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I. Introduction

Record linkage, and its associated statistical problems, is a special case of a larger area
of concern. This area makes use of various mathematical and statistical techniques to
study the problems involved in the classification of ohserved phenomemon. Diseriminant
analvsis, discrete diseriminant analvsis, pattern recognition, cluster analvsis and
mathematical taxonomyv are some of the specific fields which studv various aspect of the
classification problem. While record linkage contains its own specific set of problems it

also has a great deal in common with these other fields.

The basic unit of study in the linking of two files Fy and F, is F,XF,, the set of ordered
pairs from F, and F,,. Given F{XF,, our job is to classify each pair as either matched or
unmatched. This decision will be based on measurements taken on the record pairs. For
example, if we are linking person records a possible measurement would be to eompare
surnames of the two records, and assign the value 1 for those pairs where there is
agreement and 0 for those pairs where there is disagreement. These measurements will

vield a vector, ', of observations on each record pair.

The key fact which will allow us to link the two files is that T behaves differently for
matched and unmatched pairs. Statisticallv we model this by assuming that T is a
random vector generated by P( * | M) on matched pairs and P( * | U) on unmatched
pairs. Thus, the T value for a single randomlv selected record pair is generated by

pP( * | M)+ (1-p) P( * | U) where p is the prooortion of matehed records.

This model for the problem is basicallv the same as the one used in diseriminant
analysis. In particular, as T is almost always discrete, the literature on discrete
discriminant analysis is extremelv useful (see for example Goldstein and Dillon (1978)).
There are however, several areas of concern that seem to be a great deal more important

for record linkage than for the other classification techniques.

Our topic of discussion in this paper, blocking, arises from consideration of one of these
problem areas. That area concerns the extreme size of the data sets involved for even a
relatively small record linkage project. The size problem precludes our being able to

study all possible record pairs. So, we must determine some rule which automatically



assigns some pairs the match status of unmatched without further investication. Such a
rule is referred to as a blocking scheme since the resulting suhset of record pairs often

forms rectangular blocks in FyXFj.

Before we go on to dicuss the details of blocking we need to look at some background

information on record linkage.
II. Background

Again, our job in linking the two files F, and Fy is to classify each record pair as either
matched or unmatched. In oractice, however, we usuallv include a clerical review

decision for tricky cases. So, our set of possible decisions is

A1: the pair is a matceh
A2: no determination made - review

A3: the pair is not a match.

Now, consider the class of decision functions D( * ) which transform our space of
comparison vector values, elements of which we will denote byy , to the set of
decisions {AI,A?,A3} . Given two or more decision function in this class, what

criterion will we use to choose between them?

In Fellegi and Sunter (1969) the argument is put forward that, as decision Aq will require
costly clerical review, we should pick a decision procedure which will minimize the
expected number of A, decisions while keeping a bound on the exnected number of pairs
which are classified in error. Since the comparison vector values computed on the record
pairs are identically distributed, this reduces to picking that decision procedure which
will minimize P(A,) subject to P(A, lU)< wand P(A;IM)< X .

Given that vou know P( * |M) and P( * |U) Felleqi and Sunter prove that the decision

procedure which solves this problem is of the form

A, if 2(Y) < ty

(1)  D(y) = A, if t, < 2(y) <t
A, if 2(y) 2t

2
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where ¢ (y) = P(y IM)/P(y |U) and t,, t, are the least extreme values in the range
of ¢ () which satisfy the constraints.

It is this decision procedure that forms the basis for our study of the blocking problem.
III. Blocking

In the past sections we have outlined the more general aspects of record linkage and
defined the blocking problem. In this section we will discuss blocking in the context of

the decision procedure given in sectionII.

Our general hlocking strategv is based on the fact that, for the tvpe of files we work
with, the number of matched pairs is considerably smaller then the number of unmatched
pairs. So want try to restrict our investigation to pairs which have a good chance of
being a match. The rest of the pairs will automaticallv be classified as unmatched. This
will result in a reduction of the number of false matches and referrals at the expense of

an inerease in the number of false nonrmatches.

In Fellegi-Sunter (1969) this is accomplished by restricting the set of T vectors we are
*
willing to studv to a subspace T . Now, there are several possible ways to pick the
*
best blocking subspace T . But we will restrict our attention to two methods.

The first method is suggested by the following amended decision procedure:
. *e
' Ay if a(y)< t, or y eT
(2) D (Y) = A‘2 if tl i l(y)f_ tz and I e T
Ay if g(y)> t, and y ¢ T

A Venn diagram of this situation is given by
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*
where S; and S ; are the regions of T values for which we make decision A; under decision
functions given by (1) and (2), respectively.

The error levels for this amended decision rule are given by
(sa|wm= Y+ P(S, )

P(S, | M) = B(sy |M) + P( s -84 |m

_ *

= A+ P(S,- S, IM).

and
* *
P(s, |U)=P(s; [U)-P(SiN S, |y

*
=, -Ps N s, (o
*
Further, P(Ag) = P(S5) - P(Sy NN 8, ).

These equations give us a means to compute a loss incurred by blocking onthe
subspace I‘* . Namelv, P(S - l'\’l) the increase in probability of a false non-
match. The benefit gained from blockmg on I‘ , as opposed to using all of the T vector
space to make our decision, takes the form of a decrease in the expected number of pairs
which will have to be processed. Based on these calculations, we define the best blocking
scheme to be the one which minimizes P( I‘*) subjeect to P( S; -SS'M) < w.

The second method of comparing hlocking schemes makes use of the conditional decision
function D* which is defined as follows:
* *
A, if 2 (y) < t1
* *
D (y) =4, if Q(Y)ét
A

*V—‘

it o (y *
1 ! ) 2 t,

* * *
where y ¢ T , 9, (y) = P(y l r, M)/P(y |I‘ , U) and false nommateh and
*
match rates are >\ and ¢ respectively. Now suppose we use D to form a new decision
function, say p** , on the whole space of T values. Let

* %*
+ o (p'(ryitrer
‘”‘iA? ifrere®



then the overall error rates for D'  are P(I'* | M) AT s P(_I"*CIM) for false
nonr-matech and P(I'* IU) u* for false mateh. Also, D** has a total probability of an
Aq decision of P(I'*) P(A‘Z ' I'*’) . To pick the best r* we select the subspace wﬁich
gives rise to the D** decision which minimizes the probability of an A, deecision subject

toP(A, [M) < w, andP(A, [U) < o

1 2

It is obvious that these two methods are related but it is unclear as to whether or not
they are equivalent. At this point it would be benefical to consider an example. But

before we do lets 1ook at some of the practical aspeets of bloeking.

The previous decision provides a general framework for studving, blocking; however, it
does not give us any insicht into the actual determination of a hlocking subspace r* .
At first glance it is obvious that not all r* will be feasible, since for manv of them
a T vector must actuallv he computed on each record pair hefore we can classify that
pair as within or outside r* . This would totallv defeat the purpose of blocking. One
solution for this problem is to block by using certain fields on the record (such as city, or
state) or fields which we might add prior to matehing (such as soundex code on surname
or address range) as sort kevs. The blocks would be determined bv those record pairs
with equal kevs. Restricting our study to blocking schemes which are determined by sort
kevs implies that the comparison vector we want to use will consist of dichotomous

components measuring agreement on the record identifier fields.

Now lets consider our example

VI. AnExample

Suppose our comparison vector consists of the agreement-disagreement pattern of three

fields. Further, lets assume that the fields act independently under hoth
P(+M) and P(+ [U).

So, P((Y1 Yo 73) |M) = (mi)Yi(l—mi)l—Yi

andP((Y1 Yo Y3) |u) = (ui)yi(l—ui)l_Yi

fay

bate -t
Nl 2

where m; equals the probability that the ith com ponent agrees for a matched pair and y,
equals the probability that the ith component agrees for an unmatched pair.



This implies that

3 m, Yi l—mi

L(y) = T ("a‘:") (-I:G-.') 1-vyi
1=1 1

or

L(y) = 1In (2(y))

3 mi
= Y y. 1n (-=1-) + (1-vi) 1In

. i u.

i=1 i
Now suppose that

= qQ =

m1 .90 u1 .05

m, = .85 u, = .10

m3 = .95 u3 = .45
So,

1 90_ _ o1 .10
@ o5 = 18, ST |
2. 85 _ g M2 .15
u T .10 *UY 1-u .90

2
u, .45 toTe l—u? .55

(

]

M
1-u. °

.1053
.1667

.N91.



The possible patterns along with their corresponding £ and L. values and their rank is as

follows:

Pattern 2 L rank
(0,0,0) .0n15974 .44 1
(0,0,1) .0370379 -3.30 2
(0,1,0) .0814496 -9.51 3
(0,1,1) 1.8885555 .64 5
(1,0,0) 2730546 -1.30 4
(1,0,1) 6.331266 1.85 6
(1,1,0) 13.923 2.A3 7
(1,1,1 322.83 5.78 8

To construct the Fellegi-Sunter decision function for this example we note that

P((0,0,00 M) = (.1)(.15)(.05) = .00075
P((n,0,1) M) = (.1)(.15)(.95) = .01425
P((0,1,0) M) = (L1)(.85)(.N5) = .00425
P((1,0,0) M) = (.9)(.15)(.n5) = .00AT5
P((0,1,1) M) =(.1)(.85)(.95) = .08075.

Soif welets, = | (n,0,0), (0,0,1), (0,1,0), (1,0,0) }

>3
then P(Sq [M) = .026.

Also
P((1,1,1) |U) = (.05)(.10)(.45) = .0N225

P((1,1,M| U = (.05)(.10)(.55) = .0N275

P((1,0,1) |U) = (.05)(.90)(.45) = .02025.
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So, if weletS; ={(1,1,1), (1,1,0), (1,0,1)} then P(S; | U) = .02525. Thus,

using the decision

unmatched for patterns 1-4
review for pattern 5
matched for pattern 6-8

would give us P(false non-match) = .026 and P(false mateh) = .02525.

Now lets consider some different blocking schemes. In particular we will look at three
blocking schemes, B; i=1,2,3, where B; denotes blocking on the ith component. We will
compare these schemes using the two methods outlined in the last section.

*
To make use of Method 1 we must first calculate P(Sq - S3 | M) for each blocking
scheme. To facilitate this calculation consider the following Venn diagram:

(0,0,0) (n,1,1) (1,1,1)
(0,0,1) (1,1,0)
(0,1,0) (1,0,1)
(1,0,0)

Sa Sy Sy

From this we see that for Rl

*
P(S

2 - Sg M =P, 1,1) [M) = .ogavs,

Similarly,

*
P(S

s = Sa 1 M=P((1,0,1) | M)=.12825

for B, and

*®
P(S

s = Sy | M)=P(1,1,0) | M)=.03825

for Bg.



*
Further P(T ) is given bv
.90p + .05
J75p + .10
50p + .45

for blocking schemes 1 through 3, respectivelv.

*
To compare these blocking schemes lets first consider the graphs of P( T ) for each of
the schemes,

The first thing we note from this graph is that By and B, are both uniformly better than
Bs. So, even if By is admissable according to loss, it isn't admissable according to
benefit. However, lets go ahead with a formal application of Method 1 and let W = .1,
This would elimiate B, from consideration. Of the two remaining schemes we see that
By is uniformly best.

Next we will studv schemes Bl’ By and By using Method 2. To make the necessary
computations we note that if Si is the set on which decision A; is make then the error
rates are given by

P(q; | M) = p(s; AT v + perte |
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and
* * * .
(s} lu) = p(s A luy .

CM)

* * * % *
So weselect S, N T so that P(S3 NT M) < wy - P(T
* *
and S1 N T sothat

% *
P(Slnr U)_<_w2.

Suppose we let wy = .2 and Wy = 005,

ForBlwehave

% *
P(Sq/\ r |M)5.2— 1= .1
and

* *'
P(Sl/\ r | U) < .005

*
r ranked by g is as follows:
*

S, (1,0,0)
(1,0,1)
Voee T

(1,1,1) S

1

P((1,0,0) | M) = .00675
P((1,0,1) | M) =.12825.
%

*
So, S, AT = [(1,0,m}.

Further, P((1,1,1) | U) = .00225
P((1,1,0) | U) = .00275.
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% *®
Sos, AT ={(1,1,1), (1,1,0} .

%* - %*
Thus, S, = {(1,0,1)}, andso, P(S,) = .108 p + .N2025.

2
* *
For B, we have P(S3 NT I M<.2-.15=.05
* *
and P(Slﬂ r | U)<.00s,

*
T ranked by g is as follows:

*
S, (0,1,0)

' (0,1,1)
Yoo t.
(1,1,1) S

1

Now, P((n,1,0) | M) = .00425
P((0,1,1) | M) =.08075.
* *
So,S, n T = {(0,1,0)} .
Also, P((1,1,1) | U) =.00225

P((1,1,0) | U)=.00275 .

* *
So, S, A T = {(1,1,1), (1,1,m01} .
* %*
Thus, S, = {(1,1,0) }, andso, P(S,) =.0355D +.00275.

For B3 we have

* %*
P(S,n T |M <.2-.05=.15
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* *
andP(S, A T | U< .05

%*
T ranked by % is as follows:

s: (0,0,1)

i (0,1,1)

v (1.01) T,
(1,1,1) S

Now, P((0,0,1) | M) =,01425
P((n,1,1) | M) =.08075
P((1,0,1) | M) = ,12825 .
%* *
SoS,n T = {(0,0,1), (0,1,10} .
Also, P((1,1,1) | U) =.00225
P((1,0,1) | U) =.02025
* *
So,8, AT = [(1,1,1)}

* *
Thus S, = [t1,0,1}, andso, P(S,) =.108p +.02025.,

On reviewing these calculations we see that according to Method 2 B, and B4 are
equivalent while B, is unif ormly better than both.

V. Condlusions

Of the many possible methods we could construet to compare different blocking schemes

we selected two for studv.

Method 1 is based on the change which is induced in the original F ellegi-Sunter procedure
by blocking. It's strength lies in its specific expression of the loss and benefit due to
blocking.
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Method 2 is based on the conditional Fellegi-Sunter procedure given the blocking
*

subspace I . It's strength lies in the abilitv to specifv an overall bound for both error

rates through its use. Also, it appealing because it maintains the same gobal objective as

the Fellegi-Sunter procedure on the whole T space.

In comparing these two methods, as they pertain to the example of section IV, we see
that they clearly are not eauivalent (thev, in fact, give quite different results).

Further, Method 1 is more intuitively appealing than Method 2. This, since Method 1
chooses the blocking scheme bhased on the component with the most discriminatory
power* while method 2 chooses the hlocking scheme based on the component with the
least discriminatory power. While this does not invalidate Method ? it certainlv causes

us to question when and how we might use it.

There is a great deal more that needs to he done on this topic. We are currentlv working
on some simulation studies which will allow us to relax some of the assumptions (for
example, the assumption of component independence). It is hoped that these studies will
lead to greater insight into the blocking problem, and, into the use of various models
needed for its solution.

Discriminatory power of a component is not a well defined term; however, it is
connotation is fairlv clear. One possible wav to give numeric suhstance to this concept
would be to use the Divergence function in Kullback (1959).
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