained for a = 0.05 . For a-0.15, the optimal value of n i8 

2.43 and the values of n and d are 708 and 292, respectively. This 

Show8 that more units have to be observed twice when the true 

claselflcation probabilities are small. 

We compare the optimal value of rl obtained under the actual 

distribution of x, u, w , and q with the optimal value of r\ 

obtained under the assumption that these random variable8 are normally 

(tisttibuted with the mean vector and covarianm matrix defined in 

Equation (5.1). Under the normality assumption the optimal value of 

r~ is calculated using the Equation (4.27) derived in Chapter IV. For 

b b 
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Table 10. The optimal values of rl for selected values of 

a, Pl , Pel and Pll l 
(Notation: A * means that the three 

. 

values Pl,, Pm1 and‘ .Pll are incompatible.) 

a - 0.05, P 
11 

- 0.80 a - 0.10, P 
11 

- 0.80 

a - 0.15, P 
11 

- 0.80 a - 0.20, P 
11 

- 0.80 

a - 0.05, P 
11 

- 0.60 a - 0.10, P 
11 

- 0.60 

pl. 
p.l 

0.90 0.80 0.60 

0.90 * * 1.m ' 

0.80 * 2.63 1.00 

0.60 4.94 2.98 1.00 

I 
* 1.00 j 

1.22 1.00 

1.68 1.00 
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a - 0.15, Pll - 0.60 

I I _ - I 

IPt. I p.l Pl. 
p.l I . . 

I I 0.90 0.80 0.60 1 0.90 0.80 0.60 ( 

0.90 * * 1.00 

0.80 * 1.00 1.00 
- _ 

0.60 1.79 1.00 1.00 

a - 0.05, P 
11 

- 0.50 

pl. 
p.l 

0.90 0.80 0.60 

0.90 * * 1.00 

0.80 * * a.37 

0.60 4.75 8.84 2.67 

. 

a - 0.20, P 
11 

- 0.60 

0.90 * * 1.00 

0.80 * 1.00 1.00 

0.60 1.12 1.00 1.00 

a - 0.10, Pll - 0.50 

pl. 

0.90 * * 1.00 

0.80 * * 4.09 

0.60 2.53 4.25 1.45 

p.l I 

0.90 0.80 0.60 1 

a - 0.15, Pll - 0.50 a - 0.20 Pll - 0.50 

pl. 
p.l 

0.90 0.80 0.60 

0.90 * * 1.00 

0.80 * * 2.43 

0.60 1.47 2.51 1.00 

pl. 
p.l 

0.90 0.80 0.60 1 

0.90 * * 1.00 

0.80 * * 1.48 

0.60 1.00 1.53 1.00 1 
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different values of Pl , Pal, Pll and a , the optimal value of r\ 
. 

under the normality aseu~tlon i8 tabulated in Table 11. By comparing 

Table 10 with Table 11, one sees that the normal approximation to the 

Bernoulli digtrlbutlon does not perform well in this case. 
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Table 11. The optimal values of rl for selected values of a, Pl , Pm1 
. 

and Pll under the normality arrumptionr on the rcsponae 

errors. (Notation: A * means that the three values Pl , Pel . 

and Pll are ikompatlble.) . . 

a - 0.05, P 11 - 0.80 a - 0.10, Pll - 0.80 

0.90 9.40 - 5.20 

0.80 5.20 1.00 

a - 0.15, Pll - 0.80 

0.90 I I 2.50 1.06 

0.80 ~06 1.00 

a - 0.05, Pll - 0.60 a - 0.10, Pll - 0.60 

0.90 l * 7.58 0.90 -- * * 3.42 

0.80 * a.75 5.73 0.80 * 4.00 2.49 

0.60 7.58 5.73 1.00 0.60 3.42 2.49 1.00 

0.90 

0.80 

a - 0.20, Pll - 0.80 

pl. p.l 

0.90 0.80 

0.90 1.51 1.00 

0.90 1.00 1.00 
. 



103 

Table 11 (continued) 

. 

a - 0.15, P 11 - 0.60 a - 0.20, P 
11 

- 0.60 

0.90 * *. 1.90 

0.80 * 2.29 1.26 

0.60 1.90 1.26 1.00 

a - 0.05, P 
11 

- 0.50 

1 0.80 1 * 

1 0.60 1 8.61 9.43 6.01 1 1 0.60 1 3.93 4.33 2.63 1 

IP. I p.l 
10 I 

0.90 0.80 0.60 

0.90 * * 1.06 

0.80 * 1.3s 1.00 

0.60 1.06 1.00 1.00 

a - 0.10, P 
11 

- 0.50 

0.90 * 

0.80 * 

* 

* 

a - 0.15, Pll - 0.50 a - 0.20, P 
11 

- 0.50 

p.l 

1 -- .I 0.90 0.80 0.60 I 

IO.60 t 2.24 2.51 1.36 1 

3.93 

4.33 

0.90 % * 1.31 

0.80 * * 1.51 

0.60 1.31 1.51 1.00 
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VIII. APPENDIX A 

In Chapter IV, the asymptotic covariance of ‘1 d 9 
and iI n-d is 

9 

expressed as 

A 
-@l,d’ i l,nd) = % -2[(2d)-1Wuuurr + ~$11 . (8.1) 

We derive the above expresslon using the notation of Chapter IV. Recall 

that 

i ld-(lU---- 
9 xx ; suu)-+mji ‘u - 3 SW) 

and 

ii 
1,n-d ““gx- SuuP(m⌧p - s-1 l 

Because the sample ampant are converging to the population moments, we 

can expand 
%,d 

and 8l nd in Taylor'6 uerier about the population 
b 

value6 to obtain 

6 -1 
Bl,d - 61 * um’m~ v’ - + Sur) + Op(n-‘) 

and 

ii 1,n-d - B1 -‘( * %K “xv - Sur) + Op(n-l) , 
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where 

; 
t. 

- q, + iic - f3& , t = 1,2,..., d , 
. 

_ . 
. . 

Vt = Qt + wt - B1ut , t - d+l,..., n , 

and - - 

rt - "t - BIUt 9 t - d+l,..., n . 

The 5 ; is obtained from the flrut d 66mpling unite and Mxv 

is obtained from the lut n - d rappllng unitr. Thu6, 5 ; , %v 

and 'ur are independent. The asymptotic covarlance of and 

i 1,n-d lr 

“vr& v’ - + Sur), u& - Sur) 1 

-U z w+ sur s sur> 

- (2 a&’ -’ Var(SUr) 

= ~~tW-‘(~uu~rr + u&l I . 
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IX. APPENDIX B 

Let ii1 and 842 
be two eetimators of 8 with variances Vll 

and v22 ’ respectively. Let V12 be the covariance of 
4 

and 

i2 . ~asider an estimator which is a linear combination of 
4 

and i, . That i6, 

$ 
-P Sl +(1 - PG2 , 

T 
(9.1) 

where p ieany constant. The variance of BP la 

P2 VI1 + (1 - PI2 V22 + 2P(l - P>V12 l (9.2) 

Let p* denote the value of p that gives the samllest variance 

Of BP . Then p* can be obtained au follows. By equating the first 

derivative of the variance of 
iP 

that is taken with respect to p to 

zero, we have 

2P vll - 2(1 - P)v22 f 2(1 - 2P>V12 - 0 . 

Then ’ 

pi: .a I$ 11 "9 F12 -1 
-- 2V121 (v22 - F12) . 

(9.3) 

(9.4) 

, 

b 
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The second derivative of the variance of i 
P 

taken with respect to p 

IS 

2(vl 1 + v22 - 2V12) l (9.5) . . 

Equation (9.5) is great+r than or equal to zero with equality if and 

ouly if the difference of i, and i, is a coxutant. Thus, i,* ' I L 

where p* la defined in Equation (9.4) hae 

all the eetimatorr with the form defined in 

variance of ip* 16 

the emalleet variance among 

Equation (9.1). The 

p*2 v 
11 + (l 

- p*)2 v 22 + 2p*(l * p*)V12 

- (vll + v22 
-2 

- 252) m22 - V12F Vll 

+ (vll - v12)2 v22 

+ 2v22 - v12q1 - V12)V121 

- (v22 + vll - 252) 
-2 

[v22Vll(V22 + Vll - 2V12) 

- v:2(v22 +-vll - 2V12)l 

- @22 + vll - 52) 
-1 

(v22vll - q21 l (9.6) 


