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Unit Roots in Time Series Models: Tests and Implications 

ABSTRACT 

The decision on whether or not to include a unit root in an AR 
operator has profound implications. Formal tests for the 
presence of unit roots give analysts objective guidance in this 
decision. This paper is a practical guide to the use of these 
tests. 



1. Introduction 

Let Yt be a discrete time series following a stochastic 

difference equation model of the form 

(l-a 1 B- l .* 
-ap+d 

BP+d)(Yt-p) = (1-elB- "* -eqBq)et (1.1) 

where B is the backshift operator (BYt = YtB1); et is a series of 

independent, identically distributed random shocks with mean 0 

* and variance ~2; and al, l *') ap+d’ h el’ 
. . . 

, 0 
2 

q’ 
and u are 

parameters. Now let z denote a complex variable and consider the 
* 

function a(Z) = (l-alz- l ** -ap+dZp*d). The behavior of the 

sequence Yt is different as the roots of the equation a(z) = 0 

(the zeroes of a(z)) fall in different regions of the complex 

plane. If 5 is a root of a(z) = 0 with IF,] = 1, then 5 is called 

a unit root of a(Z) = 0. Unit roots are either +l, -1, or 

exp(iA) for some X in [0,27~). In this paper we concentrate on 

unit roots of +l. 

Suppose a(z) has d unit roots equal to 1, where d > 0. 

Then a(B) can be factored as 

a(B) = +(B)(l-B)d (1.2) 

so that writing v = (1-B) (1.1) becomes 

oWvdUt-u) = W)e, (1.3) 

where 4(B) = ( l-+lB- l ** -+,B'). A useful generalization of this 



model is 

rn(B)vd(Yt-~~~) = Whet (1.4) 

where E; is a row vector of observations on r fixed regressor 

variables, and t is an r x 1 vector of parameters. 

If all the roots of (p(z) = 0 are outside the unit circle, 

then the model (1.3) is called ARIMA(p,d,q), a model that has 

-become somewhat of an industry standard due to the efforts of Box 

and Jenkins (1970) and their followers. The quantity vdYt is 

call*ed the d-th difference of Yt. If d = 0, (1.3) is called an 

ARMA(p,q) model. Often Yt is said to be stationary when d = 0 

and nonstationary when d > 0. Technically (see Appendix A) even 

with d = 0 additional conditions are needed for Yt to be 

stationary. When d > 0, however, Yt is nonstationary except in 

certain trivial cases (e.g. 0' = 0). For lack of any better 

terminology, we shall refer to d = 0 as stationarity and d > 0 as 

(homogeneous) nonstationarity. 

In practice there can be some question about the need to 

include a differencing operator V in (1.3), or about the need for 

an additional v if (1.3) already has one or more. Tools often 

used in making the decision include examination of plots of the 

series and its differences for the wandering behavior 

characteristic of nonstationary series, inspection of the sample 

autocorrelation function (ACF) of the series and its differences 

for failure to damp out quickly, and informal inspection of a 

fitted model of form (1.1) for the presence of a l-z factor 



in a(Z). While these tools are useful, they all run into 

difficulties occasionally. In borderline cases where Yt is 

stationary but $(z) contains factor(s) close to l-z, Yt can 

wander away from its mean u for long stretches. While the ACF of 

a nonstationary series should die out only slowly, the individual 

autocorrelations need not be large (Wichern 1973, Box and Jenkins 

1970, pp. 200-201, Hasza 1980), and sampling variation in them 

* can make nonstationary behavior difficult to detect. Finally, 

informal examination of a fitted model of form (1.1) is 
A 

unambiguous if the fitted a(z) exactly contains a l-z factor 

(within computational accuracy). But if k(z) has a factor (1-iz) 

close to l-z, the question that arises is whether l-;Z is 

significantly different from l-z, i.e. whether i is significantly 

different from 1. This calls for formal statistical inference 

tools. Classical inference results for time series do not apply 

here, since they require Yt to be stationary, but many authors 

have extended these results to nonstationary cases (see Fuller 

(1984) for a review). In particular, Fuller (1976), Dickey and 

Fuller (1979, 1981), Said and Dickey (1984, 1985), and Hasza and 

Fuller (1979) have provided formal tests for the presence of unit 

roots. The use of these tests and the importance of detecting 

unit roots are the subjects of this paper. 

Before proceeding, we need to make an important 

qualification. The theory we shall discuss applies only to the 

case d = I in (1.3), that is, for deciding hetween one or no 

differences. However, Yt can be an already differenced series, 

including the important case of a seasonally differenced series, 
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Yt = VsXt = ( l-BS)Xt where s is the seasonal period. Thus, we 

assume that the other techniques mentioned (informal examination 

of plots, ACFs, and fitted models) or other knowledge about the 

series can be used to discover all differencing factors except 

the last v . Some work on dealing directly with multiple unit 

roots (Findley 1980, Tiao and Tsay 1983) suggests that the last 

v factor is the most difficult to detect. 

- 2. Implications of Unit Roots 

2.1 Implications for Time Series Models 

To illustrate the implications of unit roots, we begin with 

the model (1.1) with p+d = 1 and l.~ = 0: 

(1-aB)Yt = et. (2-l) 

Consider the three cases 0 < a < 1, a = 1, and a > 1. (Parallel 

comments would apply for a < 0.) For these cases the root, 

l/a, of a(z) = 1 - az = 0 is greater than, equal to, and less 

than 1 respectively. Given any suitable starting value, Y. say, 

(2.1) can be solved to yield 

Yt 
=atY +e 

0 t + set-1 + 
l =* + at-l5 U-2) 

For 0 < a < 1 we see the influence of the starting value, atYo, 

goes to zero as t increases, as does the influence of the shocks 

in the distant past. For a = 1 the starting value and distant 
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past shocks get the same weight, 1, as recent shocks. For a > 1 

the weights on the distant past shocks and Yg increase as t 

increases. We can summarize these results by saying that 

for 0 c a < 1 the present is more important than the past, 

for a = 1 the past is equal in importance to the present, and 

for a > 1 the past is more important than the present. 

Figures la,b,c show 100 observations generated from the 

model (2.1) with YO = 0 and the et's i.i.d. N(O,l) for a = .5, 

. 1.0, and 1.15 respectively. For a = .5 we see the series tends 

to oscillate about its mean value of 0. For a = 1.0 the series 

is f'ree to wander, with no tendency for the values to remain 

clustered about any fixed level. For a = 1.15 the series 

eventually behaves like the function kl t k2(1.15)t, taking off 

rapidly towards -w. These three types of behavior are 

characteristic of series following the model (l.l), according to 

whether a(z) = 0 has all roots outside the unit circle (as in 

Fig. l.a.), one or more roots on with the rest of the roots 

outside the unit circle (Fig. l.b.), or any roots inside the unit 

circle (Fig. l.c.). 

If a(Z) = 0 has unit or explosive roots, Yt following (1.1) 

is nonstationary; if all the roots lie outside the unit circle 

and Yt satisfies some additional conditions, then Yt will be 

stationary. (See Appendix A.) Since explosive behavior is not 

realistic for most series in practice, we shall not explicitly 

consider explosive models further. We shall concentrate on the 

model (1.3) with all the zeroes of cp(z) outside the unit circle. 



2.2 Nonstationarity and Regression Modeling 

The implications of unit root nonstationarity in series to 

be used in regression models have been studied by Granger and 

Newbold (1977, section 6.4), Plosser and Schwert (1978), and 

Nelson and Kang (1984). This work concentrated to an extent on 

three distinct possibilities in regard to dealing with 

nonstationarity - differencing, removal of a linear trend, and 

doing nothing. It was shown that doing nothing when differencing 

. is needed can have dire consequences - frequently leading to 

falsely significant regressions of nonstationary series on time 

and*on other independent nonstationary series. Linear detrending 

helps little in regard to the latter. The consequences of 

unnecessary differencing were shown to be far less serious: 

inefficient, though unbiased and consistent, parameter 

estimates. This suggested at least doing regressions with 

differenced as well as undifferenced data and comparing the 

results. One iteration of a Cochrane-Orcutt procedure (filtering 

the regression equation with l-i8 where i is the lag 1 

autocorrelation of the regression residuals) did not correct the 

problems noted. Iterating Cochrane-Orcutt did not correct the 

problem of spurious regressions on time, but it did correct the 

problems with relating nonstationary series. For the latter, 

iterating eventually pushed i near 1, which produced roughly the 

same regression results as differencing. These results were thus 

not overly sensitive to different values of i near 1. 



2.3 Implications for Forecasting 

Given a model (l.l), values of the parameters of the model, 

and data YI = yI ,***, 'n = Yn9 the minimum mean squared error 

forecast of a future value Yntn. is c,,+& = E(Yn+E(~l,-..,~n), and 

the forecast standard error is ~Var(Yn+~~.y1,...,yn)~1'2. (For 

simplicity, we shall assume normality of Y,.) These calculations 

are discussed by Box and Jenkins (1970, chapter 5). 

z To illustrate the impact of unit roots on forecasts we 

display forecasts from the two models 
* 

(l-l.88 + .81B2)Vt = et (2.3) 

and 

(I-l.88 + .80B2);, = et (2.4) 

where it = Yt-100, Var(et) = 2, and the last two data values are 

yn-1 = 128 and yn = 135. Model (2.3) can be written 

(1-.9B)2~t = et and model (2.4) as (1-.8B)vit = et, so the first 

model is stationary, the second nonstationary. The forecasts 

from the two models are shown in Figure 2.a and the forecast 

standard errors in Figure 2.b. The forecasts from the stationary 

model converge to the series mean of 100, and the forecast 

standard errors converge to the series standard deviation 

y;" = 23. The forecasts from the nonstationary model converge 

to 163, and the forecast standard errors diverge to +a. This 

example illustrates the delicate dependence of long-term 

forecasts on the presence of a unit root and underlines the 

potential importance of correctly deciding on the presence of a 
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unit root. 

The above results generalize to higher order models of the 

form (1.1). When the model is stationary 

i 
n+R + p = W& VaWnt21y1....,yn) + Var(Yt) as Al+=, 

For nonstationary models ?n+n. will eventually either explode or 

behave like a polynomial, and Var(Yntglyl,...,yn) + 0~ as R+=. 

. 

2.4 Differencing and Polynomial Trends 

*An alternative to the model (1.3) that is sometimes 

suggested is to regard Yt as following a polynomial trend with 

stationary errors, linear trends being the most popular. However, 

model (1.3) is actually equivalent to 

~(B)od~yt-(~o+~lt+“‘CBd-lt d-1N = e(B)et 

since vd(go+f31t+"*+Bd-lt d-1) = 0 . If a polynomial trend of 

degree d - 1 is present in Yt, (1.3) automatically allows for it. 

For example, in forecasting Yt, the d - 1 degree polynomial will 

be reproduced. For the particular case of d = 1 in (1.3) 

VP = 0 so v(Yt-u) = vYt and 11, a polynomial of degree 0, is 

automatically included in the model. Thus, there is no need to 

write p explicitly in (1.3) for any d > 0. 

An alternative to (1.3) is 

9wdu, = c+e(B)et (2.5) 



which is equivalent to the model 

d 
+(B)v ~Yt-(6~+61t+"'+6d_lt d-1+6dtd)] = e(B)et V-6) 

where fid = C/$(l)d!. For example, with d = 1, (2.6) becomes 

a(B)vCYt-60-61tl = e(B)+ and q is the slope of a linear trend 

in Yt. Polynomials of degree higher than d, d + k say, can be 
z 
incorporated by replacing c in (2.5) by a polynomial of degree k. 

*Pierce (1975), Chan, Hayya, and Ord (1977), Abraham and Box 

(1978), Nelson and Kang (1981, 1984), and Nelson and Plosser 

(1982) discuss the issue of fitting polynomials versus 

differencing. From our discussion we see the critical issue in 

choosing between differencing and fitting polynomial trends is 

not whether Yt in fact follows a polynomial trend, since both 

approaches allow for this, but whether the deviations of Yt from 

the polynomial require differencing. For the important case of a 

linear trend, the question is whether we should use the model 

~(B)(1-pB)(Yt-Bo-61t) = W)et (2.7) 

where p < 1, or the model 

$O)v(Yt-60-61t) = e(B)et. G-3) 

Model (2.8) is equivalent to $(B)vY, = c + e(B)et with 

C = 4oh+ 

We shall see in Sections 4 and 5 that preliminary removal of 
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a linear trend from Yt can make it difficult to determine whether 

the resulting deviations from the linear trend require 

differencing. For this reason, and because the decision on 

whether or not to difference carries profound implications for 

models and forecasts, we recommend against preliminary removal of 

linear or other polynomial trends. We shall later show how to 

test if a linear trend plus stationary errors model is 

appropriate (testing (2.7) against (2.8).) Nelson and Plosser 
. 

(1982) apply this test to 14 annual U.S. macroeconomic time 

series and only reject (2.8) in favor of (2.7) for one series - 

the unemployment rate. 

3. Delineation of Hypotheses 

We wish to decide whether or not a process is one whose 

first differences follow a stationary ARMA model (null 

hypothesis). We shall discuss stationary alternatives to this 

hypothesis, but one can easily consider explosive and even two- 

sided alternatives in an ob-vious way. Different alternatives are 

appropriate depending on whether, under the null hypothesis, the 

first differences are assumed to have a zero or a non-zero mean. 

The more common null case is to assume the first differences 

have a zero mean. Then the null and alternative hypotheses are 

(null) H1: t4B)vYt = eWet (3.1) 

WV HZ: $(B)(l-pB)(Yt-u) = e(B)et, -l+<l (3.2) 
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where p = E(Yt) when lpl<l. Both hypotheses are composite 

because at least one parameter, a', is unspecified. 

If 4(B) z e(B) z 1, then the hypotheses above specialize to 

H1: vYt = et (3.3) 

H2: (1-pB)(Yt-U) = et, -I<P<I (3.4) 

. 

The null hypothesis is a random walk. The alternative hypothesis 

is a* statjonary AR(l). 

For the moment suppose we have only entertained the limited 

hypotheses HI and H2 displayed in (3.3) and (3.4). Suppose 

further that we perform an appropriate test and decide in favor 

of HI. At this point we would probably wish to ask if the drift 

is truly zero, where drift is the mean of vYt. We could do this 

by setting up an alternative hypothesis 

H3: vYt = c t et C#O 

and testing it against the null hypothesis HI. 

As we have seen in Section 2.3, the mode.1 in (3.5) 

automatically allows for a linear trend in Yt. A possible 

alternative to (3.5) is 

H4: (1-pB)(Yt-Bo-Blt) = et, -l<p<l fil f 0 

(3.5) 

(3.6) 

that is, the deviations of Yt from a linear function of time 
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follow a stationary AR(l) model. If we set p = 1 in (3.6) we get 

the model in (3.5) with c = pB1 = B1. Given that we have 

accepted (3.5) instead of (3.3), we may also want to test (3.5) 

against (3.6). As noted in Section 2.4, we recommend against 

beginning a sequence of tests with hypothesis H4, however. 

Our formulation of the hypotheses in this section 

illustrates why the stationary, non-zero mean model is a natural 

alternative to the random walk with zero drift, whereas the * 

stationary deviation from linear trend model is a natural 

alternative to the random walk with drift. In both cases, the 

alternative hypothesis reduces to the null hypothesis when we 

set p=l. 

Our approach to deciding on the need for a differencing 

operator will use a framework in which models with a V (such as 

(3.1), (3.3), and (3.5)) specify the null hypothesis, and models 

without a v (such as (3.2), (3.4), and (3.6)), represent the 

alternative hypothesis. In performing a formal hypothesis test to 

decide on the need for differencing, we accept a v in the model 

unless the data present (statistically significant) evidence to 

the contrary. We are thus expressing a preference for models 

with a v over polynomial trend plus stationary error models, such 

as (3.6), and models with a l-p8 autoregressive factor with p 

near to but less than 1. We do this because of what we perceive 

to be the relative importance of the two possible errors in 

deciding on differencing. Failure to include a differencing 

operator when it is needed results in bounded forecast intervals 

that must eventually be too narrow, giving unreasonable 
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confidence in the forecasts. This can be especially true if a 

polynomial trend plus stationary error model is used when 

differencing is needed. The polynomial trend may fit well over 

the span of the observed data, but extrapolating it implies a 

strong assumption about the future, and this may well produce 

highly unrealistic forecasts and forecast intervals. On the other 

hand, differencing when a v is not needed can produce forecast 

* results equivalent to those from a model without a v (Harvey 

1981). Overdifferencing can also sometimes be detected and 

corricted at the modeling stage (Abraham and Box 1978). At 

worst, use of v when l-p8 with p < 1 is more appropriate will 

produce conservative forecast intervals that may differ greatly 

from those for the model with (1-pB) only for the long term. 

4. Test Statistics 

4.1 A Simple Model 

The simplest practical model we have introduced is (3.4), 

which may also be written 

Yt = c + P yt-1 + et (4.1) 

where c = (1-p)~. The model looks like a regression model. We 

estimate c and p by regression of Yt on 1, Yt-1. Denote the 
,. 

estimates by c and P^ 
lJ* 

Dickey and Fuller (1979) present the distribution of p, 
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when p = 1 in (4.1). Percentiles of this distribution are given 

in Fuller (1976, p. 371). Regression estimates for coefficients 

in stationary time series are normalized by J?i (where n is the 

sample size) to obtain limit distributions. In contrast, 
A 

when p = 1, n(p 
P 
-1) has a nondegenerate limit distribution. 

Thus, for large n, p is estimated more accurately when it is 1 

than when lpl < 1. However, the fifth percentile of n(iU-p) 

for p = 1 does not exceed the corresponding percentile of 

* Jii(iv-p) for P = 0 until n exceeds about 70. 

A statistic computed by most regression programs.is the 
I 

studentized coefficient, which is usually called a t test for the 

coefficient. We denote the statistic 'tcI, rather than t which 

suggests the Student t distribution (this being inappropriate 

under our null hypothesis). The statistic TV is related to the 

likelihood ratio test of (p,c) = (1,0) in model (4.1). See 

Dickey and Fuller (1981). 

We formally define T by letting Y, be an n dimensional 

vector with tth entry Yt Ind i an n x 2 matrix with tth row 

UJt,1). It follows that (c^.p,)' = ()J*X)-'(X-l), 

S2 = (n-Z)-l(I'v 2-v - (2,pU)(X'y)), and T = (vz2s ) 2(pV-1) where 
u 

v22 is the second diagonal element of (z*L)-l. The .distribution 

of T is not the Student t distribution even in the limit. 
IJ 

Fuller (1976, p. 373) published a table of selected percentiles 

of T 
lJ' 

which is reproduced in Appendix C of this paper. If an 

experimenter had used the usual normal percentiles to test the 

hypotheses in (3.3) and (3.4) at a nominal significance level 

.Ol, the critical value from the normal tables would have been 
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-2.58, and for large n the actual significance level would have 

been .lO! Use of the standard t tables results in spurious 

declaration of stationarity. 

There are several ways to compute pu and TV. For example, 

-1 n 
let y(o) = n &Yt 

- y(o) 

and y(-l) = n t=l t-l. -l ; Y Then regressing 

Yt on yt-1 - y(-1) gives iu. Under the null hypothesis, a 

constant added to YO increases each Yt by that same constant, and 

under the alternative a constant added to E(Yt) increases each Yt 
. 

by that same constant. Our current representation of iV shows that 

adding a constant to all Yt does not affect i 
lJ* 

An estimator 

with the same asymptotic distribution as i is obtained by 
11 n 

regressing (Yt - y) on (YtB1 - 7) where 7 = (ntl)” c Yt is the 
t=o 

mean of the entire data set. Finally, if ?Yt = Yt - YtBl, then 

the regression of vYt on 1, Yt 1 gives a coefficient ^p - 1 on 
iJ 

Yt-1, and the usual t statistic for the coefficient on Yt-1 is 

our T statistic. 
lJ 

We can read the test statistic 'tP directly off 

of a standard computer printout under this parameterization. 

4.2 The General Model 

Consider the general model (3.2). If IpI c 1 we can use any 

of several computer packages to estimate the parameters 

of 4(B) and e(B). To perform the test of p=l on the general 

model, we first subtract the series mean, Y, and specify initial 

estimates of the parameters that are consistent under both the 

null and alternative hypotheses. We next perform a one step 

Gauss-Newton improvement of the initial estimates of the 

parameters in 4(B) and o(B) and of i = 1. The t-statistic 



16 

associated with the one step improvement for i has the limit 

distribution of TV. 

There are several ways to obtain the initial estimates 

needed. One simple approach is to use a computer package to 

estimate (3.2) as a multiplicative ARMA model, with the p term 

omitted since 7 has already been subtracted. Or (3.2) could be 

rewritten as 

. $(B)(l-pB)Yt = c + e(B)et 

I 

where c = $(1)(1-p), and estimated directly in this form without 

subtracting v. Direct estimation of (3.2) with u included is not 

advised since estimates of p and p can be highly correlated. 

Estimation could be by conditional least squares or by a 

procedure that is exact maximum likelihood for MA models but not 

for AR models, such as that suggested by Hillmer and Tiao (1979). 

Procedures that are exact maximum likelihood for AR models should 

not be used since these fall apart as p approaches 1. Finally, 

for 6(B) f 1 one must make sure that on initial estimation the 

possible unit root factor that is estimated is 1-pB and not part 

of IP(B). This could be done by starting p at 1 in the initial 

estimation as well. 

Three additional comments should be made concerning the 

procedure. First, studies of the power function for this test 

emphasize the importance of obtaining good initial estimates 

for the parameters of $(B) and e(B) when e(B) f 1 (Said and 

Dickey 1985). Second, if e(B) = 1 then ordinary least squares is 
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appropriate for estimating the parameters of 4(B) as we shall 

illustrate below. Third, in doing this test one step of a pure 

Gauss-Newton iteration is strictly required for the theory to 

apply. Many time series packages use Marquardt's algorithm, 

which is a mixture of Gauss-Newton and steepest ascent, in their 

iterative estimation scheme. This algorithm may give different 

results. 

Solo (1984) suggests an alternative to the above procedure 

based on a Lagrange multiplier test of p = 1. His approach 

differs from that given above in that (i) initial parameter 

estfmates are obtained for the "null" model (3.1) rather than 

(3.~)~ and (ii) the one step Gauss-Newton improvement is 

performed only on p (0) = 1 (also on the constant term if 7 is not 

removed), not on the parameters in 4(B) and e(B). The resulting 

t-statistic still has the T limit distribution. 
IJ 

The procedure 

amounts to regressing the residuals from the fitted null model 

(3.1) on their derivatives with respect to p. Solo's procedure 

does simplify the computations, but at this time we can say 

nothing about the power of such a test or how well it maintains 

its nominal significance level. Said and Dickey (1984) provide 

another alternative, showing that an asymptotically valid test in 

mixed models is obtained if the data are analyzed as though they 

were generated by an autoregressive model whose order is a 

function of n. 

4.3 Autoregressive Models 

We now explain how to perform the test for autoregressive 
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models. Consider the general autoregressive process 

+(B)(l-pB)Yt = c + et (4.3) 

where c = t$(l)(l-p)~ and the roots of O(B) = 0 lie outside the 

unit circle. If p = 1 then c = 0 and the regression of vYt 

on vYtel, l **, vYtsp, yields estimates of the coefficients of the 

polynomial 4(B) which are Op(n 4 2) and whose limit distribution is 

wmultivariate normal. Thus ordinary regression testing procedures 

may be used for these coefficients (see Fuller 1976 chapter 8). 

Regrzssing vYt on 1, Yt-1, vYtel, l ** vY t-p produces consistent 

estimates of c and +(l)(p-1) for any p, with the p coefficients 

on vYtBl, l *Y vYtsp providing consistent estimates of $1, '**, $p 

when p = 1. 

For example, suppose Yt = 50(1-p) + (p+.6)YtBl - .6pYt 2 t et. 

If p = 1 the intercept term is 0. For any p, 

VYt 
= 50( l-p) + .4(p-l)Ytml + .6pvYtMl + et. (4.4) 

Here 6(B) = (l-.6B) and the regression of vYt on 1, Yt-1, vYtel 

produces a coefficient on Ytml which is a consistent estimate 

of +(l)(p-1) = .4(p-1). This estimate, normalized by n, 

converges to the limit distribution of .4n(i u-l)- In practice 

the parameters in $(l) are unknown. Under the null hypothesis 

P = 1 they are estimated consistently from the coefficients on 

VYt,l, l **, VYtwp and the resulting i(l) could then be divided 

into the coefficient of YtSl to produce a test statistic 
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approximately distributed as n(itJ-l). 

The TV test extends in a simpler manner. Notice that, by 

assumption, 4(l) f 0 so any test of $(l)(p-1) = 0 is a test 

of p = 1. Dickey and Fuller (1979) show that the t statistic for 

the coefficient of Yt-1 in the regression of vYt on 1, Yt-1, 

vY~,~,“‘,vY~-~, has the TV limit distribution previously 

discussed. Thus we need only run this regression and compare the 

t statistic for the coefficient on Yt-l to the T tables in 
lJ 

. Appendix C. 

Although the null distributions of T ~ and n(i U-1) extend 

nicely to higher order autoregressive models, the dYstributions 

can be changed dramatically if the Yt 's are adjusted for effects 

other than an overall mean. In the first order model, for 

example, if we remove a linear trend from Yt then we must use the 

tables of p, or 'I in Fuller (1979, pp. 371, 373). The 
T 

percentiles of these distributions are considerably to the left 
.a 

of those for p or T . 
lJ lJ 

For example, if we have 100 observations, 

the third table of Fuller (1976, p. 371) implies that p, must be 

less than .73 to declare-a detrended series stationary at the 1% 

level. Removing a time trend from a random walk makes it look 

stationary, so we must have a very low estimate of p to have 

statistical evidence of stationarity. 

It is appparent that we cannot, a priori, use the tests with 

residuals from arbitrary regression adjusted series. An article 

dealing with cases in which regression residuals can be used is 

Fuller, Hasza, and Goebel (1981). We prove, in Appendix 8, a 

special case in which a unit root time series has seasonal means 
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removed. In this case the limit distributions of n(iV-1) and ~~ 

are not affected by the adjustment, and the tables of Dickey and 

Fuller provide appropriate critical values for large n. 

5, Power Considerations 

Dickey (1984) generates 2000 series (Yt)t:l satisfying 

. Yt - 80 - Bit = P&-l- qJ - el(t-1)) + et,t=1,2,..n (5.1) 

foreach combination f30 = 0,lO; @1 = 0, .l; n = 20, 50, 100; and 

various p values. He computes powers of one and two sided 5% 

level tests for the statistics reported in this paper and some 

others. We summarize the one sided results (H1:p < 1). 

The powers increase with sample size n. Let >> denote "is 

more powerful than". Then when fir, = fll = 0 = E(YO) in (5.1), 

n(i-1) >> T >> n(i u-l) >> T >> n(iT-1) >> TV. The powers 
!J 

of n(pU-l), 'c~, n(i,-1) and TV are the same for all f3o in (5.1). 

The powers of n(i -1) and T are the same for all 6, and By. 
T T 

For B~#O and ~~'0, n(i -1) and f have low power. For 
T t 

BOfO or BlfO the study shows very low (almost 0) powers 

for T and n(i-1). For B~#O, TV and n(iV -1) have almost 0 power 

as well. These are all instances of statistics being used 

inappropriately. Consider, however, the case where TV, which 

adjusts only for a mean, is used when the actual process has a 

deterministic linear trend. Since differencing removes a linear 

trend, the low power of f in this case may actually be more 
IJ 

comforting than alarming. 
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We advise the use of ?P initially. This allows us to avoid 

the low powers imparted to n( pT-1), T 
T’ n&l), and T by B,#O. 

We believe alternatives with nonzero means (fio#O) are the most 

common in practice, unless the series has already been 

differenced. 

We do not advise using the n(Pu -1) test initially because in 

higher order and mixed models, n( iv-l) does not remain as 

faithful to the nominal significance level as does T . This 
lJ 

* failure to achieve the nominal level is not too bad, for example, 

in the model (1 - +B)vYt = et. Over the interval -.9 c + < .9 
I 

A 
with n=50 and a nominal .05 level, the worst observed n(p /l) 

level was .085 at 4 = .9. The TV empirical level is always 

closer to .05 than that of n(pu-1). See Dickey (1984) for 

details. The departure from nominal level for vYt = (1-eB)et is 

much worse. In the range -.8 c 8 < .8 studied by Said and Dickey 

(1985), even.when the true value of e is used as an initial input 

to the Gauss-Newton estimation procedure (0 = .8, n=50, nominal 

level .05), the empirical level is .18 for n(i -1) and .08 
lJ 

for TV. This poor behavior is likely a result of the near 

cancellation of the operators v = (1-B) and (l-08)=(1-.88). The 

empirical levels deteriorated to .32 and .14 respectively when a 

Durbin initial estimate of 8 was used and further to .34 and .23 

when the initial estimate was taken from the autocorrelation of 

the differenced data. This is the worst case reported by Dickey 

and Said. For example, dropping 8 from .8 to .5 produced a .05 

empirical level for f 
IJ 

using the Durbin initial estimate. 

Table 1 shows empirical powers for the test statistics 
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mentioned here. The table is based on 2000 replications 

with $ 
0 

= 8 
1 

= 0, series length n=50,100 and using one sided 5% 

level tests in model (5.1). Let 6 = p-l from the left table 

margin. We could compute the power of, say, the test Ho:p=.6 

versus H l:P < .6 when p is actually .6+8 and n=50 or 100. To do 

this we use the approximation Jn(i-p) L N(O,l-p'). The power of 

this rather standard test is given as a reference power in the 

last column of the table. Our purpose is to show that the unit 

'root tests have reasonable power when compared to a test which 

follows from commonly used stationary theory. 
I 

6. Examples 

6.1 Iron and Steel Exports 

In this example we investigate the stationarity of a series 

of iron and steel exports from the U.S., excluding scrap, as 

reported in Metal Statistics (1981), page 196. The 44 

observations are yearly exports in millions of tons from 1937 

through 1980. We investigate the logarithms, Yt, of these 

amounts, which are plotted in Figure 3. 

The first 5 autocorrelations are 1.00, .50, .09, .05, .lO. 

The autocorrelations, partial, and inverse autocorrelations 

appear consistent with either an order 1 autogressive or a moving 

average model. We choose the autoregressive representation and 

regress Yt on 1, Ytml obtaining 
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Yt = .695 + ^2 .510YtBl with u = 0.12 

(.196) (,135) 

Numbers in parentheses below the coefficients are standard errors 

and l2 is the regression error mean square. 

We compute n(iU-l) = 44(.5104 - 1) = -21.54 which is less 

than even the 1% critical value, -18.5, interpolated from the 

middle display in Fuller (1976), page 371. We also compute T = 
IJ 

*(.5104-1)/.1350 = -3.63 which is compared to a 1% left tail 

critical value -3.62 from Appendix C. We conclude that the 
I 

series is stationary. 

A minor simplification would have arisen from regressing ,vYt 

on 1, YtBle Now the estimated coefficient on YtBl is -.4896 and 

the computer program calculates G = -3.63 for us. 1.f the 
v 

program reports a "P-value" (.0008 in our case), it is not 

correct as it has been computed from a t distribution rather than 

the T distribution. We have seen that the correct P-value is 
lJ 

.Ol for our data. 

Finally, we could have tested for an additional lag as well 

as a unit root if we had regressed vYt on 1, Yt-l, and vYtml . 

For this regression one obtains 

vi, = .867 - .603Yt 1 + 

(.218) (.151) - 

.224vYt 1 

(.153) - 

If we expect additional lags, then we are not justified in 

comparing n(iv-l) = 44(-.603) = -26.52 to the table on page 371 of 
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Fuller (1976). We are justified in compairing T = -.603/.151 = 
v 

-4.00 to the table in Appendix C. In the present case this makes 

little difference since the additional lag coefficient, .224 has 

a t-statistic .224/.153 = 1.47. We test this against a standard 

t or normal table and conclude that the additional lag is not 

needed. 

6.2 Birth rates 

. Here we investigate U.S. birth rates. The 33 observations 

(Y,), births per thousand women aged 20 to 24, from 1948 through 
I 

1980, are plotted in Figure 4a and their first differences are 

plotted in Figure 4b. The sample autocorrelation functions of Yt 

and VYt and the partial autocorrelations of vYt are displayed in 

Table 2. 

The usual identification techniques (examination of plots 

and autocorrelation functions) leave little doubt about the need 

to difference Yt, but there is doubt about the treatment of vYt. 

The time series plot of vYt suggests possible nonstationarity, 

and the autocorrelation function of vYt dies out somewhat 

slowly. Moreover, the number of observations (32 for VU,) is 

small. The unit root test may provide useful guidance in this 

example. 

The sample ACF and PACF of vYt suggest an AR(l) model. 

Fitting this yields 

vYt = -1.079 + .594 vYt 1 + et ii2 = 60.18 

(1.44) (.149) 

(6-l) 
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To test whether we need to difference vYt we compute T = 
lJ 

(.594-1)/.149 = -2.73, and upon entering the table in Appendix C, 

we find that the p-value of the test is between .lO and .05. In 

this small-sample situation, even i = .6 does not definitely rule 

out the possibility of p = 1 - the test states that differencing 

is plausible at the 5 percent significance level. (In the next 

example we conclude that for total population second differencing 

is necessary to achieve a stationary series. This may lend 

w plausibility to second differencing the birth rates.) 

In ambigous situations such as this, examining the 

implTcations of the models, such as by comparing forecasts, can 

facilitate making a choice between models. In addition to (6.1), 

the models 

VYt = ^2 .622vYtml + et u = 59.30 

(.143) 

and 

v2Yt = (l-.459B)et, z2 = 59.30 

(.156) 

(6.2) 

(6.3) 

were fitted to the birth rate series. Model (6.1) is a natural 

alternative to a second difference model, though if a first 

difference model is deemed correct, then the constant term is not 

statistically significant and model (6.2) is acceptable. Model 

(6.3) comes from applying the usual identification procedures 

to V2Y+. Given the low value of i in model (6.1), it is not . 
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surprising that v2Yt looks more like an MA(l) than a white noise 

series. 

Table 3 displays 10 forecasts and forecast standard errors 

from 1980 generated from the three models. Model (6.1) forecasts 

a precipitous drop in the fertility rate, whereas models (6.2) 

and (6.3) forecast very little change. Also model (6.3) 

estimates much larger forecast standard errors than models (6.1) 

and (6.2) beyond four steps ahead. Analysts with very different 
. 

opinions about the future behavior of fertility rates could pick 

a 'model corresponding to their opinion. 

6.3 Population 

The data, midyear resident U.S. population, 1929-1982, are 

plotted in Figure 5. The number of observations is n=51. Let Yt 

denote the population in year t. The strong trend in the series 

suggests taking vYt. This is confirmed by fitting an AR(Z) model 

to the data. The fit is 

(I-1.8050B t .8036i32)yt = et 

and we see that i, t i2 is very close to 1, which indicates a 

unit root of +l. Inspection of the sample autocorrelation 

function also strongly suggests the need for differencing. A 

plot of VYt appears in Figure 6. The sample autocorrelation 

functions of vYt and v2Yt are presented in Table 4. To test 

whether we need to difference vYt ,we regress v2Y 
t 

on 1, 

VY 
t-1’ and v2Yt 1, obtaining 
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v2it = 217.8 - .0914vYt-l - 2 ^2 .124v Ytel, u = 73003 

(119.0) (.054) (.138) 

If the coefficient of vYtel is not significant, then we cannot 

reject the hypothesis that second differencing of Yt is 

appropriate. Regardless of the decision about this coefficient, 

the coefficient of V2Yt 1 is an estimate of an autoregressive 

parameter whose significance can be judged from standard 

t-tables. To test the hypothesis that a difference is needed, we 

*use the statistic T = -.0914/.054 = -1.69. In the table in 
1-1 

Appendix C we find the 10% critical value is approximately -2.60. 
* 
The test does not allow us to reject the hypothesis that we 

should difference vYt . The studentized estimate of the 

2 
coefficient of V Ytml, -.124/.138=-. 898, is not significant when 

compared to the 10% critical value of a Student-t distribution 

with 48 degrees of freedom. There appears to be no significant 

lag 1 autocorrelation in the second difference of the midyear 

population figures. Examination of the autocorrelation function 

of v2Y t suggests that we can treat this series as if it were 

white noise, i.e., the model for midyear population is an 

ARIMA(O,Z,O). 

Hasza and Fuller (1979) presented a test for a double unit 

root (second difference). To apply the test to our population 

data we regress V2Yt on vYtsl and Yt-I. The fit is 

v2it = -.0938vYtel + .00123Yt-l 

(.0652) (.00083) 

The F-statistic for testing for the joint significance of the 

coefficients of vYtml and Ytml is F=83,936/75,098=1.118. Again 
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we have a test statistic that is computed by ordinary least 

squares formulas, but its distribution under the null hypothesis 

of a double unit root is not that of Snedecor's F. The 
_. 

appropriate distribution is that labelled ~~(2) on page 1116 of 

Hasza and Fuller (1979). The 80th percentile is 2.03, and the 

median is 0.97. By interpolation, the P-value is roughly 0.46. 

Thus we do not reject the null hypothesis of a double unit root. 

We have now presented two analyses that support the 

conclusion that the model for the midyear population figures is 
. 

ARMA(O,Z,O). The standard deviation of V2Yt is estimated to be 

0.28. The ARIMA(0,2,0) model implies that the minimum mean 

squared error forecast of Y,+I from origin n is tntl = 2Yn-Yn-1, 

Of ynt2 from origin n is qnt2 = 2?n+l-Yn = 3Yn-2YnB1, and of 

Y n+& from origin n is fnte = 2?n+L-1-?n+n-2 = Yn t (Yn-Yn-l)g 

for R > 3. The forecast function is a straight line whose slope 

and intercept are determined by the values of Ynsl and Y,. The 

estimated forecast standard error at lead time R is computed from 

the formula 0.28(1+22+32+...+( g-1) )/2, P. al. 21 

6.4 Solar Radiation 

The data are monthly averages of daily measurements of the 

radiant energy per unit area received at the earth's surface 

(corrected for atmospheric effects) at a station in California. 

Data from October, 1937 through May, 1954 (200 observations) were 

obtained from the National Bureau of Standards in Boulder, 

Colorado. The data are discussed in Hoyt (1979). 

The observed data are seasonal. Empirically, and from 

physical considerations, it makes sense to assume the seasonal 
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effects remain fixed from year to year. We let Wt. be the 

observed series and assume W t = yt+lJt where utt12 = pt is a 

sequence of monthly means and Yt is the nonseasonal series whose 

stationarity we would like to test. Following results in 

Appendix 8, we subtract monthly means, w ittl, (where i(t) is the 

month i corresponding to observation t) from Wt to get 

Xt 
= Wt-Witt). The Xt series is plotted in Figure 7. It is 

difficult to judge from this plot whether Yt (estimated by Xt) is 

. stationary. 

The ACF of Xt is given in Table 5. While the autocorrelations 

are*not large and do die out with increasing lag, their decay is 

not clearly exponential and they are all positive through 20 

lags. The PACF of Xt ( Table 5) suggests an AR(Z) model. Thus the 

null and alternative hypotheses are 

Ho: Wt = yt+lJt (1-+B)vYt = et 

H1: Wt = Yt+llt (l-qB)( l-pB)Yt = et 

Notice that ut takes care of both seasonal effects and the overall 

mean level of Wt, so there is no need to include a mean in the 

model for Yt in HI. 

An AR(Z) model without a mean was fit to Xt giving 

(l-.38B-.25B2)xt = (l-.728)(1+.34B)Xt = et. Testing HO versus H1 

will give us a formal test of whether (l-.728) is significantly 

different from v = (1-B). We regress vXt on Xt-l, vXtB1 (again, no 

constant term is needed since seasonal means have been removed) and 

get 



I 

30 

vi, = -.369Xt 1 y .247vXt 1 i2 = .00513 

(.0689) (.0692) 

The -r-statistic is ~~ = -.369/.0689 = -5.35, which we compare to 

the table in Appendix C. Interpolating in the table for n = 200 we 

see our statistic is highly significant at l%, so there is strong 

evidence against differencing Yt and our model for the data would 

be that given under HI. 

* 6.5 Housing starts 

I The data, monthly U.S. total single family housing starts, 

l/64-8/78, are plotted in Figure 8.a. Let Yt denote the number of 

housing starts in month t. The seasonal behavior of the series 

calls for the transformation Xt = V12Yt. Xt is plotted in Figure 

8.b., and the sample ACF and PACF of Xt are given in Table 6. 

Initially the model 

( 1-+lB-+2B2)Xt = c t (l-eB”)e, (6.4) 

was fitted with il = .71, i, = .24, i = .86, and c = .30. The 

autoregressive operator on the left-hand side of (6.4) can be 

factored to yield approximately (l-.968)(1+.26B), so there may be a 

unit root. The model 

( l-+B)vXt = ( l-eB1’ 
jet 

was fitted with i = -.26 and 4 = .85. 

(6.5 
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To test for a unit root we follow the procedure proposed by 

Dickey and Said (1981). Fit the model 

(1-pB)(l-+B)Xt = c t (l-eB1')et (6.6) 

but allow only one Gauss-Newton iteration using starting 

values p(O) = 1, 4(O) =-.26, e(O) = .86, and c(O) = .30. The 

starting values of +, 0, and c are taken from the fit of (6.4), 

. and the starting value of p is the null hypothesis value 1. When 

the procedure is implemented, we find i = .9522(.026), 

iz -.26(.08), ;= .30(.22),and 6 = .85(.06). The numbers in 

parentheses are standard errors. To test Ho: p = 1 we use the 

statistic T = (.9522-1)/.026 = -1.84. To determine the critical 
IJ 

value of the test we enter the table in Appendix C to find that the 

10% critical value is between -2.58 and -2.57. The test does not 

allow us to reject the null hypothesis of a unit root, even at the 

10% significance level. 

The estimates in the previous paragraph were obtained by pure 

Gauss-Newton iteration, as is strictly required for the theory to 

apply. As noted earlier, many time series estimation packages use 

Marquardt's algorithm, which is a mixture of Gauss-Newton and 

steepest ascent. For the housing starts data, one step of the 

Marquardt algorithm, using the starting values stated above, 

yields TV= -2.5, which differs considerably from the value computed 

by the Gauss-Newton algorithm. 
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Appendix A 

Yt is said to be strictly stationary if the joint density of 

any set of observations Y 
5 

. . . . 
Yt 

is unaffected by a shift in 

time origin to Yt +k, . . . . 't +k' YF is second order stationary if 

its mean functionlis constantm(E(Yt) = p for all t) and if its 

covariance function, Cov(Yt,Yt+k) = Yk, does not depend on t. The 

two types of stationarity are equivalent for Gaussian time 

* series. Our remarks will refer to second-order stationarity. 

We illustrate considerations for Yt following the AR(l) model 

(2.:). Assuming YO independent of et, t 2 1, we have from (2.2) 

Var(Yt) = azt Var(Yo) + (l+a2+"'+a W-1) )*2 (A-1) 

From (A.l) we notice that Yt cannot be stationary for Ial 1 1, 

because in this case Var(Yt) increases without bound as t+a. For 

Yt to be stationary when Ial x 1 we need Var(Yt) = Var(Y0) = yo. 

It can be shown that if Var(Yo) = a'/(l-CC'), then Var(Yt) = 

a'/(l-a2) = Yo and Cov(Yt,Yt+k) = akyO for all t. If 

Var(Yo) f a'/(l-a'), then Var(Yt) will not be a constant free of t, 

(as long as 0' ' 0)s and Yt will not be stationary. So for Yt 

following (2.1) to be stationary, it is not enough to 

have Ial < 1 and YO independent of el, e2, . . . . we also need 

VaW0) = (r'/(l-a'). 

Another way to look at this is the following. In obtaining 

(2.2) there is no reason why the starting value has to be at 

t = 0. It could equally well be at t = -n, say, giving 
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Yt 
= .t+n 

y. + et + set-1 + 
l ** + at+n-lel-n 

in Place Of (2.2). Letting n+= this becomes 

= ;aje 
't o t-j (A.21 

and the infinite sum converges in mean square since Ial < 1. Using 

(A.2) we can show that 
w 

<(Y,) = 0 

Var&) = a’/( l-a2) = YO’ Cov(Y 
t,Yt+k 1 k = a Y. 

for all t, so that Yt arising this way is stationary. Here we have 

pushed the starting value back to t = -00 where it has no effect on 

Yt for Ial < 1. For Ial ', 1 this cannot be done - the starting 

value must occur at some finite time point, and the starting value 

will affect Yt for all t. 

7 In (A.2) notice that Y. = ca emj has Var(Y0) = o’/(l-a2), so 
0 

that this scheme can be related to the previous one by thinking of 

(A.2) as generating Y. as a starting value with the correct 

variance. 

These remarks extend to higher order models. For Yt following 

a pth order model (1.1) to be stationary, we need the 

zeroes El, . . . . cp of a(z) to all be such that l~i I > 1 (analogous 

to Ial x 1 in (2.1)), but this alone is not sufficient. We also 

need to assume that p starting values, say Yo, Y-1, . . . . YIBp, are 

independent of shocks el, e2, . . . and that Yo, . . . . h-p have the 
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correct variances and covariances. Equivalently (when lcil > 1, 

i = 1, . . . . p) we can assume Yt arises from a particular infinite 
a0 

linear combination of the current and past shocks: Yt 
= rjet-j 

(the Wold decomposition). This can be viewed as generating starting 

values Ylwp, . ..) Yg independent of el, e2, . ..and with the correct 

covariance structure. 
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Appendix 8 

Here we show that removal of seasonal means from 

autoregressive series which are stationary in first differences has 

no effect on limit distributions of unit root test statistics. 

Let Yt = Yt-1 t et. Assume that we observe Yl, Y2 y...., yn 

where n=lZm and m is an integer, that is m years of monthly data. 

Let Yi 
-p-l n 

=m t~oy12t+i 9 
;$ = n-l C Yt 

t=1 
and Xt = Yt - 7 itt) where i(t) 

is the month i in which observation t occurs. Let pt be a sequence 

of,constants such that utt12 = ut for all t and let 

\lt = Yt+!lt. Notice that Wt-Witt) = Yt-Yi(+.) = Xt. If we can show 

our result for Yt it will hold for Wt. 

Now 

-- - Xt = Yt-Y-Yi(t)+Y, 

and Yt = et t etBl +...+ el so v = n -'(nel+(n-l)e2+....+en). 

Furthermore, 

Yi = m-1(yi+Yi+12+~~..+Yn-12+i) = 

t . ..+(e. 23+i+en 22+i+**-+en-12+i))* 

n 
Finally, we see that n(vi- 7) = c Citet where -11 < Cit G 11 for 

t=1 
all t,i. 42 so that It follows that (yi _ V, = optn ) 
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ne2CX2 = n-'c(Y t-T)2 + Op(n 
-2 

t 1 

and 

n-l CXtBlet = n 
-1 

z(Ytvl-Y)et + Op(f+). 

Let is denote the regression estimate of p obtained by regressing 

Xt on Xt-1. We have shown that n(is-1) = n(pU-1) + Op(n -5 

where n(pp-1) = [n-2c(Yt-1-~)2]~1[n-1~(Yt-~)(et-e)l so the limit 

distribution is not affected by removal of seasonal means. Using 
. 

the results of Dickey and Fuller (1979) the same holds true 

forrTu and for higher order autoregeressions providing they have 

only 1 unit root. 
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Appendix C 

Table Cl. Empirical Cumulative Distribution of Gy for p = 1. 

Probability of a Smaller Value 

Samole Size 

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

* 
T 
IJ 

. 

25 -3.75 -3.33 -3.00 -2.63 -0.37 0.00 

5c -3.58 -3.22 -2.93 -2.60 -0.40 -0.03 

100 -3.51 -3.17 -2.89 -2.58 -0.42 -0.05 

250 -3.46 -3.14 -2.88 -2.57 -0.42 -0.06 

500 -3.44 -3.13 -2.87 -2.57 -0.43 -0.07 

01 -3.43 -3.12 -2.86 -2.57 -0.44 -0.07 

0.34 0.72 

0.29 0.66 

0.26 0.63 

0.24 0.62 

0.24 0.61 

0.23 0.60 

Source: Fuller (1976), used with permission. 
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APPENDIX D 

Data and sources are listed here for the five examples. 

Example 1. -- U.S. Iron and Steel Exports, Excluding Scrap, 1937-80 
(Weight in millions of tons) 

Source : Metal Statistics, New York: American Metal Market, 1982. 

3.89 2.41 2.80 8.72 7.12 7.24 7.15 6.05 5.21 5.03 
6.88 4.70 5.06 3.16 3.62 4.55 2.43 3.16 4.55 5.17 
6.95 3.46 2.13 3.47 2.79 2.52 2.80 4.04 3.08 2.28 
2.17 2.78 5.94 8.14 3.55 3.61 5.06 7.13 4.15 3.86 
3.22 3.50 3.76 5.11 

* 
Example 2. -- Births per Thousand U.S. Women Aged 20-24, 1948-80 

Source : Bureau of the Census 

192.4 194.1 192.8 207.1 213.5 220.5 231.7 236.3 248.5 
252.0 252.7 246.1 253.0 243.2 227.6 215.4 190.0 178.9 
163.6 162.8 163.1 149.1 128.8 119.4 117.7 113.6 112.1 
112.3 115.7 115.1 

Example 3. -- Midyear Resident Population of the U.S., 1929-82 
(in thousands of persons) 

Source: Bureau of the C-ensus 

121767 123077 124040 124840 125579 126374 
128825 129825 130880 132594 133894 135361 
140468 141936 144698 147208 149767 152271 
160184 163026 165931 168903 171984 174882 
183691 186538 189242 191889 194303 196560 
202677 205052 207661 209896 211909 213854 
220239 222585 225055 227704 229849 232057 

127250 128053 
137250 138916 
154678 157553 
177830 180671 
198712 200706 
215973 218035 

257.0 
170.2 
115.2 
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Example 4. -- Solar Radiation Corrected for Atmospheric Effects, 

October 1937 through May- 1954 (measured at Table Mountain, CA) 

Source : National Bureau of Standards, Boulder, CO 

1.4454 1.9475 
1.9383 1.?466 
1.9465 1.9502 
1.9287 1.9495 
1.9512 1.9527 
1.9419 1.9417 
1.9419 1.9450 
1.9358 1.9428 
1.9494 1.9532 
1.9570 1.9501 
i .9437 1.9487 
1.9451 1.9381 
1.9486 1.9403 
1.9487 1.9476 
1.9391 1.9412 
1.9307 * I.9470 
1.9482 1.9531 
1.9466 1.9499 
! .9490 1.9552 
1.9425 1.9527 
1.9537 1.9530 
1.9510 1.9543 
1.9506 1.9560 
1.9499 1.9557 
1.9484 1.9516 
1.9447 1.9457 
1.9523 1.9505 
1.9326 1.9530 
1.9477 1.9480 
1.9486 1.9508 
1.9399 1.9410 
1.9439 1.9428 
1.9474 1.9507 
1.9480 1.9514 

i .9484 1.9405 1.9475 1.9439 
1.9425 1.9444 1.9393 1.9459 
1.9523 1.9487 1.9392 1.9413 
1.9480 1.9473 1.9454 ! -9514 
1.9554 1.9474 1.9454 1.9440 
1.9421 1.9441 1.9397 1.9454 
1.9450 1.9369 1.9386 1.9423 
1.9486 1.9463 1.9457 1.9483 
1.9525 1.9472 1.9501 1.9448 
I.9530 1.9482 1.9433 I.9416 
1.9446 1.9313 1.9457 1.9423 
1.?496 1.9464 1.9487 1.9460 
I .9430 1.9506 1.9545 1 9524 . J 
1.9424 1.9478 1.9503 1.9414 
I.9429 1.9310 1.9396 1.9143 
1.9354 1.9338 1.9402 1.9439 
1.9521 I.9516 1.9408 1.9380 
1.9514 1.9470 1.9463 1.9492 
1.9571 1.9539 1.?521 1.9412 
1.9552 1.9463 1.9500 1.9439 
1.9597 1.9505 1.9546 1.9502 
1.9608 1.9560 1.9554 1.9548 
1.9533 1.9573 1.9576 1.9487 
1.9452 1.9498 1.9500 1.9509 
1.9559 1.9572 1.9520 1.9460 
1.9455 1.9485 1.9468 1.9463 
1.9505 1.9427 1.9487 1.9439 
1.9490 1.9504 1.9462 1.9448 
1.9450 1.9467 1.9411 1.9421 
1.9474 1.9381 1.9381 1.9437 
1.9492 1.9566 1.9482 1.9524 
1.9556 1.9467 1.9524 1.9407 
1.9386 1.9410 1.9430 1.9329 



Example 5. -- U.S. Monthly Single Family Xousing Starts, January 1964 
through August 1978 (in thousands) 

source : Bureau of the Census 

53.008 62.443 
89.885 91.988 
52.149 47.205 
96.489 83.830 
46.561 50.361 
69.068 69.362 
40.157 40.274 
82.344 83.712 
45.234 55.431 
86.398 82.522 
51.3co 47.909 
73.523 69.465 
33.~363 41.367 
75.461 77.291 
54.856 58.287 

107.747 -111.663 
76.185 76.306 

119.078 131.324 
77.105 73.560 

114.746 f06.806 
43.292 57.593 
90.715 79.782 
39.791 39.959 
92.782 90.655 
53.997 72.585 

112.807 112.798 
55.746 87.172 

138.181 140.527 
63.349 72.800 

139.219 140.106 

82.130 94.927 58.230 100.375 
79.757 89.435 57.514 55.227 
82.150 100.931 98.408 97.351 
80.876 85.750 72.351 61.198 
83.236 94.343 84.748 79.828 
59.404 53.530 50.212 37.972 
66.592 79.839 87.341 87.594 
78.194 81.704 69.088 47.026 
79.325 97.983 86.806 81.424 
30.078 85.560 64.819 53.847 
71.941 84.982 91.301 82.741 
11.504 68.039 55.069 42.827 
61.879 73.835 74.848 83.007 
75.961 79.393 67.443 69.041 
91.584 116.013 115.627 116.946 

102.149 102.882 92.904 80.362 
111.358 119.840 135.167 131.870 
120.491 116.990 97.428 73.195 
105.136 120.453 131.643 114.822 

84.504 86.004 70.488 46.767 
76.946 102.237 96.340 99.318 
73.443 69.460 57.898 41.041 
62.498 77.771 92.732 90.284 
84.517 93.826 71.646 55.650 
92.443 107.804 112.242 119.627 

108.038 109.114 89.368 71.584 
125.802 138.772 152.198 149.061 
131.644 135.398 109.310 87.123 
121.391 139.857 154.928 154.278 

42 
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P T 

Table 1 Empirical Power 

T 
u 

T 
T 

Reference 

1.000 .06 

.999 .05 

.990 .06 

.9F)o .07 

.950 .15 

.900 * .31 

,850 .55 

.800 .77 

.700 .97 

. 500 1 .oo 

.05 

-05 

.07 

.07 

.16 

.31 

.57 

l 77 

.97 

1.00 

.05 

.03 

.06 

.07 

.lO 

l 19 

.29 

.46 

.77 

1.00 

0 = 50) 

.05 .04 .05 .05 

.04 .03 .04 .05 

.06 .05 .06 .06 

.06 .05 .05 .07 

.07 .05 .06 .13 

.ll .lO .08 .24 

.20 .15 .12 .38 

.30 .24 .20 .54 

.61 .48 .39 .81 

.98 .91 .87 .99 

(fi = 100) 

1.000 .04 .04 .05 .05 .05 .06 

.999 .05 .05 l 05 .04 .04 .05 

.990 .08 .08 .07 .06 .05 .05 

.980 .13 .12 .09 -06 .06 .05 

.950 .31 .31 .19 .12 .09 .08 

.900 .78 .78 .47 .31 .23 .19 

.850 .96 .96 .77 .60 .46 .37 

.800 1.00 1.00 .94 .86 .75 .65 

.700 1.00 1.00 1.00 1.00 .98 .95 

.500 1.00 1.00 1.00 1.00 1.00 1.00 

.05 

-05 

.07 

.09 

. 16 

.36 

.58 

.77 

.96 

1.00 
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Table 2. Sample Autocorrelations for Yt arid vYt, 

and Partial Autocorrelations for vYt; Birth Rates for 

U.S. Women, Ages 20-24, 1948-80 

1 2 3 4 5 6 7 8 9 10 

ACF of Yt .95 .89 .80 .70 .59 .47 .34 .21 .08 -.03 

ACF of vYt .59 .48 .36 .17 .23 .lO .lO -.Ol -.14 -.li; 

PkF of vYt .59 .19 .02 -.16 .20 -.ll .04 -.18 -.lO -.05 

NOTE: Standard errors for the above are all .18 or larger. 
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Table 3. Forecasts (and Standard Errors) of Birth 
Rates by Three Models from Forecast Origin 1980 

Using Model 

(6.1) (6.2) 
Lead Time Forecast Std. Error Forecast Std. Error 

1 113.7 7.8 114.7 7.7 

2 111.7 14.6 114.5 14.7 115.5 14.1 

3 109.5 21.0 114.4 21.3 

4- 107.1 26.9 114.3 27.5 

5 - 104.6 32.2 114.2 33.1 116.2 38.2 

6 102.0 37.0 114.2 38.3 

7 99.4 41.4 114.1 43.0 

8 96.8 45.5 114.1 47.4 

9 94.2 49.3 114.1 51.5 

10 91.5 52.8 114.1 55.3 

(6.3) 
Forecast Std. Error 

115.3 7.7 

115.7 21.4 

115.9 29.4 

116.4 47.7 

116.6 57.8 

116.8 68.6 

117.0 79.9 

117.2 91.8 
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Table 4. Sample Autocorrelation Functions of First 
and Second Differences of U.S. Midyear 
Resident Population, 1929-1982. 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 

“Yt . .91 .84 .77 .71 .62 l 53 .47 .38 .29 .18 .09 ,, 0 I 

V2Yt -*56 -.06 -.09 .14 .lO -.26 .27 -.Ol .13 -.Ol -.20 *cs;i 
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Table 5 

Sample autocorrelations and partial 
autocorrelations for the solar radiation series with 

seasonal means removed 

Lag 1 2 3 4 5 6 7 8 9 10 

ACF .49 .42 .35 .28 .24 .22 .12 .14 .07 .11 

PACF .49 .24 .lO .03 .03 .04 -.07 l 05 -.05 .06 

Lag 11 12 13 14 15 16 17 18 19 20 

- ACF .08 .03 .Ol .04 .Ol .lO .04 .07 .08 .08 

PACJ .oo -.05 -.03 .04 .oo .lO -.03 .03 .03 .02 



Table 6. Sample ACF and PACF of Xt = 
V1zYt 

and ACF of vXt,for Yt = Monthly U.S. Single 

Family Housing Starts, January 1964 through August 1978 

La9 

1 2 3 4 5 6 7 8 9 10 

ACF of Xt .87 .81 * .76 .70 .64 .56 .48 .42 .35 .26 

PACF of Xt .87 .23 .04 .oo -.05 -.lO -.12 -.Ol -.Ol -.17 

ACF of vXt -.29 .02 -.Ol .02 .05 .04 -.07 .oo .12 -.12 
* 

La9 

11 12 13 14 15 

ACF of Xt .20 .lO .lO ,06 -.Ol 

PACF of Xt .Ol -.15 .32 -.04 -.17 

ACF of vXt .13 -.40 .20 .09 -.04 

NOTE: Standard errors for the above are all .08 or larger. 



8 

3 



0 

8 



0 
---Jr, 
0- 

Y
 



I 

I 

I 

I 

I 

, 

I 

I 

/ 

I 

/ 



60 

40 

20 

0 

FORECAST STANDARD ERROR 

- FROM MODEL (2.4) 

I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIll I I 

5 15 20 25 30 35 

LEAD TIME 

40 45 50 55 60 



LOGARITHMS OF EXPORTS 
2.251p 

I 

2- 

175- . 

1.50 - 

125- . 

l- 

07 ‘~rIiI’~t11r’IIr~I’I1rI1’riI~YP’I1~1~’~IIII’1~1II’III11’1 
- 935 1940 1945 1950 1955 1960 Fi 1965\ 1970 1975 1980 

YEAR 



BIRTH RATES 
270 

240 

180 

150 

120 

I I I I I I I I I I I I I I I I I Ill II l 11 l ’ 11 1 l go- 
1945 1950 1955 1960 1965 

YEAR 

1970 1975 1980 



FIRST DIFFERENCES OF BIRTH RATES 1) 
301 

20- 

10 - 

O- 

-10 - 

-20 - 

71945 1950 1955 1960 1965 

YEAR 

1980 



250000 

225000 

200000 

175000 

150000 

125000 - 

POPULATION 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

1ooooqg25 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 

YEAR 



FIRST DIFFERENCES OF POPULATION , 
3500 I- 1 

3000 I 
2500 t 

t 

2000 
i 

t 

1500 1 

1000 

r 
500 

i 

9’~“~“‘~~“~~‘~~~‘~‘~~“‘~“~‘~~‘~~~’~”’~~~~’~”’~~~~‘~‘~~‘~~~’ 920 1930 1940 1950 1960 1970 1980 

YEAR 



- - 

I 

I 

4 

. 

c - 



0 0 0 - 

. 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

Ii 
i-L1 

I 
I 

I 
1 

0 Lo 
m 
N 

0 9 



I 

- 

- 
- 


