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The analysis of response error models for categorical data that
form an r xr contingéncy table is considered. Individuals are placed
in the row and column classes on the basis of two interviews. It is
assumed that the errors in the row and in the column classifications are
independent. It is also assumed that the error in the classification of
an individual depends only on the individual's true class. A parametric
model for the probability that an individual belonging to the i-th class
is classified in the j-th class is proposed.

Reinterview on one of the dimensions is conducted in order to
estimate the classification probabilities. Two kinds of reinterview
procedures are performed by the U.S. Bureau of the Census in the Current
Population Survey. In the first kind, the reinterviewers are not given
the original responses. In the second kind, the original responses are
given to the reinterviewers and a reconciliation is made after the
responses are collected in the reinterview. The Gauss-Newton procedure
for the nonlinear model is used to estimate the parameters of the
classification model from data collected in the three interviews.

The determination of the optimal numbef of replicates to observe

for the estimation of the simple errors-in-variables model is



considered. It is assumed that the cost of obtaining an observation is
the same for every unit. For a fixed total cost, the optimal ratio of
the number of units with duplicated observations to the total number of
units is obtained by minimizing the variance of the estimator of the
slope~ip the simple linear.errors-in-variables regression model.
Extension of replicated designs to three observations per unit is
considered under the condition that all the units in the sample are
observed twice. Tables of optimal designs are constructed for some
specific values of the parameters of the model. The optimal design for

the case where the observed values are dichotomous is also considered.
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I. INTRODUCTION

Data that are collected from individuals by personal interview are
known to be subject to response error. Nonsampling errors have long
been recognized and discussed. In an expository paper on errors in
survey samples, Deming (1944) lists 13 different factors that affect the
usefulness of surveys. Four of these factors are related to response
errors:

(1) Variability in response;

(2) Bias and variation arising from the interviewer;

(3) Imperfections in the design of the questionnaire; and

(4) Processing errors involved in coding, editing and punching of

data.

The variability in a respondent's responses in repeated interviews
may be due to a lack of understanding of the questions, difficulty in
determining his "true-value” for the question, or to the lack of
information required to answer correctly. The interviewer may
contribute to variability in responses by giving different
interpretations to questions and by failing to understand the subject
and purpose of the survey,

In a review paper on the effect of the question on survey
responses, Kalton and Schuman (1982) discuss several studies which show

that the survey responses are sensitive to the precise wording, format
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and placement of the questions asked. The nature of question wording
and form effects on response errors remains an important area of study.
It is generally assuqed that the true values of characteristics
under study exist for each 1ndividual. For variables such as age, sex,
and tot#l income, the definition of the individual true values does not
present major problems. However, for variables such as attitude toward
social issues and prefereﬁce for a certain product, it is more difficult
~ to define the individual true values. Hansen, et al. (1951) suggest
three criteria for the definition of the true value for an individual:
(1) It must be uniquely defined;
(2) It must be defined in such a manner that the purposes of the
survey are met; and
(3) It should be defined in terms of operations which can be
carried through, even though it might be difficult or expensive

to perform the operations.

For a situation in which survey response for a given individual can
be considered as coming from a population of conceptual responses for
that individual, it may be appropriate to define the individual true
value as the expected response obtained under certain well-defined
survey conditions.

In this dissertation, it is assumed that a random sample of n
individuals is taken from a population of N individuals and that all

or part of the selected individuals are interviewed twice.



In Chapter III, we consider response errors in classificatory
problems where individuals are classified in an r x r contingency
table. Particular attention is given to the structure of response
modelq for which the sampié marginal proportions are unbiased estimators
of the'corresponding population proportions. The response errors for
the response in the row and column classes are assumed to be
independent. The responée errors in the two responses from the
interview-reinterview process on one of the marginal classes are assumed
to be either independent or dependent, depending on the interview
procedure.

In Chapters IV and V, we consider the problem of determining the
optimum (minimum variance) number of replicated observations and
unreplicated observations for the estimation of a simple linear model
where both the independent and dependent variables are subject to
response errors. In Chapter IV, the response errors are assumed to be
normally distributed. The case where the observed and true values can

take only the values zero and one i3 treated in Chapter V.



II. REVIEW OF LITERATURE

Response errors, sometimes called measurement errors, have long
been fecognized as one of-the major problems in surveys. The effect of
response errors can be quite severe in statistical data analysis. It
has been reported that ;here are interactions between respondents,
interviewers and crew leaders which produce correlated meausurement
er;ors, (e.g., Evaluation and research program of the U.S. censuses of
population and housing 1960: effects of interviewers and crew leaders,

« (1968)). The recording of data for processing can also result in errors
in the data. Pearson (1902) studied the measuring variability of human
beings by conducting two experiments. From the study, Pearson (1902)

found that

(1) The mean errors differed significantly from zero;
(2) For a given measurer, the size of the bias varied throughout
the series of trials when the errors were grouped in successive
sets of 25.
(3) The errors were unot, in general, normally distributed; and
(4) The errors of two apparently independent observers in measuring
the same quantity were positively correlated.
Cochran (1968) gave a short description of the experiments conducted by
Pearson (1902) in a review paper on measurement errors.

Mahalanobis (1946) reported on the survey work of the Indian

»

, Statistical Institute, and in particular described efforts to measure



and control reporting errors. Interpenetrating samples were

incorporated in crop surveys in order to measure the overall error and

to measure the reliability of the enumerators. Sukhatme and Seth (1952)

questioned the use of interpenetrating samples as a regular feature of

sample surveys. They argued that

(1) The limitation on the size of the samples rendered replicated

samples an ineffective tool for detecting discrepancies in
field work; and

(2) The cost of replicated samples was very high.

For the case where the nonsampling errors are likely to be large,
Sukhatme and Seth (1952) recommended the use of interpenetrating samples
only at the pilot stage for improving the questionnaire and the method
of training the interviewers, rather than as an integral part of a
large-scale survey. They further noted that if nonsampling errors could
not be controlled by improving the questionnaire and training to the
level of accuracy with which information is desired to be sought, ome
would hesitate to conduct a sample survey on a probability basis.

Eckler and Pritzker (1951) reported that the U.S. Bureau of the
Census attempts to develop programs for measuring the accuracy of all
censuses and surveys which it conducted. The technique involved post-
enumeration surveys in which more highly trained enumerators were used
for the reinterviewing process., These studiés led to improvements in
the efficiency of the census and survey designs (Eckler and Hurwitz

(1958)).



Hansen, et al. (1951) carefully discussed the concepts of response
errors. They defined the individual response error as the difference
between a sample response agd the true value for the individual. The
response error had an expected value (individual response bias) and a
random component of variation around that expected value. They
presented a respounse model with the following assumptions:

—'(1) There is a population of N individuals and a population of
K 1interviewers;
(2) There is a true value for e;ch individual; and
(3) There is zero correlation between the random components of
responses for two different individuals with two different
interviewers.

Under the response model, Hansen, et al. (1951) considered the
estimation of the response variance due to interviewers, using survey
data obtained from an interpenetrating sample design in which n
individuals are randomly assigned to each of k randomly selected
interviewers. For this design, the response variance of the individual
respondents could not be estimated.

Sukhatme and Seth (1952) discussed a general response model by

expressing it as

=x, +a, &

N
yijk i j (2.1



where yijk denotes the sample response obtained by the j-th
enumerator (j = 1,2,..., m) from the i-th sample respondent (i =
1,2,..¢, ) on the k-th occasion (k = 0,1,2,..., nij) ; x4 denotes
the true value for the i-th respondent who i3 selected randomly from a
finite or an infinite population with mean u and variance o2 ; aj

denotes the effect of the j-th enumerator in the enumeration of many

respondents; § denotes the interaction between the j-th enumerator

1]
and the i-th respondent and ¢ denotes the random deviation

13k

associated with Y14k that is not accounted for by interviewer and
interaction effects. Analysis—of-variance type estimators for (linear
combinations of) the variance components in the model were presented for
different types of sampling designs: (1) a unit is observed once only,
(2) a unit 18 observed p times by the same enumerator, (3) a unit is
observed once by each of p enumerators, and (4) some of the units are
observed once and some are observed twice. They also gave separate
consideration to the cases where the interviewers were fixed and where
they were raﬁdonly selected from a larger population of enumerators.

Hanson and Marks (1958) used the method of the analysis of variance
to estimate interviewer effects in the enumerator variance study of the
1950 census of population conducted by the U.S, Bureau of the Census.
The study was based on the data obtained by 984 interviewers covering
1,778 enumeration districts. They found th;ﬁ the gignificant

interviewer effects were mostly due to (1) a tendency for the

interviewer to omit or alter the question involved or to assume the



answer; (2) a relatively high degree of ambiguity, subjectivity, or
complexity in the question; (3) a tendency to alter respondent replies
because of additional quen?ioning.

Eckler and Hurwitz (1958) reported additional empirical
investigations into interviewer effects on the 1950 census of
population. The study involved about 700 enumerators in 125 strata with
a;'average population of about 6,500 each. The effect of interviewer
variability was measured by comparing the between-enumerator and within-
enumerator mean squares. An approximate F-test indicated that the
between-enumerator variability was statistically significant on nearly
all of the items tested. The study also showed that the interviewer
variability was relatively large for a small area, but small for an area
that was the responsibility of many interviewers. While these results
indicated that there was a possible way of reducing the effect of
interviewer variability, Eckler and Hurwitz (1958) warned that attempts
to reduce response variability may lead to an increase in biases. For
example, resorting to self-enumeration in order to eliminate the effect
of enumerator variability may result in many respondents misinterpreting
the question of the questionnaire and giving results that are blased.

Hansen, Hurwitz and Bershad (1961) presented a summary of the
conceptual ideﬁs and response model formulations that have evolved in
the U.S. Bureau of the Census. They presaagéd their response model in
the context of estimation of the proportion of individualas that belong

to a given class of a finite population. The model has been discussed



and applied in several publications including Pritzker and Hanson
(1962), Hansen, Hurwitz and Pritzker (1964), Bailar (1968), the U.S.
Bureau of the Census (196@, 1972), and Bailar and Dalenius (1969).
Hansen, Burwitz and Bershad (1961) assumed that a survey was
conceptually repeatable under the same general conditions and that the
responses from sample individuals were described by some (unknown)
érobability distribution. An observation on the j-th unit in the survey
is designated by Xyp o where T4e has the value 1 if’the j-th unit is
assigned to the particular class under consideration on the t-th trial,

and has the value zero otherwise. An estimate of the population mean is

1 n

where n is the number of units in the sample.

The variance of P is

Var(p,) = E(p, - P)2 + 2E(p_ - B)(F - P) + E(P - P)2 ,

(2.3)
- 1 o
where P = E(p,) , P, = E(xjt|:l) and P -Ejzl P, .

The first term in (2.3) is defined as the response variance which

can be expressed as
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2 - 1 B -
UIC E{(Pt P) } E{( n jfl djt) } E{(dt) } ’

(2.4)

where th = xjc - Pj is the response deviation.

The third term in (2.3) is defined to be the sampling variance of

éi and the second term in (2.3) is twice the covariance of dt and

P . The second term is considered to be trivial in Hansen, Hurwitz and

Bershad's (1961) discussion.

- 2
The response variance ¢ § can be expressed as
t
o2 Lo 4o - 1] (2.5)
d, nd ’ )
1 N
where 02 = E(d2 ) =% I P,(1 -P,) 1is the simple response variance
d jt N j=1 3 3
and p = E(djtdkt)/oé for 3 # k 1is the intraclass correlation among

the response deviations in a trial.

Hansen, Hurwitz and Bershad (1961) found that the impact of even a
very small intraclass correlation was substantial when the sample size
n was quite large. This can be seen from an examination of (2.5).

Two methods were suggested by Hansen, Hurwitz and Bershad (1961)
for estimating the response variance. The xgplication method repeats
the survey procedure on the same sample. The method of interpenetrating
samples divides the sample randomly into several subsamples with each

v, interviewer assigned to one of the subsamples.
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Hangen, Hurwitz and Pritzker (1964) defined the index of
inconsistency as the ratio of the simple responses variance to the total

variance of individual responses; that is,

I =02/02 , (2.6)
d pt

;ﬁére cgt - Var(pt) « For a binomial random variable, the total
variance og is P(l1 - P) , where P 1is the expectation of the sample
mean. :

The response model defined by Fellegi (1964) was similar to that of
Hansen, Hurwitz and Bershad (1961). His sampling degign, however,
involved both interpenetration and replication. He represented the
assignments for the two surveys by {(81(1)’ 51(2)) , 1 =12 ..., k} ,
where si(l) and 51(2) denote the interview assignments for the i-th
enumerator in the original and reinterview surveys, respectively. For
any givén interviewer, si(l) and 81(2) are not the same.

In evaluating the reinterview procedures, Bailar (1968) followed
the response model developed by Hansen, Hurwitz and Beréhad (1961) to
study the effect of the time lag between the census or survey and
reinterview and the effect of the reinterviewers having access to the
original responses. By comparing estimates of the simple response
variance and estimates of the bias for several characteristics from
three samples of the 1960 Census enumerated population, Bailar (1968)

g concluded that the best procedure was one in which the reinterview was
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relatively close in time to the original interview and one in which the
reinterview did not have access to the original responses.

Bailar and Dalenius (1969) presented the statistical theory and
methods for measuring the contribution of response variability to the
overall error of a survey. The method of replication and the method of
interpenetration in the saupleraimension are considered. In the trial
‘dimension, Bailar and Dalenius (1969) considered cases where the same
enumerator was used in all the trials or different enumerators were used
in different trials. Different sampling schemes were discussed for
e;timacing the response variance and the correlated component. The
choice of a sampling scheme was decided by the following factors:

(1) The variance components that are to be estimated;

(2) The cost of a survey; and

(3) The change of the general coanditions of a survey due to the
time lage beﬁweén trials.

Bailar (1976) reported that a study of the components of error
might lead to methods of improving the accuracy and reliability of
survey data. Suppose that one of the purposes of a survey is to
estimate a mean, X » and the data are to be collected by k
interviewers, each with a random assignment of n sample units. Simple
random sampling is used. By ignoring the finite population correction
facters, the mean square error of the cazple médn, % , can be expressed

28
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% . % 2
MSE(X) = = + oo [1+ (a - Dol + 22D g 482 ,(2.7)

R
response variance; (lm)-;1 pRaﬁ(n - 1) 1is the variability caused by the

where (ku)-1 og is the sampling variance; (kn)-l 02 1s the simple

correihtion between response deviation of‘elements in the sample;
Z(kn)-l(n - l)aRs is the covariance of response and sampling deviations
of different units; and-'B 18 the bias of x .

- Equation (2.7) shows that the correlated component of response
variance decreases directly as the number of interviewers increases, but
not as the number of sampling units within an interviewer's assignment
increases. In this way, it is different from the sampling variance.
Thus, the correlated component of response variance may be larger than
the sampling variance. Bailar (1976) reported that a 1950 study of
enumerator variance showed that for areas of 6,500 persons, this
component of total variance for a complete census by direct enumeration
was at about the same level as a sampling variance‘for an estimate based
on self-enumeration for a 25 percent sample of the population. The
results were 6ne reason why the Census Bureau turned to the use of self-
enumeration techniques in the 1960 census.

Bryson (1965) studied the effect of misclassification on the bias
of the sample proportion in the estimate of the population proportion
when the item in a sample is from a binonial‘population. The upper and
lower bounds for the bias were derived based on assumptions regarding

magnitudes of the probability of misclassification when each of the two
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interviewers independently classified the items in a single sample. Let
the minimum values of P12 and P32 be denoted by 3P and Byy »
respectively, where Pyp - is the probability that an item is classified
in class A' by the first interviewer given that it is in A' and Pyy 1s
the probability that an item is classified in class A' by the second
interviewer given that it is in class A'. Bryson (1965) obtained the

foilowing inequality

E(x)E(y)
E(E%Z) + 2122222(x+7+17

E(x)E(y)
E - x>
T By B

x 100 , (2.8)

where X Bias 1s the upper bound of the ratio of the bias of the sample
proportion in class A to the population proportion in class A; w, x,

y and 2z are the proportions of the sample that are classified in
class A by the fi:st interviewer and in class A by the second
interviewer, in class A' by the first interviewer and in class A by the
second interviewer, in class A by the first interviewer and in class A'
by the second interviewer, and in class A' by both interviewers,
respectively. The inequality for X Bias , the lower bound of 2 Bias ,

is
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2= 4 EWEQ)

By 1By B(wtx+y)
X Bias > - Y x 100 , (2.9)
2 s > e T D
| By1Rp) E(wixty)

where 4511 and py; are the probabilities that an item is classified
in class A by the first interviewer and the second interviewer,
respectively, given that it is in class A and R;; and p,, are the
minigum value that P11 and Py; can take, respectively. When the
sample size is sufficiently large, the expected values can be replaced
by the observed values. Krishnaswami and Nath (1968) extended the
results to the multinomial population.

The methods of analysis of variance have been used by several
authors to estimate the variance component associated with
enumerators. Examples are Eckler and Hurwitz (1958), Hanson and Marks
(1958), Kish (1962), Stock and Hochstim (1951). Battese, Fuller and
Hickman (1976) considered a simple components—of~variance model
involving enumerator effects, sampling deviations and respondent-
response errors. Battese, Fuller and Hickman (1976) assumed that a
simple random sample of rm(m—~1) respondents was chosen from the
population of interest and m enumerators were randomly selected from a
large pool of available enumerators. The sample respo;dents were
randomly divided into m(m-l) groups, each of r respondents. The
i-th enumerator interviewed (m-1) respondent groups and reinterviewed

another (m~1) respondent groups that were first interviewed by the
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j-th énunera:or for j = 1,2,..., m, J#41 . This interpenetrating
and replicated survey design was assumed to be applied to several strata
of the population of interest.

Battese, Fuller and Hickman (1976) expressed the model as

Y +Bi+e k- 1,2,0.., T

1kl T Ty 1kl °

Y +B8, +¢

k2 " Tk T Byt ey, s k= L2, T, (2.10)

where Y., denotes the response of the k-th respondent interviewed by
the i-th enumerator at time 1 and ijZ is the response of the k-th
respondent interviewed by the j—-th enumerator at time 2; Y denotes

the true value for the k-th respondent; 8 denotes the random effect

i

of the i-th enumerator; ¢ and € denote the respondent-response

1kl jk2

errors that are associated with the interview and reinterview responses,

regspectively. They also assumed that 81 and ¢ , t = 1,2 are

ikt
independently distributed with zero means and variances °§ and ag ,
k
respectively; that 8 and € are uncorrelated with the true

i ikt
values; and the true value, Y » 18 equal to the sum of a stratum mean,
¥, and a "sampling deviation™ ey, . The sanpling deviations for all
individuals in the population are assumed to have zero mean and variance
. The response errors, ¢ eud the aaﬁpling cGeviation, e, are

ikt

agsumed to have finite fourth moments.

o2
e
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ﬁsing a least-squares regression procedure, Battese, Fuller and
Hickman (1976) obtained the estimators for the variances of enumerator
effects, for the variance of the sampling deviation and for the average
of the respondents respons; variances.

Hartley and Rao (1978) assumed that

(1) the survey is of a stratified multistage design in which the
last stage units are drawn with equal probabilities;

(2) the errors are additive;

(3) all correlations between the errors contributed by a
particular error source are generated through an additive
model; and

(4) there is no systematic bias from any of the error sources.

They expressed the model in the form

yps = "pa + bi + c. + 6bps + chs . (2.11)

where the index s labels the s-th elementary unit; the index p 1s a
composite label indexing the last but one stage unit within the next

higher stage unit ... within a primary unit within a stratum; is

Yps

the recorded observation for the elementary unit labeled (p, 8) ; nps

is the true content for elementary unit labeled (p, s) ; b1 is the
error contributed by the i-th interviewer common to all units

interviewed by the i-th interviewer; Ce is the error contributed by

the c-th coder common to all units coded by the c-th order; Gbps is
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the elementary interviewer error for the content item of unit (p, s)

and chs is the elementary coder error for the content item of unit

(p, 8) . They assumed that by and c, are random samples from an

infinite population of interviewer and coder errors with means zero and
2 2

variances cb and oc , respectively. Also, Gbps and 6cp8 are

assumed to have means zero and variances o%b and agc , respectively.

fﬁe b1 and c., are assumed to be independent of one another and

independent of the nps, Gbps and chs . No restriction is applied on

npa’ Gbps and Scps .

Using the simple mixed model ANOVA techniques, Hartley and Rao
(1978) provided a method of estimating the overall variance of a linear
estimator of the form c'(p)§ » Where ; is the vector of primary-
sample means ;p and the coefficient vector c(p) depends on the set
of selected primaries 1p .

Bross (1954) discussed the effect of misclassification on testing
the hypothesis that the proportions of two independent populations were
equal. Under the assumption that the same classification system was
used in both samples, Bross (1954) found that the size of the ordinary
chi-square test was not affected by ignoring misclassification, but the
power of the test was drastically reduced.

Mote and Anderson (1965) considered two simple response models in
an investigation of the effect of misclassification on the eize and

power of chi-square goodness-of-fit tests for categorical data. The

first model assumed equal probabilities of misclassification into one
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of r available categories. The second response model assumed that
there were only misclassifications in classes adjoining the true classes
to which individuals belong. Mote and Anderson (1965) showed that, with
these response models, hypothesis tests concerning the class proportions
that ignored classification errors had greater size and smaller power
than tests that were modified to account for classificatiom errors.

— Assakul and Proctor (1967) considered two cases of the effect of
misclassification on the test of independence in a two-way contingency
table. When errors of classification in the row direction were
independent of those in the column variable, Assakul and Proctor (1967)
found that the usual chi-square test had the announced level of
significance, but the power of the test was smaller. When the errors
for the marginals were not independent and under the assumption that the
misclassification probabilities were known, Assakul and Proctor (1967)
proposed a test criterion.

Koch (1969) studied the effects of nonsampling errors on measures
of association in a 2 x 2 contingency table under the model due to the
U.S. Bureau of the Census. The sample estimate for a measure of
association was expressed in the form of a Taylor series approximation
involving cell probabilities. Then, the response model was applied in a
term by term fashion. The relative effects of sampling errors and
response errors on the variability of the ;stimated measure of
association could be interpreted in terms of a sampling variance

component and a response variance component.
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Fleiss (1981) discusses the effect of classification errors on the
estimation of population proportions. A clinical trial example is
given. Methods of controlling and_measuring the classification errors
are also presented.

The study of Mote and Anderson (1965) is extended by Korm (1981) to
contingency tables of dimension greater than two. Korn (1981) studied
the effect of the classification efrors on the analysis of hierarchical
log-linear models. It is assumed that

(1) For each dimension of the table, the conditional probability
that an "individual is observed with error at a particular level of that
dimension, given its true level of that dimension, does not depend on

the true levels of that individual in the other dimensions of the table.

(2) Given its true levels in all the dimensions of the table, the
conditional probability that an observation is misclassified into a
certain level of a certain dimension is independent of whether that

observation was misclassified in the other dimensions of the table.

In an I x J x K contingency table, let =« be the probability a

1ik
randomly chosen individual from a large population would be classified

into cell (ijk) of the table if observed with no classification

error. Let Tijk be the probability an individual is classified into

cell (ijk) with classification error. Then

T = L
i.Jk iij lk'

»

ql(ii‘)qZ(jj’)q:;(kk!)“ivj|kv ’ (2.12)
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where qz(ii') is the conditional probability that an individual is
observed in level 1 of dimension £ given that its true level is

i' . The fully saturated model for an I x J x K table is specified by

log '1jk =-u + “1(1) + uZ(j) + “3(k) + “12(1j) + u13(ik)

* Y23 * P123aagw) (213

subject to the usual ANOVA-like constraints. Hierarchical log~linear

“ models postulate certain u terms in (2.13) to be identically zero with

the condition that the lower order relatives of every u term present
in the model are also present in the model. A model is said to be
preserved by classification error in dimension £ 1f when ~* satisfies
the model, T does also.

Korn (1981) shows that a hierarchical log-linear model is preserved
by classification error in dimension £ of the table if and only {f the
minimal set contains exactly one u term having an £ as a suﬁlcript
where the minimal set of u terms for a hierarcnical log-linear model
is defined to be the set of u terms such that the model is specified
by all the lower order relatives of this set.

Rorn (1982) provides an expression for the approximate upper bound
of the asymptotic relative efficiency of tests between nested log-linear
models using misclassified data versus those using data with no

classification errors. This efficiency depends on the probabilities of
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data being misélassified into the wrong classes of the contingency
table. It is shown that the ioss of efficiency due to misclassification
can be substantial.

Giesbrecht (1957) considered the classification of individuals into
the four groups defined by the presence or absence of two attributes.
The presence (or absence) of the first attribute is demoted by A
(or K)-; and the presence (or absence) of the second attribute is

~denoted by B (or B) . The four classes involved are denoted by AB,
AB, AB and AB .

;ot this four-class situation, Giesbrecht (1967) defined ten
conditional probabilites from which the probabilities of classification
are obtained for each of the four colummns. By use of the abbreviation
"ac" for actual classification and "tc” for true classification, the
conditional probabilities that were defined are

B, = Pr(ac is Bltc is B)

1

B. = Pr(ac is §|tc is B)

0

all = Pr(ac is AB'tc is AB and ac is B)

%01 = PR(ac is K3|tc is AB snd z2c is B)

, alO = Pr(ac is AB’tc is AB and ac is B)
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%50 Pr(ac 1is KBltc 18 AB and ac 1s B)

Vi, = Pr(ac is A§|tc 1s AB and ac is B)

Vo, = Priac is x§1tc is Zh_and ac is B)

Vio ™ Pr(ac 1is Ailtc is AB and ac is B)

Voo = Priac 1s Ii'tc 18 AF and ac is B) . (2.14)
The ten conditional probabilities defined by Giesbrecht (1967) do

not represent the most general response model for the two-attribute

case. To obtain the probabilities of assigned classifications for each

of the true classes, the four probabilities Pr(ac is Bltc is AB),

Pr(ac is Bltc is AB) , Pr(ac is fltc is AB) and P?(ac is iltc is AB) ,

need to be defined. Giesbrecht implicity assumes that
81 = Pr(ac is B|tc is AB) = Pr(ac is Bltc is AB)
and

By = Pr(ac 1s iltc 1s AB) = Pr(ac is §|tc 1s AB) .(2.15)
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These assumptions reduce the number of independent classification
probabilities from twelve to ten.

However, even with Giesbrecht's reduction of parameters from
fifteen/to thirteen, the r;sponse model cannot be estimated from an
experiment with independent classification of sample individuals at two
trials of a survey.

Bershad (1967) studied the effect of response errors on “"gross
change” tables under a simple response errors model. The assumptions of
his model are:

(1) At any point in time, each individual in the population belongs
to one of the two groups, U or ] :

(2) 1Individuals in a sample are classified into the two classes
such that different classifications are (i) independent of one
another; and (ii) dependent oﬁly on the true status of the
individual at the time of classification;

(3) The sample proportion of group U is an unbiased estimator for
the true proportion of group U at that time; and

(4) The proportion of group U in the population is the same in
the two months considered.

Under these assumptions, Bershad (1967) showed that the expected
proportion classified in group U in the first month but in group U
in the second month, ay, , was not equal tﬁ-the true proportion,

A12 . The relationship between the true proportion, A12 , and the

expected proportion ajg s is given by
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A, = [a,-P(-PI]/1-T1), (2.16)

12 12

where P 1is the proportion in group U in a given month; and 1 is
the index of inconsistency.

Koop (1974) considered a linear estimator of the form

T(s) = L B(4i, s)xit (2.17)
ies
for estimating the population total subject to response errors where
s 1s a selected sample and xy, 1is the response of the i-th unit at
trial ¢t . When Xqp ig free from error, it is well-known that the
estimator T(s) will be unbiased for all x if
L B(i, s)p(s) =1 for 1 =1,2,..., N . (2.18)
{s : ies}
Koop (1974) showed that a linear estimator with coefficients, B8(i, s) ,
satisfying (2.18) and having the least mean square error did not exist
except for the uni-cluster design. He also showed that the estimators
of the variance of linear estimators given by standard theory were
always negatively biased.

Battese and Fuller (1974) obtained estimates of the response
probabilities from categorical data by assuping an unbiased respounse
model. A response model is said to be unbiaéed if the expected value of
the sample proportion is equal to the population proportion. Battese

and Fuller (1974) suggested a model for the response probability Bij ,
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where Bij is the probability that a randomly selected individual
belonging to the j-th class 1s classified in the i-th class. The

Battese-Fuller model is

~ap, , 1#3, (2.19)

where Pi is the population proportion of the i-th class. In this
model, the probability of incorrect respouse depends upon the true
probabilities and upon the pafameter a .

With each individual classified twice and assuming that the first
and the second classification are independent, Battese and Fuller (1974)
show that the expectation of pij is a nonlinear function of a
and of the Py's , where Pij is the proportion of the sample which is
classified in class 1 at the first trial and in class j at the
second trial., Using the Gauss-Newton method of nounlinear estimation,
Battese and Fuller (1974) obtained estimators of a and of the P,'s

and the asymptotic properties of the estimators.
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III. A RESPONSE MODEL FOR CATEGORICAL DATA
CLASSIFIED IN A TWO-WAY TABLE
T A. Introduction
It is assumed that each individual in a sampled population belongs
to one of a set of rl classes. Let Pij be the proportion in the
i~th row class and j~th column class of the population. Let Pi. and
é‘h be the marginal proportions for the i-th row class and j-th column

class, respectively. Thus,

and .

(3.1)

Assume that a sample of size n 1is selected and is interviewed
twice. Omn the basis of the two interviews, tﬁa n individuals are
classified into one of the r2 classes. In the first interview, called
'Trial-1l,' individuals are placed in the r row classes and in the
second interview, called 'Trial-2,' individuals are classified into
the r column classes. The sample classification and the true
classification are oot necessarily the same.’

It is assumed that the probabilities of classification depend on

the true classes to which the individuals belong and are characterized
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by the classification probabilities Yk(i) and ‘z(j) .
i,j,ky,2 = 1,,.., r , where Yk(i) is the probability that an individual
belonging to the i-th row class is classified into the k-th row class

and is the probability that an individual belonging to the j-th

K

(1)

column class is classified in the 2~th column class. Because all

individuals are placed in one of the classes, it follows that

’r' - T = =

zk-l Yk(i) 1 and Zz_l Kz(j) 1 for all 1i,j 1,2,00., r . It is

also assumed that the classifications on the two trials are independent.
If the classification probabilities Yk(i) and Kz(j) are known,

then an unbiased estimator for the Pij can be obtained from the two

trials survey. Let pij be the sample proportion of i-th row class and

j-th column class. We have

T r
E(p,,) = & L ¥ S P (3.2)
1] gul kwy LCK) 3(2) kL ,
Let
R' = (pll’ p21)°'-9 pl'].”'.’ plt’ er"".’ Prr)
and

! = 2
g (Pll’ le’.-.’ Prl,-oo, Plr, Pzr,ooc, Prr) . (3..1)
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let T and K be two r by r matrices such that their (i,j)-th
elements are Y and Ki(j) , respectively. Then Equation (3.2) can

1(1)

be expressed as
E(p) = (K= DB, (3.4)

where am 1s the Kronmecker product. If the inverse of K = I exists,

an unbiased estimator for P 1is
-1
E=(X=D "p

In most cases, the classification probabilities are unknown. Thus,
a reinterview procedure is incorporated into the survey procedure to
study the classification errors. Individuals in the sample are
classified in the r column classes by a reinterviewer. No original
interviewer is used to reinterview his/her own interview cases. The
reinterview is called 'Trial-3.'

Two kinds of reinterview processes are conducted by the U;S. Census
Bureau in the reinterview program of the Current Population Survey. In
the first, the reintetview is conducted with no reference to the
original responses. In this case, the classification 1s characterized

by the classification probabilities , where

Vi) i3
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2, = 1,2,.4., ¢ , 18 the probability that an individual belonging to

" the j-th column class is placed in the 2-th column class in the
reinterview. In this cade, the classification in 'Trial-3' is assumed
to be independent of the previous two trials and the data collected from

the three trials are called unreconciled data.

In the second type of reinterview process, reinterviewers ére given
;hé original responses and are instructed to consult them after a first
reinterview response has been given. Reconciliation is done on a
separate form containing the original responses. In this case, the
original interview classification and the reconciled reinterview

classification are not independent. The data collected from the three

trials survey are called reconciled data. A suggested model for the

probability that an individual is classified in the t-th columm class by
the reconciled reinterview, given that the individual is in the j-th
true column class and is classified in the 2-th column class on the
original interview is

= ¢ + (1 - ¢) L =t

“e(32) Te(y)

.(1- Z#t, j,l,t- 1,2,0.., r ,

¢)Tt(j) ’

(’3«('::
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where 0 < ¢ <1 . That is, for ¢ of the time the response in the
reinterview is the same as that reported on the original response and
for the remaining (1 - ¢)_ of the time the response in the reinterview

follows the classification probabilities Thus, ¢ 1is a

Tt(j) .
measure of the persistence from the first interview to the second.

Let Pejk be the proportion of the sample which is classified in
the i-th row class at Trial-l, in the j-th columm class at Trial-2 and

in the k~th column class at Trial-3. Then for unrecounciled data,

Pigie T E(Ryqy) = zgl mE1 Pan"1(2) 1 (m) “k(m) (3.7)
and for reconciled data
r r
Pijk g E(pijk) = 151 mfl szYi(z)‘j(m)[¢ ij + (1 - ¢)rk(m)l ,
(3.8)
where &, 1s Kronecker's delta.

jk
The general classification model contains 4r(r-l1) + 1 independent

classification probabilities and r? - 1 independent population
proportions. We develop a classification model in which the
classification probabilities are expreessed as functions of a reduced

number of independent parameters.
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B. The Classification Model
Battese and Fuller (1974) consider a classification model for
classifying individuals to a one-way table. They assume that the sample
response is a function of }he population parameters P, ,

1 =1,2,e0e, T « The classification probabililties, B8

ij
i, = 1,2,¢.., © suggested by Battese and Fuller are
Bij =l-a+aP , 1=}
=aP , i1+3, (3.9)

where B8 is the probability that an individual belonging to the j-th

1]

class is classified in the i-th class and a 1is a constant in the
interval [0, 1] . For this classification model, the sample proportion
for any given class unbiasedly estimates the true proportion belonging
to the class. We propose a classification model which is an extension
of the Battese-Fuller classification model.

Assume that the marginal population proportions P and

i.

P.j y 1, =1,2,00e, °, are positive. Let the probability that an

individual belonging to the i-th class is classified in the j-th class,
i+ 3, be proportional to the conditional population proportion of the
j=th class given that the element belongs either to the i-th or j-th

class. Let the constant of proportionality be a Then the proposed

ij °

classification probabilities Yk(i) and i,j,k, 2 = 1,2,.c., T

()

are
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T
-1

=l ki

-1
+ akiP (P + Pi.) » 1,k =1,2,...,

(3.10)
and
r -1
gy T U - %eqPe(Be TP ) 18y,
P (P, p )7 2, = 1,2 r
zj Cj 14 ] ” gsoey »
(3.11)
where 513 is Kronecker's delta, a, - o, aij - aji , 1 # 3 and

aij’ i, = 1,2,..., r are constants in the interval [0,l]

The classification probabilities defined in (3.10) and (3.11) are
such that the row and column marginal sample proportions obtained at
Trial-l and Trial-2 are unbiased for the row and column marginal

population proportions, respectively. That is,

r
E(p; ) = L P ¥
i.. 1=l 1(L)
r T
-1
= L P {[1=- L a, P (P +P ) 16,

f=1 ¢ t=]
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-1
1284, By * P )7}
T -1
=P ~-I a,P P (B, +P )
t=1
z -1
+ I a P P (P, +P, )
=1
- Pi. (3.12)
and similarly
B ) =P, - (3.13)

When r = 2 , Equation (3.10) and (3.11) are the classification
probabilities defined in the Battese-Fuller model.

It has been observed that the sample proportions obtained from the
reinterview are not the same as the sample proportions obtained from the
original interview. In order to preserve the form for the response
probabilities defined in Equation (3.11), we replace the P.j by
different parameters in the classification probabilities of the
reinterview. Thus, for the unreconciled data the vl(j) ,

2, =1,2,..., T , are written as

-[1 - U.(U, + 07 (U+U)

Y4() I eyl RESUPEENUA 3
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2,3 = 1,2,000, T,  (3.14)

and fqr the reconciled data the

Tl(j)’ 2,j = 1,2,..., T , i8 expressed
as
- "
rl(j) = [1 - cf “tj t(R + Rj) ]62j zj z(R + Rj)

’-,j = 1,2,..., T o (3015)

Two submodels can be considered. In one, the Us and the Rs satisfy

t U, =1 and b R, = 1 , while in the other model the Us and

*3=1 O 1=1 %
Rs are unrestricted.

From Equation (3.14), the expectation of the sample proportion in
the j-th class obtained from the reinterview procedure without
reconciliation is

T

I P, v
L=l L3(8)

r

r
-1

= L P ([l - I a (U + U ) 18

-y =l eVt 3

sz J(Uj + U Y~ }
r -1

= - I

P.j E “tj<Ut+Uj) UtP.j
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r

-1
+ 2:1 a, (U + U™ UP
p -1
= P.j - CEI- j.tz(uj + Ut) (UjP.t - UtP.j) . (3016)

Also from Equations (3.6) and (3.15) the expectation of the sample
proportion in the j-th class obtained from the reinterview procedure

with reconciliation is

r
P.-(1-8)L “tl(R ) . (3.17)

-1
+ R ) “(R,P

ot T ReP

Thus, the column marginal sample proportions obtained from the two kinds

of reinterview procedures are not unbiased for the column marginal

population proportions unless P P-'l = R.jR;1 and P i = UBUEI .

.j .t j
By substituting Equations (3.10), (3.11), and (3.14) into Equation

p~

(3.7) for the unreconciled data and by substituting Equations (3.10),
(3.11) and (3.15) into Equation (3.8) for the reconciled data, the
expectations of the sample proportions pijk for the three trial survey

can be expressed as a nonlinear function of a 1<3=1,2,000, T 3

i’
Pi ; P j; Uj; and Pij’ i, § = 1,2,..., =1 ; for the unreconciled data
and of ¢; aij’ 1i<ji=1,2,..., 1 3 Pi.; P.j H Rj ; and Pij .

i, = 1,2,¢.., T=1 for the reconciled data. Thus, the Gauss-Newton
procedure can be used to obtain estimates of~the paramaters,

Let
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P P

1=

111° Briz2eeer Prape Prane Prazeecer Bropseces Prppeeees Prp o)’

(3.18)

be the vector of observed proportions, and let 8 be the vector of
parameters, where the parameters are Pij’ Py, P.j’

i, = 1,2,..., r=1 and aij’ 1i<j=1,2,..., r « Then

I=20Q +¢, (3.19)
where P(8) denotes the vector of expected values of the sample
proportions in Y expressed as functions of the vector § ; and ¢

denotes the vector of deviations of the observed proportions from the

expected proportions. Let YV be the covariance matrix of ¢ . Then
¥ = o ' {DLag(R(8)] - B(8)(R(D)]'} . (3.20)

Let E be an initial estimate of 8 . Then the one-step Gauss-

Newton estimator for 8 , denoted by 8 , 1is

o
1
to
+
W >

(3.21)

where
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ad=EEOT O @y - 2D, (3.22)

Z(E) denotes the matrix of partial derivatives of P(8) with respect

to 8 evaluated at § » and
T = o lintag(2(®)] - HDIRE)]'} . (3.23)

Assume that the initial estimator, E , satigfies the condition
~ -1
2-8=0,n "2 (3.26)

and the matrix E'(go)!-l E(go) is nonsingular for every 20 in an
open subset of B of the parameter space where the true parameter §
belongs to B . Then, it can be shown that (see, for example, Fuller

(1976, Chapter 5))

a 72§ - 9) L N, (@Y B@OITH (3.25)
and
$2 = [Y - B(O)1'Y MY - B(®)] (3.26)

converges in law to x2 , where xz is distributed as a chi-square

random variable with 2.1(t--1)(2r2 -1 - 2) degree of freedom.
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The statistical package SAS (1982) provides a quite efficient
program for nonlinear estimation. In practice, several iterations are
performed by the program until the reduction of the residual sum of squares

for two consecutive iterations is less than a specified constant.

C. Example

In the monthly CPS»Saméle conducted by the U.S. Bureau of the
Ce;sus, information on the employment status of individuals is
collected. In a given month, each individual is classified into one of
the following categories: Employed, Unemployed and Not in the Labor
Force (NILF). As a part of the quality control procedures, about 1 of
18 units in the monthly CPS sample is reinterviewed. The original
interviewers do not know which household will be reinterviewed by senior
interviewers and supervisors during the reinterview. No original
interviewer is used to interview his/her own interviéw cases.

In the reinterview process, a reconciliation is done for 80 percent
of the reinterview sample. Reinterviewers are given the original
responses and instructed to consult them only after the reinterview
responses have been given. Reconciliation is done on a separate form
containing the original responses. For the other 20 percent of the
sample, no reconciliation is made.

The survey responses in January and two interviews in February of
1979 with reconciliation and no reconciliatisn in the reinterview are
given in Table 1 and Table 2, respectively. The size of the sample is

3,198,
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Reported employment status in January, February
and February reinterviews, where reconciliation is

made in the reinterview process

Employed in January at Trial-1

February Trial-3 class

February

Trial-2

class Employed Unemployed NILF Total -
Employed 1,428 A 12 1,444
Unemployed 2 19 2 23
NILF 6 1 43 50
Total 1,436 24 57 1,517
Unemployed in January at Trial-l

February February Trial-3 class

Trial-2

class Employed Unemployed NILF Total
Employed 22 2 24
Unemployed 3 34 39
NILF 1 2 15 18
Total 26 38 17 81
NILF in January at Trial-l

February February Trial-3 class

Trial-2

class Employed Unemployed NILF Total
Employed 39 1 o 7 47
Unemployed 0 21 5 26
NILF 9 16 1,003 1,028
Total 48 38 1,015 1,101
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Reported employment status in January, February and
February reinterviews, where no reconciliation is made

in the reinterview process

Employed in January at Tfigl—l

February Trial-3 class

February

Trial-2

class Employed Unemployed NILF Total
Employed 248 256
Unemployed 0 3
NILF 2 10
Total 250 5 14 269
Unemployed in January at Trial-l

February February Trial-3 class

Trial-2

class Employed Unemployed NILF Total
Employed 6 0
Unemployed 0 8 0 8
NILF 0 2 3
Total 6 10 1 17
NILF in January at Trial-l

February February Trial-3 class

Trial-2

class Employed Unemployed NILF Total
Employed 8 0 . 0 8
Unemployed 0 4 . 1 5
NILF 8 1 191 200
Total 16 5 192 213
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Additional data on the reinterview process from the second quarter
1978 to the fourth quarter 1980 are also available. The responses to
the original interview and reinterview during that period with no
reconciliation and with reconciliation in the reinterview are given in
Table 3 and Table 4, respectively.

Let the three categories Employed, Unemployed and NILF be indexed
sy 1, 2, and 3, respectively. It is hoped that the aij parameters of
the model proposed in Section B will remain relatively constant over
time. Then, estimaﬁes of the aij's can be obtained from data
collected during the period beginning with the second quarter of 1978
and ending with the fourth quarter of 1980. It is assumed that no
individual was reinterviewed more than once during that period of
time. This is a policy of the Census Bureau.

The classification probabilities suggested in Equations (3.1l1),
(3.14), and (3.15) are used for the original interview and reinterview
of the grouped data and also for the original interview and reinterview
of the unreconciled data. The a's are assumed to be the same in the
classification probabilities for both data sets. For the reinterview on
the reconciled data, different 013 and 023 are used for the two
interviews. We also assume that 22_1 Ui = 1 and 22_1 Ri = 1.,

Let pij be the sample proportion in the i-th class on the

original interview znd in the j-th clzss on the reinterview. IJet

B = (pll’ Plzr P13’ p21’ p22’ P23, P31) P32)' .
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Table 3. Employment Status, Original Interview by Reinterview with No
Reconciliation in the Reinterview, 2nd Quarter 1978 Through
4th Quarter 1980

Reinterview
Original
Interview Employed Unemployed NILF Total
Eamployed _ 15,619 123 485 16,227
Unemployed . 114 770 195 1,079
NILF 416 275 10,307 10,998
Total 16,149 1,168 10,987 28,304

Table 4. Employment Status, Original Interview by Reinterview with
Reconciliation in the Reinterview, 2nd Quarter 1978 Through
4th Quarter 1980

Reinterview
Original
Interview Employed Unemployed NILF Total
Employed 77,535 112 264 77,911
Unemployed 155 4,913 140 5,208
NILF 864 592 50,858 52,314
Total 78,554 5,617 51,262 135,433

The covariance matrix, V , of p 1s obtained under the assumption that
the sample observations are distributed as multinomial random

variables. Thus,
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i - n-l[Diag(g) -pp'l.

This is a gross approximation because the sample is selected according
to a ﬁu}tistage sampling s;heme. Also, within every selected household
every member is interviewed. Thus, there exists the cluster effect.
Apother effect that couiq not be identified from the available data
includes interviewer effects. It is hoped that these effects are small
enough so that the multinomial approximation will be adequate for the
computation of estimates. With this estimator of V , the computational
procedure for the nonlinear model is simplified a great deal. The

estimates obtained using the Gauss-Newton procedure for the nonlinear

model are

a, = 0.0564 , a5 = 0,034
(0.0053) (0.0013)

3,y = 0.1192 , P, = 0.5749
(0.0096) ‘1 0.0020)

P, = 0.0384 , U, = 0.5315 ,
2 (0.0017) (0.0382)

U, = 0.0570 , il - 0.9729 ,
(0.0092) (0.0151)

iz - 0.0271 , 4 = 0.7289 -
(0.0148) (0.0137)

aty = 0.0412 , ag, = 0.0326

(0.0038) (0.0036)
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where 013 and a53 are the estimates of the parameters @3 and

a that appear in the reinterview classification probabilities Tz(j)

23
of the reconciled data. The residual sum of squares is 8.34 with 4
degrees of freedom. The 5 percent point of the chi-square distribution
with 4 &egrees of freedom is 9.49. Thus, the fitted model is consistent
with the observed data. The standard errors of these estimates are
cé@culated under the multinomial assumption. Because of the clustered
nature of the sample, it is expected that the standard errors are biased
dowaward.

To analyze the data obtained in January and February 1979, we
combine that data with the grouped 1978-80 data. Before doing so, a
careful look at the data set reveals that the marginal proportions of
the reinterview in February on the reconciled data are not consistent
with the corresponding marginal proportions of the grouped 1978-80
data. Thus, only the parameters of 013, alz, 023, U1 and U2 are
assumed to be the same for the grouped data as for the 1979 data. In
constructing estimated standard errors, it is assumed that the grouped
data are independent of the sample data collected in January and
February 1979.

Let pijk be the sample proportion of the i-th class of January,
j=-th class of February and k-th class of February reinterview. Let p
be the column vector of Pijk's . Due to tﬁg fact that there are some

zerces in p , we propose an approximate estimate of the covariaance

matrix, V , of p . ‘let
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z=@+ 20 ap+1).
Then, an estimate of V 1is
V= o '(Dtag(z) - 2 2'] -

With this E , the Gauss-Newton estimates for the parameters are

~ -~

(0.0049) (0.0012)
a,, = 0.1161 , U = 0.5267 ,
(0.0087) (0.0348)
< U, = 0.0572 , R, = 0.4917 ,
(0.0082) (0.0901)
R, = 0.0853 , ¢ = 0.6381 |,
(0.0312) (0.0703)

~

afa = 0.0462 , 653 = 0.2405

(0.0135) (0.0916)

~ ~

with Pij’ Pi. and P.j ’

squares of the residuals for the nonlinear model is 33.53 with 39

i, = 1,2,3 shown in Table S. The sum of

degrees of freedom. The usual chi-square value can be calculated by the
following equation
2 T ) o ) o IS 2 N |
x*= L T I (aP,,(0)~-np, )P . (68)) ",
2al j=1 kel 13k ik 13k
where n piJk is the observed value of the i-th class in January, j-th

class in February and k-th class in February-reinterview and =n Pijk(g)

» ?
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is the expected value of the i-th class in January, j-th class in
February, and k-th class in February-reinterview. With these estimates
of the parameters, the ch§-square value is 39.49. The 5 percent value
of a chi-square distributién with 39 degrees of freedom is 53.56. Thus,
the model fitted is comsistent with the observed survey response of the
ewployment status in January and February of 1979.

The usual maximum likelihood estimates of Pij’ i,j = 1,2,3 , based
on the original interviews conducted in January and February 1979 are
shown in Table 6. Table 6 is constructed under the assumption that no
classification error exists. The size of the sample is 3,198. By
comparing the figures in Table 5 and Table 6, one sees that the
estimates of the diagonal elements Pii adjusted for the classification
error are larger than the maximum likelihood estimates constructed under
the assumption of no response error. The estimates of the off diagonal
elements, Pij , adjusted for the classification errors are, in general,
smaller than the simple proportions. The biggest differences are for
the proportions changing classes between NILF and employed from January
to February. The differences are about six times the standard
deviations of the simple proportions, where the standard deviations are
obtained under the multinomial assumption. The two estimated movements
between unemployed and NILF are also reduced substantially, while the
estimated movements between employed and unemployed are only slightly
smaller than the original sample proportions. Ome expects the Gauss-

Newton estimates of the row and column marginal probabilities to be
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Table 5. Gauss-Newton Estimates of Probabilities
February
January Employed Unemployed NILF Total
Employed 0.5499 0;0066 0.0042 0.5607
(0.0081) (0.0018) (0.0023) (0.0081)
Unemployed 0.0081 0.0200 0.0010 0.0291
(0.0018) (0.0028) (0.0015) (0.0029)
NILF 0.0019 0.0053 0.4030 0.4102
(0.0022) (0.0019) (0.0080) (0.0080)
Total 0.5599 0.0319 0.4082 1.0000
(0.0081) (0.0030) (0.0080)
Table 6. The Maximum Likelihood Estimates of Probabilities, Assuming
No Classification Error
February
January Employed Unemployed NILF Total
Employed 0.5316 0.0081 0.0188 0.5585
(0.0088) (0.0016) (0.0024) (0.0084)
Unemployed 0.0094 0.0147 0.0066 0.0307
(0.0017) (0.0021) (0.0014) (0.0031)
NILF 0.0172 0.0097 0.3839 0.4108
(0.0023) (0.0017) (0.0085) (0.0087)
Total 0.5582 0.0325 0.4093 1.0000
(0.0089) (0.0031) (0.0087)
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equal to the simple proportions of the row and column marginal
probabilities due to the fact that the classification probabilities
satisfy the marginal unbiased property. Our estimates came out slightly
different because the Gaus;-Newton estimates are obtained from the
reconciled and unreconciled data sets and the simple proportions are
calculated by using the first interviews in January and February of the
combined data set. The estimate of ®,, 1is the largest of the
estimates and indicates that mistakes in classification between
unemployed and NILF have the highest probability.

| The classification probabilities for January and February are shown
in Table 7. The probabilities are constructed using the January and
February marginals from Table 6. From these two sets of classification
probabilities, one can also obtain estimates of Pij by using the

Equation (3.5). That is,

where [ and k are the matrices of classification probabilities of
,January and February, respectively, and P and p are defined in

Equation (3.3).
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7. Estimated Classification Probabilities
for January and February 1979

Reported True class
class Edployed Unemployed NILF
Employed 0.9829 0.0529 0.0192
January  Unemployed 0.0029 0.8391 0.0081
NILF 10.0142 0.1080 0.9807
Employed 0.9828 0.0527 0.0193
February Unemployed 0.0031 0.8397 0.0085
| NILF 0.0141 0.1076 0.9722
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IV. AN ERRORS-IN-VARIABLES MODEL WITH REPLICATED )
OBSERVATIONS ON SOME UNITS

A. Introductiqn

Consider the following errors-in-variables model

y1:"80_"'81’5:""‘: ’ - 1.

t t £’ and
Xt =-x, + u, t = 1,2,..., 00, (4.1)
here
X, By ka 0 0 0
q 0 0 g 0 0
Cl~n , q
wt 0 0 0 oww u
u, 0 0 0 dwu auu ’

d x, and y, are the true values of the variables of interest which
imnnot be measured exactly. Instead, Yt and Xt are observed. Under
1ls setup, the random variable qe is the error in the equgtion and

e vandom varibles v, and u. =zre the measurement errors of Ve

d «. , Tespectively.
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Let (S, ,» Sw? Suw) be unbiased estimators of (ouu, O ra? cuw) ,
where the matrix
Suu Suw
S =
Swu S

is distributed as a Wishart distribution with d degrees of freedom.

Let (Suu' Suw? Suw) and (xt, Yt) be independent for
t =1,2,..., n ., Fuller (1980) obtained an estimator, BI , of Bl and
the limiting distribution of 81 . The estimator Bl is

" -1

B1 = (mXX - Suu) (mXY - suw) ’ (4.2)

- ol _ 32 -l - _ %
where Deg = 0 zz_l(xt X)< , by =0 zt_l(xt X)(Yt Y ,

X = u—l Z:-l Xt , Y= n-1 2:_1 Yt . The limiting distribution of

n1’2(§1 -8)) is N[O, V(n 1/231)1 , where

Vz‘ -2 2
V(n Bl) = oxx[o + ou + n(auuar

6 +0 0 + 092 ))],
XX VV | o uu v v r = ur

(4.3)

- 2 -
o3 + B cuu Zslouw
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and n = ud-1 is a fixed number.
Suppose that among the n units, d wunits are observed twice.
Without loss of generality, let them be the first d units. Then

Y + w

e1 " T e

and

X = X + u i = 1,2, t = 1,2,.0., d ’

ti t ti ’
where (wti’ “ti) , 1 =1,2, t=1,2,.00,4d, (wt, “t) ,
t = d+l,..., n are independent bivariate normal vectors with mean zero

and variance-covariance matrix

d
- -1 - 2
S, = (2d) tfl(Ytl Y, ,)
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d

- -1 - 2
Slm (2d) L (th ch)
tm]
and
-1 d
Suw = (2d) tEl(xtl - th)(Ytl - Y:z) . _ (4.4)
Then Sww’ Suu and Suw are unbiased estimators of T’ ouu and

ouw s respectively.
Let (it.’ it.) be the mean of (Ytl’ th) and (Ytz, th) for

«t=1,2,00., d. From (4.1), the model becomes

Fp =Byt Bx tq,

=y, +V

Yt. t.

e, =%t Et. , t=1,2,...,d, (4.5)

fal]
L}

where

!
i
—

w
t.

|
i
(o

e, tl £2)

and



n
W

x, Mo axx 0 0 0
q 0 0 0 0
i ’ 19 )
wt. 0 0 0 1/2 O'W 1/2 qu
. 0 0 0 1/2 qu 1/2 Guu

Under the normality aséunption, (it.’ it ) and (swv' Suu’ swu)

aré independent for t = 1,2,..., d . Thus, from (4.2) and (4.3), the

estimator for 81 based on the first d wunits 1is

8 . = -1 e - -
By g = (g g ~ Y28, (mg g ~Yasy) (4.6)

with asymptotic variance

3 - g 20471 1 1 Y, 42
W8y ) = o {do (o +Ya0 ) +Ho (o, +¥p0_ ) +Y,02 ]
-1 2
+Y,4 (0,,%, + 9201 (4.7)
where
_1 d 2
== 4d I (X - X ),
"X X eop Ee e
-l d — —
g g = d tfl(xt' -k OO Y ),
T =4t g X
.o t. ’
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Similarly, since (Y, xt) and (S, Squ* Syy) are independent for
t = d+l,..., n , the estimator for 81 based on the last n-d units is

~

-1
Bloa-g ™ (Bypx = Sy)  (Byy = Sp) (4.8)

with asymptotic variance

- - '2 ‘1 2
v(sl,n-d) ckx{(n-d) [an(aqq + crr) + ouu(dqq + arr) + cur]
-1 2 '
+d (awo" + our)} R (4.9)
where
-1 n - 2
= (n-d) L (X  -X)<,
xx ted+l °©
-1 n - -
= (n-d) I X -XD(G_-Y9 ,
vy mdtl T e~ X

- _1 n
X = (n-d) L Xt ’
t=d+]l



57

- -1 n
Y= (n‘d) px Yt .
tud+l

Also from the result of Appendix A, the asymptotic covariance of

-~

Bl,d and Bl,n-d is

COV(B [(Zd)

2
1,4° 81 n-d ( uu’rr our)] * (4.10)

The covariance is positive because both estimators use the estimated

-

covariances (Suu, Suw’ sww) .
Let
Vi ™ v(sl 4
V22 V(81 _—y

and

v (4.11)

12 = oV 40 B) nd) -

To find the optimal linear combination of the two estimators, let

~

Bi,p "PPBra TPy Ly
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is to be determined. From the results of Appendix B; the »p

that minimizes the variance of 81 is

P

-1
ph = (V11 - 2V12 + V22) (sz - v12) ’ (4.12)

*
and the variance of p Bl;d'+ (l'p*)sl,n-d is

B.

- -1 2
(v + vV 2V v12) o

11+ V2 127 (4.13)

(V11¥22 -

Determination of Number of Duplicate Measurements Units

Asgsume that the cost of obtaining oune observation is ¢ wunits.

Then the total cost, T , for the survey is

where d
We assume

Let

Given the

(4.13) 18

T = c(add) , (4.14)

is the number of the units that have duplicate measurements.

that it is not practical to observe a unit more than twice.

n=ndl. (4.15)

total cost T , the value n that minimizes the variauce

obtained as follows. From (4.14) and (4.15), (4.13) becomes
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T g2

c(n+l) ) [A + (n=DID][B +Y,D] =14 (n-1)D2 | | £(n)
A+(B + 17, D)(n-1) ) ’

(4.16)
where

+ 2
orr) +0 .

A= qxx(qqq + arr) + auu(a Sr

qq

- 2
B Oxx(dqq +1/2 drr) +17’26 o‘qq +17’2 Ort) +1/4 dur ,

uu(

D=o o _+ 02 , (4.17)
uu rr ur
Differentiating f(n) with respect to n and setting the

derivatives equal to zero, we have

3If(n) L e BD(B"%) ("-1)2*2“”(“'1)+A2(B*-?-)-*ZABD-ZA(B#Z-)%

M2 [A+(B+9) (n-1) ]2 J

-~0. - (4.18)

Solving the equation (4.18) for n , we get

t



60

- 1
n-1 = (BD(B+3)] 7 (-ABD + (ABD(B-2)2(2B +1;D - m)] 2} .

(4.19)
The second derivative of £(n) with respect to n is
-Dy2 D,
2£(n) _ o ) PAG - 7B +P-A) 4,20
2 o2 D 3 (4.20)
an ot T [A+(B + ) (n-1)]

which is positive when
- 1
n-1 = [BD(B +P£)] 1(-aBD + [ABD(B - Y3 D)2(2B +14 D-a)] 2,
(4.21)

Thus, f(n) is a minimum when (4.21) holds.

From (4.15), n > 1 , since d < n . It follows that
- 1
nel 1f [BD(B + 21 (-ABDH(ABD(B - 4 D)2(2B +; D-a)] 23} <o
- - 1
= 1+[BD(B +%)] 1{-ABD+[ABD(B - Y, D)2(2B +1/) D-A)] 2} otherwise.

(4.22)
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But

[BD(B + %)]-1{-A.BD+[ABD(B -1, D)2(28 +1/,D-4)] 1/2} <0

2
<=> -ABD(B + 7)[AB + Z2+ B D - 282 - 21} < 0
2
<=> AB + 22 + 3D - 282 - 2= > 0

<=> A(B +%) - 2(B -%)2 >0

> 1/, p2 D
<=>1/y D% + [3omaqq + 2 0 <%rr + 2 °uu°qq]2

ol L C +Y¥0 ) +1/26uucqq xxlqq > 0 +(4:23)
Let
E = 0,4(%q +Y0_ ) +Y, %4uqq (4.24)

Then, Equation (4.23) can be written as

g a g2 g2 y g o
(D + (2E -_%ﬂ.) - (4E2 +_’E.Z__°13.) 2 | [D+(2E .._E‘_ESS.)

g2 o2 "
+ (4E +_;x_:5_2_g_q_) 21>0. (4.25)
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The inequality (4.25) holds if and only if

o_a a2 a2 y
D> -(2E - —"’—z‘-flil) + (4E2 +—’-‘-"%1) 2 (4.26)

2
since D = cuuqrr + aur is positive.

Hence, we conclude that

g, | (g2 4 Tmay Y
ne1 i D> - (& -4 + ur2 + =AY
- 1+[nn(m-§-)]"1{—un+[un(3 -Y,0)2(28 +1,D-a)] 1/2}, otherwise,
(4.27)

where A, B, D and E are defined in (4.17) and (4.24).
Tables for the optimal n corresponding to certain values of

Bl’ I’ Tuu’ qu and O x are tabulated and are shown in Table 8.

With known T’ %uu and O * (v, u) can always be transformed into

two independent random variables with equal variances. Therefore,

without loss of generality, the tables are for Oos ™ LA and

O ™ 0 . From the tables, it can be seen that n 1is decreasing with

-1 -
respect to oxx Guu » Which shows that when measurement errors are

large, more units with replicated observations are needed in order to

obtain a better estimate for the errors.
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-1

-1

Table 8. for given 8, oxxoﬁu’ qxxoqq .
B, = 0.00
G;i ouu
o s %4 0.05  0.10  0.20  0.30  0.40  0.50  0.60
0.05 479 2.16  1.00  1.00  1.00  1.00  1.00
0.10 6.72  3.25  1.28  1.00  1.00  1.00  1.00
0.30 11.36  5.72  2.72 1.6  1.00  1.00  1.00
0.50 14,56  7.36  3.62  2.27 1.5  1.07  1.00
0.70 17.14  8.67  4.32 2,77 1.9  1.41  1.04
0.90 19.38  9.81  4.91  3.19  2.28  1.70  1.29
B, = 0.20
a; auu
o 9 0.05  0.10  0.20  0.30  0.40  0.50  0.60
0.05 4.60  2.03  1.00  1.00  1.00  1.00  1.00
0.10 6.47 3.1  1.20  1.00  1.00  1.00  1.00
0.30 10.94  5.50  2.60  1.52  1.00  1.00  1.00
0.50 14,00  7.08  3.47  2.16  1.45  1.00  1.00
0.70 16.50  8.35  4.14  2.65  1.85  1.33  1.00
0.90 18.66  9.44  4.72  3.06  2.18  1.61 1.2l
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Bl = 0060
el
xx uu
ol 0.05 0.10 0.20 0.30 0.40 0.50 0.60
xx ‘qq
0.05 3.57 1.44 1.00 1.00 1.00 1.00 1.00
0.10 5.11 2.35 1.00 1.00 1.00 1.00 1.00
0.30 8.70 4.33 1.94 1.03 1.00 1.00 1.00
0.50 |. 11.13 5.60 2.66 1.57 1.00 1.00 1.00
0.70 13.11 6.61 3.22 1.99 1.31 1.00 1.00
0.90 14.82 7.48 3.69 2.33 1.59 1.11 1.00
B, = 1.00
—1 o
xx uu
ol 0.05 0.10 0.20 0.30 0.40 0.50 0.60
xx qq
0.05 2.58 1.00 1.00 1.00 1.00 1.00 1.00
0.10 3.82 1.61 1.00 1.00 1.00 1.00 1.00
0.30 6.62 3.21 1.29 1.00 1.00 1.00 1.00
0.50 8.47 4.21 1.88 1.00 1.00 1.00 1.00
0.70 9.97 4.99 2.33 1.33 1.00 1.00 1.00
0.90 11.26 5.66 2.71 1.61 1.01 1.00 1.00

3
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B, = 1.40
a;i ‘quu
- %q 0.05  0.10  0.20  0.30  0.40  0.50  0.60
0.05 1.86  1.00 1.00 1.00 1.00  1.00  1.00
010 2.90  1.06  1.00 1.00  1.00  1.00  1.00
0.30 5.18 2.4l 1.00  1.00  1.00  1.00  1.00
0.50 6.65 . 3.23 1.31 1.00  1.00  1.00  1.00|
0.70 7.82  3.87 1.69  1.00  1.00  1.00  1.00
0.90 8.84  4.40  2.00  1.08  1.00  1.00  1.00
B, = 1.80
a; cuu
e % 0.05  0.10  0.20  0.30  0.40  0.50  0.60
0.05 1.36  1.00 1.00 1.00 1.00 1.00  1.00
0.10 2.26  1.00 1.00 1.00 1.00  1.00  1.00
0.30 4.18  1.84 1,00  1.00  1.00  1.00  1.00
0.50 5.41 2.5  1.00  1.00  1.00  1.00  1.00
0.70 6.37  3.08  1.22  1.00. 1.00  1.00  1.00
0.90 7.20 3.53  1.49  1.00  1.00  1.00  1.00
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To illustrate the use of the tables, we assume that one has enough
money for 1,000 observations. For design purposes, it is assumed that
B1 = 1 , the variance of the measurement error in X and Y is 10
percent of the variance of- x and the variance of the error in the
equation is 50 percent of the variance of x . Then, the optimal value

of n is 4,21. This means that
-1
d = (420"t n
1000 = n + (4.21)~! n

and, hence,
n = 808
d = 192 ,

The optimal design is to select 808 individuals and to make

duplicate measurements on 192 of those individuals.

C. Extension of Duplicate Measurements to Triple Measurements
Given an errors-in-variables model (4.1) and the simple cost
function (4.14), the Qalue of n= d-1 n that minimizes the variance of

Bl was obtained in Section B, where n is the total number of units

selected in a sample and d 1s the number of the sampling units that
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are observed twice. Table 8 contains the optimal value of n

s @ and o .
qq XX

For certain values of_ Bl’ Ta’ %uu’ oqq and O x * the optimal

value 65 n 1is equal to one. That is, all the sampling units should be

corresponding to specific values of Bl’raww’ LA

observed twice. We now determine if triple observations should be
obtained for certain paréunter configurations. The cost function
described in (4.14), where the cost of obtaining one observation is

¢ , will be used. The result is developed in a general case, where the

.nunber of units with k+l observations is determined given that all the

1 4
*

units are observed k times, for k = 2,3,4,... .

Assume that at least k observations are obtained for each of the
n sampling units. Let d be the number of units for which k+l
observations are obtained. Without loss of generality, let them be the

first d wunits. Then
Tog =T ¥ ¥y
and

+
X, = x. +tu

ti ti

for 1 = 1,2,.e0, b+l 3f = =1,2,,..,d and 1 = 1,2,..., k if
t = d+l,..., n , where (wti’ “ti) , 1 = 1,2,.., kt+l ,

t =1,2,000, d, (wti’ “ti) , 1=1,2,.00,k, t=4d+l,..., n are
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independent bivariate normal vectors with mean zero and variance

covariance matrix

Let
oy, 4 Kkl - n k -,
S = [o(k-1)Hd] [ L L (Y ,-Y )2+ I T (Y ,-Y )2] ,
w tel =1 2P pegel ger oL OE
o 4 kH - a k _
S = [n(k=1)+d] [ = (X_,-X_)2+ I T (X_,~-X. )?] ,
uu t=1 4=1 0 B0 tegel ge1 FOE
and
o 4 kel . _
S ™ [a(k-DH] (T I (X, - xt.)(Yti - Yt‘)
t=l i=]
n k _ -
+ I T(X, -X XY, -Y. )], (4.28)
cmd4l imp  tE t./ el t.
where
_ oy
Y = (k+l) I T, ,
t. (= L
k+1

- -1
Z,o= G+ L X, t=1,2,...,4d,

‘ i=]
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and

T X , t =md+l,ie., n .

Then Sww’ S

au and suw are unbiased estimators of cvv , O

uu

and cuw , respectively.

For the first d wunits, the model can be rewritten as

Ve = Bo + let + q, >
LI AR A
’it. = x, *"7:. , t=1,2,.0.,4d, (4.29)
where
_ !
w_ = (k+l) I w ,
t. emp tl
- _y kL
u = (k+l) X u
t. (o] tt

and



X Hx 9 xx

q, 0 0
~ NI ,

“t. 0 0

ut. 0 OA

Under the normality assumption,

are independent for

estimator for B

1

-~

Bra ™ (g §,q = (D

with zsymptotic variance

o -1 -1
V(Bl’d) = {d {oxx[oqq + (k+1) "¢
+ &+ o [0 + &+ o
qq

+ 02 2 } o+ {[a(erl)H] (k+1)2}

2 ~2
+ dur)}axx

70

0 0
g 0
qq

-1
0 (k+l)

-1
0 (k+l)

(Yt.’ xt.

c = 1’2’.(‘.’ d -

1

-1
suu) (nii,d

]

i 99

ua

0
0
g (1;+1)-'1 g
ww wu
g )"t g
wa uu

) and (sww’ Suu

baged on the first d units is

- )t 5.,

(4.30)

rr

l(c

uu rr

(4.31)

S

wu

)

Thus, from (4.2) and (4.3), the
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where

_1 d
miid -d z'(xt. -xoo)z ’
’ tm=]
-1 d _ - -
mi ?,d = d z (xto - xoo)(Yto - Yto) ’
t=l
Y
X = d L xt ,
.8 t-l *
- -1 d _
Y = d z Xt R
e t-l L ]
- 2 -
°tr g+ Bl g Zslowu ’
and
our - awu - Blauu *

Similarly, the estimator for 81 based on the last n-d

-1

with asymptotic variance

-1 -1

V(E = {(n-d)-l[c (6. +k "o )+k "o (o

l,n-d) xx" qq Y uu qq +

units is

Swu) (4.32)
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-2 2 - 2 -1 2 -2
+ k Gur] + {[n(k=-1) + d]k<} (auuorr + aur)}axx .
(4.33)
where
-i n 2
== = (n-d) L (X -X)
"X X,nd cmdsl E A
-1 ¢ - -
- = = (n-d) I X, -X XYy. - ),
X ¥,nd cmdl E AR N .
- -1 1
X = (n=d) I Xt ,
i t=d+1 ¢
and
- S L
Y = (n=d) L Yt .
°e ted+l °
Also, the asymptotic covariance of Bl,d and Bl,n-d is
~ ~ _1
°°"<°1,d’ Bl,n-d) = {k(k+1)[n(k-1) + d]} (quuorr
+ a2 o (4.34)
ur’ xx ° *
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-1 ° )+ kle (0o +xto ) + k2 g2 ,

A= cxx(a +k uu " qq rr ur

qq

-1 -1 -1
B oxx[cqq + (?fl) drr] + (k+l) °uuL°qq + (k+1) crr]

+ (k+1)"2 02

and
- 2
D auuorr + qur . (4.35)

N Then, Equations (4.31), (4.33) and (4.34) can be expressed as

- -1 -2 -1 -2
v11 = V(Bl,d) = {d " B+ (k+l) “[n(k-1) + d] D}cxxx ,

Vpp = VB, 1 ) = @)™t A+ kP ak-1) + 417} D)o

and
Vi, = Cov(8) 4u 8y ) =k e T a1 + a1 D02
(4.36)

* IRy e 2
From (4.13), the variance of p Sl,d {1~ )el,nmd is
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(V,, + V., -2V -l

- Y2
11+t Va2 =2 (Ve - VD) (4.37)

-1

where p* = (V11 -2V, +V (V22 - VlZ) is the optimal value of

12 *.V29)
p that minimizes the variance of

~

Byp " P B gt (P8 4~

If the cost of obtaining an observation is ¢ units, then the

total cost, T , for the survey is
T = C(kn + d) . (4.38)
-1
n=nd . (4.39)

Given the total cost T , the value n that minimizes the variance

(4.37) is obtained as follows. From (4.38) and (4.39), (4.37) becomes

( °2 ) [k(n=1)+k+1] {AB+k ~2[ (n-1) (k-1)+k] "L (n-1)BD

To
XX

1

+ (k+1) "2[(n-1)(k-1)+k] ~tAD} [A+(n-1)B

+ [k(k+1)]"2[(n=1) (k=1)+k] " }(n-1)D} "}
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z f(n) . (4.40)

Further simplification shows that £f(n) can be expressed as

£(n) = (=S—){[k(k-1)AB + k' BD](n-1)2
To2
xX
+ [(2k-1)AB + k™ 2(k+1)BD
+ (e+1)7% KAD](n-1) + k(k+1)AB
+ (k+1)"! AD} {(k-1)B(n=1)2 + [(k-1)A + kB
+ K 2+1)72 DI(n-1) + KA} . (4.41)

k(k-1)AB + k! BD ,

(2k2 - 1)AB + k 2(k+1)BD + (k+1)"2 kaD ,

o
"

K(k+1)AB + (k+1)~! AD ,

n
[ ]

a, = (k=-1)B ,



’

and
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b, = (k=1)A + kB + i+ 2 p

c. =k A,

Then, Equation (4.41) becomes

-1)2 -
al(n e + bl(n 1) + c1

£(n) = (——)

2 -1)2 -
Toxx az(n 1)< + bz(n 1) + <,

(4.42)

(4.43)

Differentiating £f(n) with respect to n and setting the

derivative equal to zero, we have

- -1)2 - - -
() _ ( . ) (alb2 azbl)(n 1) + 2(a1c2 azcl)(n 1) + blc2 b2c1
an 2 -2 - 2
Toxx [az(n De + bz(n 1) + c2]
0. (4.44)
Solving the equation (4.44) for n , we get
n-1 = (a,b, -~ a,b )-1{—(a e, —a e’) & fac. ~a.c, )2
172 271 172 2717 7 L2 271
VZ
- (alb2 - azbl)(blc2 - bzcl)] } . (4.45)
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Further checking on the second derivative of £(n) with respect to n
shows that £f(n) 1is a minimum at

-] = - -1 - - - 2
n-1 (alb2 azbl) { (alc2 azcl) + [(alc2 azcl)

1
- (ayb, = a,b)(bc, = bye )] 2} . (4.46)

2"
Since d < n, it follows that n > 1 ., Let
- = - 2— - -
Q (alc2 azcl) (alb2 aZbl)(bICZ bzcl) « (4.47)

If Q< 0, then two cases are to be considered.

3f(n)
Case I. If albz azb1 > 0, then —33-—-> 0 for all n which
implies that £(n) is a monotone increasing function. Thus,

for n»1, £(n) 1is a minimum at n = 1 .,

af(n)
Case II. If glbz azb1 < 0, then M < 0 for all n which

implies that £f(n) 1s a monotone decreasing function. Thus,

for n>1, £f(n) 1is a minimum at n = = ,

For the case where Q > 0, if
(a,b, - a,b )"1{-(a c, —a,c,) + dbb} >0
172 271 172 271 !

, then
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n=1+(a,b, ~a,b )-1{‘(3 Cyh = anC,) + QM&} ;
12 ~ 3% 1% " 3¢ ’
if

-1, - yh
(alb2 azbl) { (alc2 azcl) +Q'4}y<o0,
then n = 1 when a-l a, < c“1 c, and n =« vwhen a-l a, > c-l c
2 1 2 71 2 1 2 1°
To find out if triple observations are needed for some units when
it is known that replicated observations are obtained on all the units,
« let k= 2, Tables for the optimal n corresponding to certain values

of Bl’ Orw® Tuu’ and I.x are tabulated and are shown in Table

q

9. Without loss of generality, the tables are for qu = ouu and

u

Tu ™ 0 . From the tables, the optimal value of n 1is decreasing with
respect to ¢ a-l e« When n == that i, d = 0 , only two
uu xx

observations are to be taken on all the sampling units.

4
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Table 9. The optimal values of n = ud"1 for given values of

0-1 o and 0-1 ¢ under the assumption that at least

Bl’ xx uu xx qq

two observations-are taken on all sampling units.

B, = 0.00
el
XX uu
ol 0.10 0.20 0.30 0.40 0.50 0.60 0.70)
xx qq
0.05 » 4.40 1.00 1.00 1.00 1.00
0.10 ® 1039 1.25 1.00  1.00
0.30 ® - - 8.06
0.50 - -
0070 (-]
0.90 ®
B, = 0.20
ol
XX uu
ata 0.10 0.20 0.30 0.40 0.50 0.60  0.70
xx ‘qq
0.05 » 3.02 1.00 1.00 1.00 1.00
0.10 » 5,52 1.00 1.00  1.00
0.30 » o ® 4.75
0050 « [- -] [ -]
0-70 - J - ]
0.90 -




Table 9 (continued)
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B, = 0.60
-1 g
xx uu
o la 0.10 0.20 0.30 0.40 0.50 0.60  0.70
xx ‘qq
0.05 - 1.00 1.00 1.00 1.00 1.00
0.10 » 15.96  1.00 1.00 1.00  1.00
0.30 - - 2.35  1.00
0.50 - » ~ 6.24
0.70 - » -
0.90 w -
B, = 1.00
—1 o
X uu
ol 0.10 0.20 0.30 0.40 0.50 0.60 0.70
xx ‘qq
0.05 » 1.41 1.00 1.00 1.00 1.00 1.00
0.10 » 1.00 1.00 1.00 1.00  1.00
0.30 - 9.80 1.26  1.00  1.00
0.50 - ® 23.66  2.00  1.00
0.70 - - 1421 2.20
0.90 = » 7.79
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Table 9 (continued)

B, = 1.40
-1
, XX uu

ol g 0.10 0.20 0.30 0.40 0.50 0.60  0.70
xx qq S

0.05 - 1.00 1.00 1.00 1.00 1.00 1.00
0.10 2.86 1.00 1.00 1.00 1.00  1.00
0.30 » 44.57 1.09 1.00 1.00  1.00
0.50 ® 11.45  1.32  1.00  1.00
0.70 ® ® 4.81  1.22  1.00
0.90 » » 2.81  1.03

B, = 1.80
ol
X uu

o lg 0.10  0.20 0.30 0.40 0.50 0.60  0.70
xx ‘qq

0.05 54,82 1.00 1.00 1.00 1.00 1.00 1.00
0.10 - 1.00  1.00 1.00 1.00 1.00  1.00
0.30 - 1.76  1.00 1.00  1.00  1.00
0.50 » - 1.43 - 1.00 1.00  1.00
0.70 - 5.71 1.04  1.00  1.00
0.90 ® - 2.29  1.00  1.00
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V. ON THE DETERMINATION OF THE NUMBER OF REPLICATED
OBSERVATIONS FOR AN ERRORS-IN-~VARIABLES MODEL
WITH BINOMIAL OBSERVATIONS
A. Introduction
In the previous chapter, we considered a simple errors-in-variables
model with the assumption that the response errors are normally
distributed. The model of the previous chapter was

Vp = Bp *Bxp * 4

t t’
Yt = yt + wc ,
Xt =» xt +uc » t = 1,2,0-., n, (5.1)
where
x, ux o*x 0 0 0
q 0 0 g 0 0
tl~nN1 , qq
wt 0 0 0 oww owu
u, 0 0 0 cwu uu

and Xy and Y, are the true values of the variables of interest which
cannot be measured exactly.
If the true values x and y are restricted to the two values,

zero and one, and if the observed values X* and Y* are also
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restricted to be zero or one, then any ieasurement errors must be
correlated with the true value =x .

Let u: and wg be the difference between the observed value X:

and the true value x, and the difference between the observed value

Y: and the true value of Ve » respectively. Then

and
wz = Y: - yt . (502)

Let u:|(xt, yt) and -v:l(x ) denote the conditional random

e’ Te

variables of u: and w: given (xt’ yt) » respectively. Assume

that ugl(x ) and w:l(x ) are independent and u:l(xt, yt)

e e t e

and wgl(x ) are distributed as uﬂg'xt and w: Ve » respectively.

e’ Te
That {s, the response error “: depends on the true value of x, only

and the response error wz depends on the true value of Y. only.

Let Y be the probability that xg = j given that x, =1 and

it)
Kj(i) be the probability that Y: = |§ given that Y =1, for

i, = 0,1 . Let the fraction of the population whose true value of x
is 1 and whose true value of y 1is ‘be Pij' i,j = 0,1 . Let the

fraction of the population whose true value of x is one be Pl. and

let the population fraction of the observed x-values that are one be
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Py Also, let the population fractiom of true y-values that have the
value one be P.l and let the population fraction of observed Y-values

that have the value one bg. PY « Then

P = Pr.Micy YR Yico)

and

P = P (503)

v " .k T PLofico)

where

P, =1-P

0 1 and P

=1~-P

R = a (T - vy

Yt - ay(Y*é - by) , (5.4)
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-1 -1
where a_ = (Yl(l) - Y1(0)) ’ bx = Y1(0) ’ ay = (Kl(l) - KI(O)) ’

and b = Then, by expressing

K .
y 1(0)

u, = Xt =X,
LR A

we have

E(X,|x,) = x, ,

E(X) =B >
EY,|y) =5,
E(X) =P,
and
Cov(xt, ut) = Cov(xt, wt) =0 . (5.5)
Alec, =zssusing E(qt,xt) = 0 , we have

Cov(u,, q.) =0
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and
-1
By = Po. Po1
8 +8 =plop (5.6)
0 1 1. 11 ° ‘
B. The Variances of Egtimators of 81
From Equation (5.4) and (5.5), the response model (5.1) is written

as

Jp = By ¥ Bz +q
Yt =7, +w
Xt =x +u ’ t = 1,2,3,0.., o, (5.7)

where (x,, Qp, ¥, “t) are independent for t = 1,2,..., n ,

ut'gxt, yc) and wtl(xt, yt) are independent with

E(ut) = E(wt) =0,

Cov(xt, ut) = Cov(xt, wt) - Cov(ut, qt) - O.[

and
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-1
By = (P, =B P I (Q-PF " .

Suppose that among the n units, d units are observed twice.

Without loss of generaliiy-, let them be the first d units. Then

Y +w

t1 " 7e T Vet

and

xti = xt + uti » 1 = 1,2, t = 1.2,000’ d » (5.8)

thrQ (wti’ uti) ” 1 ol 1,2’ t = 1’2,.0" d 1) (wt’ ut) [
t = d+l,.,., n are independent.
From the previous chapter, we consider estimators of 8 1 based on

the first d units and the last n-d units. The two estimators are

~

-1
8l,rl - (ml-t X -l/zsuu) (mi Y -llzswn) '
and

- -1 _
Bl,n-cl * ("xx - suu) (mXY - swu) ’ (5.9)

where
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-1 d
T N

-1 a-
S = ()7 I

(X, - X
¢ tl t

1

ix =~ (@-4d

o L
]

(n

|
{29
~

2
2%
22(Tey = Tep)
-2)21

-3, -9,

ng 5= d I(X, -X XY, -Y% ),

+X,) ,

41
[
~

t. tl + Ycz) ’

bdi
d
[ 9

:0 *

t = 1,2,00-. d

t=1,2,..., d
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and (Xt, Yt) is defined in (5.4). The fourth moments exist for the
random variables Upgs Wpqg » 1= 1,2, X, t=1,2,...,d, U, ¥,
Xp » t = d+l,ee., 0 . Thus, following Fuller (1980), the asymptotic

variances of Bl,d and Bl,n—d and the asymptotic covariance of Bl,d

and 8 are

l,n~d

2V, =3B+ D-gr IR, (1 =P )72,

V(8 4 * 7d

2y -PLA+§DHﬂj1-%)fZ.

V(B a=d) = Yy = I35

»~

. 1 1 -2
-’ Bd) - vlz - [?a"D -a" F] [Pl.(l = Pl.)] )(5010)

Co‘«r(Bn

where

>
[

Vlx, - K(x)lq, +q.u, + [x, - E(x)r, +ur -o .}

Wiz, - Bx)la, + a8, + [x, - B, + 6,7, - 20}

o
]

1
Vg (g —u))ryy ~ ) ~o .}

=1
]

- a - - aur -1
Cov{[xt E(x,)]q, +q.u, + [x, E(x,)]r, + u.r, =k,

1
7 gy mu )My —m) —o )
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and

out = Cov(ut, "'t) .

Further simplication of A, B, D, and F shows that

- — Ble Y12 a2 2 .2 - 2 22 2 22 o 42
A B{[xt E(xt)] qt+q: “c+[xt B(xt)] rt+“t: re cur

+ 2[xt - E(xt)]ri “t:} ,

BeBllx, - B(x))2 2 +3 a2 w2 +3 [x, - B(x)]2 2 + & 2

-3 92 +3 [x, - Ex)I2 v},

1 2 2 1 2 2 _ .2
D=E(zup ry +u,T 8o +79¢T2 ~ %)
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- E{L - 2,1 22 _1 2 2.1 52 2 _1 2
Fo=Ely (x, =~ Ex)lu,rg +Zugry - gug ro-gugu 95t

where
E(lx, - B(x.)]2 q2} = P| (1 = P )[By(1 = 8y) +8,(1 -8,)(1 =P )
- 28.8,(1 -2 )],

2 q2) = g2 - - 2 -
B(uf qg) =aZ b (1 -b )P (1 -P,)+8}P (1-P )

-2 BI(P11 - PI.P.I)]

1

P

+ [ax(l - ) +1]p

201y 11P10

E{[x, - E(xc)lz r%} - [ag by(l - by) + a% .i b (1 -b)IP (1-P )
+ B%[ax(l - 271(1)) + 1J(1 - Pl')z P
10 L ]

+ [ay(l = 2K 1y) + LI - 2P) )P + P2 P s

2 22y = a2 - 2 - 4 - 2 . 1m3
E(ut rt) ayby(l by)axbx(l bx) + axbx(l Abx + 6bx 3bx)
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+ [ay(l - 2Ky + 11{a§bx(1 = b P,
+ [‘x(l -_-_271(1)) + 1]1’11}
+ {.§by(1 = b la (1= 2v ) + 1]

2.4 - 2 - 3 -
+ Blax(l ébx + 6bx 4bx)(Y1(l) Yl(O))

B2(4a3(1 - 3b_ + 3b2)

- 6aZ(1 ~ 2b ) + 4a _lv, ),

+ s§[4aibi + 6a§b§ +4a b+ 1117,
R([x, - B(x,)]u, r2} = [a3(1 = 3b_+ 3b2)(Y) 1) = Y 0)
- 3221 - 2> )11y

+ 3a Y

- 2ne o - -
<Y 1(1) 3axbx 3axbx 1]p .(1 Pl.) ,

o - Bl{aibx(l -b) + [8 (1 - 271(1)) + 118, },

=272y u Ll pry2,2
E(utztt) 3 E(u¢rs +u + 2u,. r

2 2
t'e t1tt2 1ef1e"

1£%2¢T2e)

»?
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i(ul r2 ) = g2 - 2 - 2 52 -
E(u%.r%,) al bx(l bx)[ay by(l by) + 81 ay bx(l bx)]

tl t2

2 - -
+ axbx(l- _bx)[ay(l ZKI(I)) + l]P.1

+ a2 (1 - b )8%[a (1 - 2 0qy *+ 1B
- 2 - 2 -
+ la (1 = 2v) 1)) + 11{{a2b (1 - b)) + 82aZb (1 - b )

2 -
+ Bl[ax(l 271(1)) + 1]}P1'

v 82E(u2. 42
E(up ) Tepea™e2) = B1E(U01%2) »

and
2,2 - 2 - 2 - 2 -
E(utlutz) [axbx(l bx)] + [ax(l 271(1)) + 1]{28xbx(1 bx)
+ [ax(l - ZYI(I)) + 1]}?1. .

From Appendix B, the O that minimizes the variance of Bl 8 is

given by

-1 :
6% = (V11 -2 V12 + VZZ) (sz - v12) , (5.12)

A ~

, where Bl,e = 0 Bl,d + (1 - e)Bl,n-d . The variance of 81,6* is

[3
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-1 Vz

1t V2 2) V1V -

=R (1=P A+ (- DB+YDd+3 N (1A

+ (n - DB +Y4D =Yy ®] - (n - 1)(14D - P)2} ,
(5.13)

where

nend . (5.16)

C. Determination of Number of Replicated Measurement Units
Asgsume that the cost of obtaining an observation is ¢ per unit.
Then the total cost, denmoted by T , for a survey of n units in

which d are observed twice 1is

T=c(a+4d), (5.15)

where d 1{s the number of the units that have replicate measurements.
Supposé that the total cost T for the survey is fixed. The value

1 , that minimizes the variance (5.13) cubject to the

n , where n = nd~
cost function (5.15) is obtained as follows. From (5.14) and (5.15),

(5.13) becomes
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c(n + 1) [A+ (- 1DJ[B +YDp-YP] - (n - V(YD - F)?2
T B (1 - P, )2 A+ (n-1)B+YD+3P)

z £(n) . (5.16)

Differentiating £(n) with respect to n and setting the

derivative equal to zero, we have

a3 £(n) - c
an 2 - 2
Pl.(l Pl.) T

(A + (n = 1)(B +Y,D + 3 B)] 2((DB(B +V, D)
+ (2B +%3- D)DF + ( 1,D - B)F2 —%Fal(n - 1)2
+ [2ABD + ADF - 2AF2](n - 1) + A%2(B +1/, D)
+ 2ABD - 2A(B +1, D)2 + [2A( Y, D - B)
-l A2]F -1, AF2 = 0 . (5.17)
A* = DB(B +1/,D) + (2B + $ D)DF + (YD - BIF2 - 3 3

B* = 2ABD + ADF - 2AF2 |,
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Ck = AZ(B +1/,D) + 24BD - 2A(B +1, D)2 + [2A( Y, D - B) -1, A2]F
-1/2432 . (5.18)
Solving the Equation (5.17) for n , we get
no= 1= (2am) I - Br £ (BH2 - aaxcm) 2], (5.19)
Two cases are to be considered. If B#2 - 4A% C* > 0 , then the

*n 1n Equation (5.19) is a real number. The second derivative of f(n)

with respect to n 1is

32¢(n) c 2A%(n - 1) + B*
an2 P2 (1-P2 )2 T | {A+ (n=1)(B + 1/4 D + 3/2 F)]?

_ 2[A%(n - 1)2 + B*(n - 1) + C*](B + 1/4 D + 3/2 F)
[A+(n-1)B+1/4D+3/2F))3

(5.20)
wndlceh Zs pozitive when

- 1
n -~ 1 = (2A%) 1[- Brk + (B#*2 - 4A% Cx) /2] . (5.21)
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But n > 1, it follows that
nel if (ZA*)-.I[- B* + (B2 - 4ancH) 2] ¢ 0
-1+ (28)7 [~ Br + (B*2 - AA*C*)%&] otherwise .
(5.22)

When B#*2 - 4A*C* ( 0 and A* > 0, it can be shown that

* 3 £(n)
3 n

f(n) 1s a monotone increasing function. Thus, for n > 1, f(n%*)

is greater than zero for all n » 1l , which implies that

is a minimum when n* = 1,

When B#*2 - 4A*C* ¢ 0 and A* < 0 , then 335%21 i3 less
than zero for all n > 1 , which implies that £(n) 1s a monotone
decreasing function. This gituation would not occur because at least
one unit with replicate observations is needed in order to estimate the
variances of the errors.

Table 10 contains the optimal value of n where the response

probabilities are given by the unbiased response model proposed by

Battese and Fuller (1974). The Battese—Fuller model is

=q P i#3 ,
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-a+alP i=]

Ryep = !

=aP, . i#§ , (5.23)

where a 13 the parameter of the model.

The tables show that when a 1increases, the optimal value of
n -decreases. Intuitively, it says that if the probability of making a
correct classification is small, more units have to be observed twice.
For example, assume that one has enough money for 1,000 observationms.
¥or design purposes, it is assumed that P;; = 0.50, P = 0.80 and
P, = 0.60 . If a = 0,05, then by using Equation (5.23),

= 0,99 and K = 0,98 . The optimal value of n 1is 8.37, and

1y 1(1)
thus, n =893 and d = 107 . If a = 0.15, then Yl(l) = 0,97 and
Kl(l) = 0.94 , which are smaller than the classification probabilities
obtained for a = 0,05 . For a = Q.15 , the optimal value of n 1is
2.43 and the values of n and d are 708 and 292, respectively. This
shows that more units have to be observed twice when the true
classification probabilities are small.

We compare the optimal value of n obtained under the actual
distribution of x, u, w , and q with the optimal value of n
obtained under the assumption that these random variables are normally
Jistributed with the mean vector and covariance matrix defined in

Equation (5.1). Under the normality assumption the optimal value of

n is calculated using the Equation (4.27) derived in Chapter IV, For
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Table 10. The optimal values of n for selected values of

1. P,y and Py, .

values Pl.’ P.1 and‘_Pll are incompatible.)

a, P (Notation: A * means that the three

a = 0.05, P = 0.80 a = 0.10, P

1 jp = 0.80
P - P
Py, .1 P, -1
0.90 0.80 0.90 0.80
0.90 | 2.45 1.00 0.90 | 1.00 1.00
0.80 | 3.48 1.00 0.80 | 2.04 1.00
a = 0.15, P, = 0.80 a = 0.20, P, = 0.80
P P
P, 1 P, -1
0.90 0.80 1.00 1.00
0.90 | 1.00 1.00 0.90 | 1.00 1.00
0.80 | 1.30 1.00 0.80 | 1.00 1.00
a = 0,05, P, = 0.60 a = 0.10, P, = 0.60
P P
P, -1 Py, -1
0.90 0.80  0.60 | 0.90 0.80 0.60
0.90 * * 1.G0 G.90| * * 1.00
0.80 * 2.63  1.00 0.80] * 1.22  1.00
0.60 | 4.94  2.98  1.00 0.60| 2.83 1.68  1.00
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Table 10 (continued)
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@ =0.15, P = 0.60
P
Py, .1
0.90 0.80 0.60
0.90 * * 1.00
0.80 * 1.00 1.00
0.60 | 1.79 1.00 1.00
Q = 0005. Pll = 0.50
P
Pl. el
0.90 0.80 0.60
0.90 * * 1.00
0.80 * * 8.37
0.60 | 4.75 8.84 2.67
a = 0.15, P;; = 0.50
P
Py -1
0.90  0.80 0.60
0.90 * * 1.00
0.80 * * 2.43
0.60 | 1.47 2.51 1.00

a= 0.20, P11 = 0,60
P

Pl. el

0.90 0.80 0.60
0.90 * * 1.00
0.80 * 1.00 1.00
0.60 l.12 1.00 1.00
qQ = 0010, Pll = 0050

P

P, -1

0.90 0.80 0.60
0.90 * * 1.00
0.80 * * 4.09
0.60 2.53 4,25 1.45
a= 0,20 P11 = 0,50

P

Pl. .1

0.90 0.80 0.60
0.90 * * 1.00
0.80 * * 1.48
0.60 1.00 1.53 1.00
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different values of P1 y P 1’ P11 and a , the optimal value of n
under the normality assumption is tabulated in Table ll. By comparing
Table 10 with Table 11, one sees that the normal approximation to the

Bernoulli distribution does not perform well in this case.
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1.0 1

and Pll under the normality assumptions on the response

errors. (Notation: A * means that the three values Pl.' P.l

Table 11. The optimal values of n for selected values of a, P

and P11 are ih&onpatible.)

P P
Py 1 Pl 1
0.90 0.80 0.90 0.80
0.90 | 9.40 " 5.20 0.90 | 4.32 2.21
0.80 | 5.20 - 1.00 0.80 | 2.21 1.00
Q= 0.15, Pll = 0.80 Q= 0.20, Pll = (0.80
P P
Py, ol P,. ol
0.90 0.80 0.90 0.80
0.90 | 2.50 1.06 0.90 | 1.51 1.00
» 0.80 | 1.06 1.00 0.90 | 1.00 1.00
a = 0.05, Pll = 0,60 a= 0,10, Pll = 0,60
P, P Pl P
0.90 0.80 0.60 0.90 0.80 0.60
0.90 * * 7.58 0.90 | * * 3.42
0.80 * 8.75 5.73 0.80 * 4.00 2.49
0.60 | 7.58 5.73 1.00 - 0.60 3.42 2.49 1.00

» ¥
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a = 0.15, P, = 0.60 a = 0.20, P;; = 0.60
] p P
Pl‘o ‘1 Pl. ol
0.90 0.80  0.60 0.90 0.80  0.60
0.90 * * - 1.90 0.90 * * 1.06
0.80 * 2.29 . 1.26 0.80 * 1.35 1.00
0.60 | 1.90  1.26 1.00 0.60 | 1.06 1.00 1.00
a = 0.05, P, = 0.50 a = 0.10, P;; = 0.50
P P
P, 1 P, .1
0.90 0.80  0.60 0.90 0.80  0.60
0.90 * * 8.61 0.90 * * 3.93
0.80 * * 9 43 0.80 * * 4,33
0.60 | 8.61 9.43  6.01 0.60 | 3.93  4.33  2.63
a = 0.15, P, = 0.50 a = 0.20, P, = 0.50
P P
P, .1 P, .1
0.90 0.80 0.60 0.90 0.80 0.60
0.90 * * 2.24 0.56 # * 1.31
0.80 * * 2.51 0.80 * * 1.51
0.60 | 2.24 2.51 1.36 0.60 | 1.31 1.51 1.00
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VIII. APPENDIX A

In Chapter 1V, the asymptotic covariance of Bl,d and Bl,n—d is

expressed as

C‘ov(g1 ) = a;:[(Zd)—l(a o+ aﬁr)] . (8.1)

,d’ Bl,n-d uu rr

We derive the above expression using the notation of Chapter IV. Recall

that

and

5 -1
8l,n-d = (“xx - suu) (mXY - swu) *

Because the sample moments are converging to the population moments, we
can expand B8

in Taylor's series about the population

and Bl,n-d

l,d

values to obtain

" -1 1 -1
Bl,d - Bl = dix(mi v 2 sur) + 01:»(n )

and

a -1 -1
Bl,n-d - Bl * axx(va - Sur) + Op(n )
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where
v, = q +v, -8 u , t=1,2,00.,4d,
yt-qt«bwt -Blut: . t-d+1.,..., n,
and

r -wt-Blu

t t = d+1,ooo, o .

t 1]
The w3 3 is obtained from the first d sampling units and My,
is obtained from the last n - d samwpling units. Thus, Bz 3o MXv
and sur are independent. The asymptotic covariance of Bl d and
1 4

Bl,n-d is

-1 1 -1
Cov(o, (w3 7 = 7 Sup)» Fxx(@yy = Syl

-2 1
" x Cov(-i- Sar’ S,r)

= (2 2)7! var(s,)

- a2 -1 2
on[(Zd) (a‘ma‘_r + °ur)l .

» b
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IX. APPENDIX B

~

Let B1 and Ez be two estimato;s of 8 with variances V11
and VZ2 , respect;vely. Let V12 be the covariance of 51 and
82 + Consider an estimator gp which is a linear combination of 81
and 32 . That is,

~

Bp = p 81 + (1 - p)B2 , (9.1)
where p 18s any constant. The variance of Bp is
2 - 2
PPVt -pP)EY,

Let p* denote the value of p that gives the smallest variance
of 8 . Then p* can be obtained as follows. By equating the first
derivative of the variance of ép that is taken with respect to p to
zero, we have

2p V), = 21 = p)V,, + 2(1 = 2p)V,, = 0 . (9.3)

Then

117 g 72V (Y = V) (9.4)
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The second derivative of the variance of Bp taken with respect to »p

is

-2V

12) . (9.5)

2(V11 + sz

Equation (9.5) is greater than or equal to zero with equality if and

~

only if the difference of B1 and 82 is a constant. Thus, Bp* ’
where p* is defined in Equation (9.4) has the smallest variance among
all the estimators with the form defined in Equation (9.1). The

* variance of Bp* is

2 - 2
p* V11 + (1 -p*) v,

g + 2% - p*)V,,

- - -2 - 2
(V) + Vpp = 2Vpp) "[(Vy = Vi 0)% ¥y

- 2
(V) - V)% Y,
+ 2(Vyy = V) (V) = V0)V),]

V7 29)p) Iy (Vo + Yy - 290

- w2 v -
Vi2(Vap +7) = 29;5)]

- - -1 - y2
(Voa + Vyp = 2V15) (V¥ = Vi) - (9:6)



