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Abstract, Examples are presented illustrating some ambiguities associated with the
application of ARMA models to problems of signal extraction, multistep-ahead forecast-
ing, spectrum approximation and linear quadratic control. Except in the signal extraction
example, the ambiguities arise either from lack of sufficient autocovariance data to
completely determine the process, or, often relatedly, from the approximate nature of the
models used.
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l. INTRODUCTION

The ambiguities we discuss are of various kinds: In section 2, we illustrate some
consequences for signal extraction of inappropriately using ‘parsimony’ to remove
the ambiguity inherent in the selection of an ARMA model for an unobserved
component of a stationary ARMA (p, p) process when only the spectrum of the
observed process is known. In the remaining sections, we mainly look at con-

sequences for various applications of only knowing a finite segment I'(0), . . ., I'(m)
of the autocovariance sequence of the observed stationary process. The examples
make it clear that which model is ‘best’ can depend not only on I'(0), ..., ['(m)

but also on the purpose for which the model is fit, i.e., on criteria appropriate
to the intended application.

It is shown in section 3 that there are always AR, MA and ARMA processes
compatible with ['(0), ..., I'(m), provided that [I'(k = j)]o<jk=m is nonsingular. In
section 4, we demonstrate that modelling, in the usual sense of fitting a model
with optimal one-step-ahead forecasting properties, may not be the most desirable
procedure if the goal is multi-step-ahead forecasting or spectrum estimation. It
is pointed out in section 5 that, as a consequence of the somewhat restricted type
of linear control law specified in the usual formulation of the optimal linear
quadratic controller design problem, see Astrom (1970, pp. 258—260), the resulting
optimal controllers enjoy a certain possibly valuable robustness property against
" model misspecifications.

In the final section 6, additional references are given to recent literature dealing
with ARMA models as approximations. Shibata’s results, showing that model
selection procedures giving consistent estimates of model order can perform
badly in this context in comparison with an inconsistent procedure, are mentioned.
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2. SIGNAL EXTRACTION AND PARSIMONY

If the purely nondeterministic, stationary, univariate, zero mean series x(z),
with known spectral density f(A), is the sum of two uncorrelated, unobservable,
component series, s(1) and n(1), with spectral densities f,(A) and f,(A), then it is
a classical result that the frequency response function of the linear filter which
provides the least mean square estimate of s(¢) based on x(t+k) (k=0,+%1,...)
is given by

h(e™) = £/ f) = (L +£,A0) @D

see, for example, Hannan (1970, p. 169). Often, f,{A) and f,(A) must be deter-
mined by assuming models for s{z) and n(z). If the assumed model for s{¢) is
incorrect, it is to be expected that the expression attempting to specify k(e™) as
in (2.1) will produce a degraded estimate of s(¢). In this section we illustrate
degradations which result from inappropriately using the most parsimonious
candidate model for s(t) (compatible with f(A)).

In what follows, it is assumed that n(t) is a white noise process with variance
ol Thus f(A)=f,(A) + 05 and f(A) = o2 for all A in [—m, 7). For any & satisfying

0< & <inf f(\), (2.2)
A

if we set f,(A)=f(A)— &2, then the decomposition
f=70)+é (2.3)

is admissable in the sense that ﬂ()\) is a spectral density function and f,(A)= &°
is the spectral density function of a white noise process. We shall asume that
x(t) is an ARMA (p, p) process for some p >0, so that
02’1 - B, eh .. '__Bpeip/\‘Z

|1_¢] e — .. W_qﬁpeip)\lz
with ¢, # 0# B,. Then fs(/\) = f(A)= &7 is easily seen to be the spectral density
function of an ARMA (p, q) process for some g < p. Box, Hillmer and Tiao (1978)
describe and illustrate consequences of the variety of choices for &°, without
focusing on the case g<p. If g<p, we say that the decomposition (2.3) has
reduced order. Since f(A) is known, the coefficients of the backshift operator
polynomial ¢(B)=1-¢ B~ - ¢,B” can be determined, as can the autocovari-
ance atlag p, I'.(p), of the MA (p) process z(t) = ¢(B)x(t). With this information,
it is easy to determine whether or not f(A) has a reduced order decomposition:
If we multiply (2.3) by |¢(e™)]* and then equate coefficients of ¢”* on both sides,
we obtain the following result from (2.2).

f)=

ProOPOSITION 2.1. With I',(p) as defined above, set 0= —¢; ' T,(p) and f,o(A) =
S —che. Then f(A) has a reduced order decomposition if and only if

0<oly= min f(A). (2.4)
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The right-hand inequality in (2.4) must be strict if p = 1. If these inequalities are
satisfied, then there is exactly one reduced order decomposition and it is given by

SO = fro(A) + 0.

If (2.4) is satisfied and no additional information is available for determining
£.(}), then considerations of parsimony and simplicity might make it appealing
to choose the signal extraction filter determined by ho(e™)= f.0o(A)/f(A), corres-
ponding to the assumption that fi(1)=f,4(A), i.e., that s{(f) is an ARMA (p, q)
process with g < p. If this assumption is incorrect, it follows from the identity

{h3(e™)/ B3 (e™)Ih*(e™)f (A) = hi(e™)f (1)
that the factor hi(e™)/h*(e™) measures the distortion to the spectrum of the
optimally estimated signal resulting from the use of the sub-optimal filter defined
by ho(e™). Similarly,
el 1/2
J Ih(e™)~ ho(e™)Pf(A) dr
RELERR ={ =~ 7—— (2.5)
J' h*(e™)f(A) dA

measures the root mean square difference between the optimally and suboptimally
extracted signal estimates, relative to the standard deviation of the optimal
estimate.

We shall now evaluate these quantities for the case p =1, assuming s(t) is an
ARMA (1, 1) process satisfying

s{ty=¢ps(t—1)+e(t)—Oe(t—1),

where e(t) is a white noise process with variance o, such that e(¢) is uncorrelated
with s(t—k) for k= 1. If I'(k) and I',(k) denote the autocovariance at lag k of
x(t) and s(t), respectively, for k=0,1,2,..., then ['(0)=T(0)+ 0% and ['(k)=
I, (k) for k=1. Since f(A) is known, so are ['(0), I'(1), ['(2) and ¢ =T(2)/T'(1).
By setting 6 =0, temporarily, we calculate

oho=T(0)~¢'T(1)
and f,o(A) = 02|l = ¢ ™|, where
olo=0" (1= ¢MI(1).
Thus, he(e™)={1+(cho/o20)|1 — ¢ e™[}}" and
hi(e™)/ hi(e™) = (a%o/ 2’1 — e |7, (2.6)

From the formulas for I',(0) and T’ (1) given in (3.4.6-3.4.7) of Box and Jenkins
(1976, p. 76), we obtain the alternative formulas oho=0>+¢ 607 and o5o=
(1-¢6)(1-¢ '6)o? which can be used to evalute (2.5) and (2.6) for various
choices of o2, o2, ¢ and 6. (An algebraic formula for RELERR in (2.5) is given
in the Appendix.) The inequality 02,>0, or ¢ '8 <1, is equivalent to the strict
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form of the right hand inequality in (2.4). The tabled values of (2.5) and (2.6)
given below demonstrate two of the possibilities. The tabled quantity I';(0)/ o
gives the total power signal-to-noise ratio for each example.

TABLE 2.1

VALUES OF hi(e™)/h*(e?), A=0,0.1m, ..., 7 AND RELERR FOrR TwoO
CHOICES OF (¢, 6, 0%) WITH o2 = |

(¢, 8, 0%): (—0.8,0.4,1.0) (0.5,0.3, 10.0)
0 30.25 0.48
0.1m 24.60 0.43
027 14.91 032
037 8.24 021
0.4 471 0.14

A 057 2.91 0.10
0.6 1.98 0.07
0.7 1.46 0.06
0.8 1.20 0.05
0.97 1.06 0.04

ar 1.02 0.04
RELERR: 0.17 0.59
I(0)/ o2 5.00 10.53

A signal extraction approach to seasonal adjustment due to W. P. Cleveland
(see Cleveland, Dempster and Stith (1980)) involves specifying fairly simple
uncorrelated ARMA processes §(t) and 7A(t) for the components, _s(1) and n(1),
of the observed series x(¢) and using the process spectral densities fq()\) and f,,(/\)
in (2.1) to obtain the signal extraction filter. Cleveland’s procedure is to choose
the component models’ parameters so that a segment of the autocovariance
sequence of §(f) +7(¢) approximates the corresponding segment of the autocovari-
ance sequence of x(f). An economic time series seidom has a ‘true’ seasonal
component, so that for seasonal adjustment there is latitude in the choice of
models for the seasonal and nonseasonal components. Except in such circumst-
ances, however, procedures analogous to Cleveland’s cannot be recommended:
In the examples of table 2.1, the approximation is perfect for all segments, but
the distortion due to the use of too simple a model for s(¢) is severe.

3. MODELS COMPATIBLE WITH FINITELY MANY AUTOCOVARIANCES

The most widely used stationary autoregressive-moving average model ‘identifi-
cation’ procedures for d-dimensional vector time series (d = 1) are based on the
analysis of a finite number of autocovariance or sample autocovariance matrices
at lags 0 through m, I'(k) (0=k=m) (m is variously determined), or on the
analysis of quantities derivable from these: see Akaike (1974), Box and Jenkins
(1976), Gray, Kelly and Mclntire (1978), Woodward and Gray (1981), and Box
and Tiao (1981). Such models are usually fit in order to obtain forecasts or
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spectrum estimates, to design controllers, or to do signal extraction, rather than
to identify the ‘true’ model generating the observed series. In fact, consider the
symmetric block Toeplitz matrix [T(k ~ Yoz 1= m, i which the (j, k)-block, I'(k —
J), is set equal to the transpose I'(j~ k) of I'(j — k) when j> k. If this matrix is
nonsingular, then these model identification procedures cannot, by themselves,
uniquely identify the true model when it exists, as the following result shows.

ProrosiTioN 3.1, If [T(k = j)loejkem is positive definite, then there exist processes
of the following sorts, all having T(0), ..., '(m}) as their autocovariance matrices
at lags 0, ..., m, respectively: (i) (Robinson and Wold (1963)) an AR (p) process
with p<m; (il) an MA(q) process; (iil) for any r satisfying 1<r<p-1, an
ARMA (r, n) process, with n < r +max {m, q}, having any preassigned autoregress-
ive polynomial B(z)=1+b(1)+ - +b(r)z" such that the zeros of det B(z) lie in
{lz|> 1}; and, finally, in the univariate case (d = 1), (iv) (Georgiu (1983)) for any
s satisfying 1=<s<p, an ARMA (n, s) process, with n< p, whose moving average
polynomial can be an arbitrarily prespecified polynomial of degree s.

Proor. The result of Robinson and Wold (1963) shows that a mean zero,
stationary, d-dimensional, AR (p) process y(¢) of order p=m exists whose
autocovariance matrix at lag k coincides with I'(k) for 0< k=m. We wish to
establish the existence of an MA (g) process with this property. We can assume
p#0. If we use I'(k) to denote the autocovariance matrix of y(1) at lag k for
every k> m, then the spectral density matrix of this autoregressive process is, by
definition,

LON=TO)+ T {T(k)e™ +T'(k) ), (.1)

ic

On the other hand, if the autoregression equation for y(f) is

v +aDy(t =1+ +a(p)y(i —p)= elt),

where e(t) has covariance matrix G and is uncorrelated with y(1 — 1), y(1—2), ...,
then Whittle (1963) shows that the zeros of the determinant of A(z)=
I+a(l)z+---+a(p)z”, z a complex variable, have modulus greater than 1. It
therefore follows from the alternative formula, f,(A)=A4"'(e”")GA'"'(e™), that
f(r) is positive definite for all A and that the convergence of the series in (3.1)
is uniform on [~ 7] (even exponentially rapid). Consequently, there exists a
smallest N = m such that

N =T0)+ }]E (P(kye™ +T'(kye ™} (3.2)

is positive definite for all A. If ¢ denotes the smallest positive integer (possibly
less than m if T'(m) = 0) such that f*(A)=f"(A), then it follows from the matrix
version of the theorem of Fejér and Riesz given in Hannan (1970, p. 66) that
F%\) is the spectral density matrix of a d-dimensional moving average process
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of order g, which, by (3.2), has I'(0), ..., I'(m) as its first m +1 autocovariance
matrices. This verifies the assertion (ii).

Given B(z) as in (iit), an ARMA (r, n) process having this property, with
n<r-+max {m, g}, can be obtained by defining its spectral density matrix to be

Fo=r+ T ke + P e )

ko= s
where s = max {m, g} and where f“(k), k=0,1,2,...,1s an autocovariance matrix
sequence satisfying
Py +bOi k=1 + -+ bl k- =0 (3.3)

for k= 1. If necessary, we rescale the I'(k)-sequence by multiplication with a
positive constant to insure that

~61< Y {Te™+T(kye ™ <8l (—m=<i<m), (3.4)

k=g 1
for some §>0 for which f*(A) =8I (—m=<A =) holds. Then f(/\) is positive
definite for all A, by (3.4), and (3.3) and (3.4) imply that B(e™)f(A)B'(e™™) is a
positive definite matrix polynomial of degree n<r +s. Consequently, f() is the
spectral density matrix of an ARMA (r, n) process whose first m +1 autocovari-

ance matrices are I'(0),...,'(m). This establishes (iii).
The final result (iv) appears as Theorem 7.1 in the Ph.D. dissertaton of Georgiu
(1983).

We noted in (i) that the autoregressive order p of the process y, satisfies p < m.
However, for a given value of m, there is no such generally valid upper limit for
the smallest moving average order g in (ii). This follows from the case d =1,
where, as C. W.-J. Granger showed, for a fixed g, the lag 1 autocorrelation p,(1)
of a moving average process of order g satisfies |p,(1)|=<cos {m/(g+2)} (see
Davies, Pate and Frost (1974)), so that g can be forced to be larger than any
prespecified integer by choosing |[I'(1)/'(0)| close enough to 1.

The models of the AR (p) and MA (g) processes described in (i) and (ii) of
Proposition 3.1 may have more parameters than the most parsimonious ARMA
model compatible with I'(0), ..., T'(m). Unfortunately, even in the univariate
case, deciding when a compatible ARMA (p,, go) model exists with py+ go <
min {p, g} is difficult at present. Kalman (1982) discusses the case m =3 under
the restriction g, << py.

4. SOME CONSEQUENCES OF THE USE OF APPROXIMATE MODELS

In the two subsections of this section, we present simple theoretical examples
from the applications areas of multistep-ahead prediction and spectrum estima-
tion. In each case we assume that the correct values are available for whatever
autocovariances of the observed series x(1) are required to determine the para-
meters of the model being fit. By using correct autocovariance data, we avoid
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confounding the consequences of modeling error or model inexactness with those
due to the sampling variability of parameter estimates. In each example, x(1) is
assumed to be a covariance stationary time series with with mean 0, whose
autocovariance sequence is I'(k), k=0,1,.... We set p(k)y=T(k)/T(0), k=
0,1,....

d4a. m-Step-Ahead Prediction

Suppose that for m =1 we seek to approximate x{f +m) by an expression of
the form x(t), where the optimal value ¢(m) of ¢y minimizes the expected mean
square error E{x(t+m)— yx(1)}’. From the easily verified fact that x(t-+m)—
p(m)x(1) is uncorrelated with x(¢), it follows that

E{x(t+m)—yx(N} = E{x(t +m) = p(m)x(O)}* + (¢ — p(m))’ Ex*(1), (4.1)
and hence that the optimal choice of ¢ is
Y(m)= p(m), m=1,2,....

If x(¢) is a first order autoregressive process, then g(m)=¢"(1)=p"(1) for
any m = 1, but, in general, /(m) will not be a function of Y(k), k <m. In particular,
the optimal m-step-ahead forecast function of a given form is not necessarily
determined by the optimal one-step-ahead prediction-error-filter, ie., the optimal
whitening filter (or ‘model’) of that form. If x(t) is modeled as a first-order
autoregression and, as a consequence, an m-step-ahead predictor for x(1 +m)
having the form p"™(1)x, is used, then, by (4.1), an increase over the optimal mean
square prediction error in the amount

(p(m)—p™(1))’T(0) (4.2)

will result if this model specification is incorrect.

To illustrate (4.2), we suppose that m>2 and that x(¢) is an AR(m) process
whose partial autocorrelations at lags [ to m are given by p(1),0,...,0, ¢,
respectively, where |p(1)] <1 and |¢,m| < 1. (If m is not too small, or if |d,um| is
not too large, a realization from such a process could quite conceivably be
mismodeled as an AR (1) process.) It follows from the Levinson-Durbin algorithm,
Box and Jenkins (1976, p. 83), that

p (1), I<sksm-—]
kY=
pk) {p'“<1>+<1 XDy k=m,
and that x(¢) satisfies
(1) = p(Dx(t = 1) = p(1) X (1 = 1 + 1) + X (1 = m) +e(1)

where e(1) is a white noise process (with variance (1 — p*(1))(1 — ¢24,,)[(0)). For
this process x(t), the quantity in (4.2) is equal to (1 —p*(1))*¢%,.T(0), which can
be quite substantial (relative to I'(0)) if p(1) is fairly small and ¢, is fairly large
(eg. o= 1/2, [l = 1/52).
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Since observed series can rarely be expected to be realizations of ARMA
processes or other simple parametric models, the above analysis suggests that if
the goal is to do m-step-ahead forecasting for m somewhat larger that I, then,
rather than using a fitted (whitening) model to produce the forecasts, a direct
approach might be better: For example, if x(0),..., x(N) are observed and
tentatively identified as being fairly well modeled as an autoregressive process,
then a direct predictor could be calculated by choosing o, ..., #,., to minimize

>; (x(tmi='S ot = k)P (4.3)

k=0

Shibata (1980) describes a strategy which is asymptotically optimal, according to
a rather natural criterion (equivalent to MAIC when m =1), for choosing the
length p of the predicting autoregression in (4.3) for a given prediction lead m
in a situation in which x(7) i1s not an autoregressive process. Findley (1983b)
applies this procedure to two well known series. Findley (1983a) includes a
theoretical analysis of Shibata’s procedure for a simple example. The analysis
suggests that the problem of selecting p increases in difficulty with increasing
forecast lead m. Gersch and Kitagawa (1983) describe and illustrate an alternative
procedure for doing m-step-ahead forecasting directly for series with trend and
seasonality.

4b. Spectrum Estimation

We now assume that the covariance structure of x(t) is determined by a spectral
density function f(A) and that an approximating AR (p) or ARMA (p, q) spectral
density g(A) is sought which minimizes the relative mean square error,

T 2
J (‘f(—)‘w)f gw) da. (4.4)
BRNTTY)

When f(A) is unknown, Shibata (1981) shows that his procedure for determining
the order p of the best one-step-ahead autoregressive predictor for x(f) also leads
to asymptotically optimal AR (p) spectral estimators of f(A) under (4.4) in a
situation in which x(t) is not an autoregressive process. Shibata’s results (which
have been generalized by Taniguchi (1980) to the case of approximating ARMA
models) require that p be allowed to increase without limit as the number of
observations becomes infinite. We shall demonstrate that if f(A) is known and p
is held fixed, then the AR (p)-spectral density g(1) minimizing (4.4) need not be
the spectral density associated with the AR (p) model for x(¢) minimizing the
mean square one-step-ahead prediction error.

If g(A) has the form o*|[l — ¢ ™ —- - - — ¢, ™| 7%, then by setting equal to zero
the derivative of (4.4) with respect to o, one obtains an expression for ¢* as a
function of the coeflicients ¢, ..., ¢, Using this expression in (4.4), the minimiz-
ation of (4.4) is seen to reduce to choosing these coefficients to minimize the
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7 gi(\) /UT g(A) )
== === .
Lﬁw A o

Applying Bessel’s equality to the numerator, we see that this guantity is equal to

scale invariant quantity

142 % pi(k), (4.5)
k=1

where, for k=1,2,..., p, (k) denotes the autocorrelation at lag k of a time
series whose spectral density is g(A)/f(A). In the simple case in which x(1) is an
MA (1) process and an AR (1) spectral density is being fit, we have f(A)~ |1~ 8e™ [’
and g(A)~|1—¢e™|?, so that g(A)/f(A) is the spectral density of an AR (2)
process whose characteristic polynomial has the roots 7' and ¢ ' In this case,
by (3.2.20) of Box and Jenkins (1976),

prre(k)y=C(6, 9)8" +C(¢, )9,  k=0,1,2,...

with C(6,.¢)=0(1—¢)/(0— $)1+6¢). Hence, (4.5) is easily shown to equal
1+2H(8, ¢), with

H(6, )= 0>C?*(6, $)(1— 637" +200C (b, )C(H, $)(1 — p0)"!
+¢CHe, )1 - Y™ (¢ # 0).

For this special case, the autocorrelation at lag one of x(f) is given by p(1)=
—6(1+6"7". In particular, p(1)=0.4 if § =-0.5, so that the characteristic poly-
nomial of the AR (1) model for x() having optimal one-step-ahead forecasts is
1—0.4z However, H(—0.504)=0.15476, and the value of ¢ minimizing
H(~0.5, ¢) is 0.45, with H(—0.5,0.45)=0.09931. Thus the characteristic poly-
nomial of the AR (1) model providing the best spectrum estimate according to
the criterion (4.4) is 1 ~0.45z. These two AR (1) models are different, and this
illustrates the point mentioned in the Introduction: When approximate models
are used, which model is best is determined by the intended application.

5. DESIGN OF LINEAR QUADRATIC CONTROLLERS

Let x(¢) be an observed vector variable which is to be controlled by manipulation
of the observed vector variable u(f). Suppose that the joint process [x'(H)u'()]
is stationary with mean zero and with known autocovariance matrices at lags 0
and 1, and that the joint process has been tentatively identified as a first order
autoregression. From the given autocovariance data, we calculate the coefficient
matrices ¢ and ¢ of the least miean square approximation equation,

x(t)=px(t—D+gu(t—1)+e(t), (5.1)

in which the components of e(f) are uncorrelated with those of x(r—1) and
u{t~1), and, if the joint process is actually first order autoregressive, also with
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the components of x(t— k) and u(i— k) for all k=2. Suppose a mean quadratic
cost function is given of the form

E { § x'()Ax(t) +u'(t — 1) Bu(t — 1)}, (5.2)

where A is positive semidefinite and B is positive definite. From the uncorrelated-
ness of e(r) with x(¢—1) and u(z-1), it follows by way of the derivation of the
optimal controllers based on the identity (6.5) of Astrom (1970, pp. 278-279),
that the controller gain functions L(t) (1< t< N —1) for the linear control laws
of the form

u(ty=—L{H)x(1) (IstsN-1) (5.3)

which minimize (5.2) are the usual ones given by the Dynamic Programming
algorithm as described, for example, by Astrom (1970, p. 267). The resulting
optimal control laws of the form (5.3) can be shown to also be the optimal laws
defining u(f) as a linear function of x(f), x(t—1);... when e(t) is uncorrelated
with x(t — k) and u(t—k) for all t=2, but they need not be optimal in this
extended sense when e(t) is uncorrelated only with x(¢ — 1) and u(z — 1): Consider,
for example, the simple situation of scalar variables x(f) and u(r) and the cost
function (5.2) with N =2 and A # 0. Suppose that y = Ee(1)x(1 —2) is nonzero.
If we substitute x(2) = ¢x(1) +yu(l)+e(2) and u(l)= —L{1x(1)~ M(1)x{0) into
this cost function, it follows, by setting equal to zero the partial derivatives of
the resulting quadraticin I:( 1)and M (1), that the optimal {cost minimizing) values
of L(1) and M(1) are given by

L(1) =y (B/ A+y™) " +p(1)M(1)
and

M(1)=w(B/A+y* {1=p (1)},

where p(l) denotes the lag 1 autocorrelation of x(1). Since M(l)#O; because
v # 0, we have shown that the usual ‘optimal’ control law for this problem, given
by u(1)=—L(1)x(1) with L(1)= ¢s¢(B/ A +¢*)"", can be improved upon by using
a law which also includes a lagged value of the controlled variable.

An alternative method for obtaining this improved control law is to define the
VECtor Xpew(2) =[x(2) x(t — 1)] and find the optimal control law of the form u(z) =
Loew{ D) Xnew(1), With Lyoo, (1) =[L(f) M(t)], using analogues of (5.1) and (5.2) in
which x,..(t) replaces x(?). Thus, in this example, the ambiguity associated with
the choice of the form of the control law can be viewed as arising from the
ambiguity associated with the choice of the components of x(1), u(t), A and B.

The observation made above, that the optimal control law of the form (5.3) is
completely determined by the least mean square approximation equation (5.1)
rather than by the ‘true model’ for x(t), may help to explain the success of
controllers obtained using least-squares-fitted statistical models, with carefully
chosen observed vectors x(f) and u(t), in situations in which the physical model
of the process makes it clear that the statistical model used can only be approxi-
mate, see Otomo, Nakagawa and Akaike (1972) and Nakamura and Akaike (1981).
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6. FINAL COMMENTS CONCERNING APPROXIMATING OR MISSPECIFIED MODELS

In addition to the references given above, there are a number of interesting
recent papers dealing with properties of approximating or missipecified models
and the estimates of their parameters: See, for example, An, Chen and Hannan
(1982), Bhansali (1981), DuFour (1982), Hosoya and Taniguchi (1982), Lewis and
Reinsel (1982), Ljung and Caines (1979) and Ogata (1980).

The derivation of the AIC model selection criterion by Akaike (1973) explicitly
includes the possibility that the models being fit are, at best, only approximate.
The impact of Akaike’s work (see, for example, This Week’s Citation Classic
(1981)) stimulated the investigations of Shibata and Taniguchi referred to above,
which, along with Akaike (1970a, 1970b, 1971), are the only substantial theoretical
papers known to the author which discuss application-specific model selection
criteria. This would seem to be a worthwhile focus for future research, particularly
in the area of statistical modeling for controller design: for example, the question
of the optimality of the procedure of Akaike (1971) does not seem to have been
investigated. Forecasting and spectrum estimation performance criteria different
from those used by Shibata and Taniguichi could also be examined.

The papers by Shibata and Taniguchi also show that modifications of Akaike’s
AIC to obtain a procedure which consistently estimates the correct model orders
p and g when the observed series comes from an ARMA (p, g) process (see, for
example, Hannan (1980)) can lead to unboundedly large relative loss, compared
with the efficient performance of minimum AIC models, under loss functions
appropriate for prediction or spectrum estimation, when ARMA (p, g) models
are only approximate. Thus, an important consequence of the usually approximate
nature of models is that, for model selection, consistency can be an undesirable
property. This suggests that the approximating model viewpoint is not without
some rather profound implications for statistics.
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APPENDIX

In this appéndix, a derivation is sketched of an algebraic formula for RELERR in (2.5) for the
case p = 1. To begin, one verifies that, in the notation of section 2, the function [h(e™)— ho(e™Pf(1)
is proportional to

=6~ +(1+ 6~ 02 /o) — 6e™ ]
|1 _d)eiAlZI] _Bei)\F

; (A1)
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with
v = (2 + 02+ (a2 o1+ D8+ pol/ ot}
Also
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where v, = ¢/(b = B), v2=B/(B - ),
Fi= oL +07 - olg/o) - 01 +¢%),

and

Fa= BAH02 =0l o) —0(1 -+ B2,
squares of the coefficients in (A.2). Using the geometric sum formulas Ef:'::o *=(1—-¢)", etc. to
simplify the sum of squares, one obtains that this integral is 2o times

Now apply Bessel’s equality to evaluate the integral of (A1) over [—m, 7] as 2« times the sum of

F (rf,/(f%, a'f‘,/(r%, &, )= 0? +{t+ 6% - (r");.( /(i'i =0y, ty B)}l
A 3 5 X 2
~ 2

{vy ')"’1)27'“27’1 Y1272 + (7272)
1—4° 1~ ¢p 1%

With this notation, RELERR is given by

RELERR = F(oly/ a2, obf 0%, b, 0)/ F(0, 07/, &, 0).
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