2 AKAIKE’S INFORMATION CRITERION IT

(2} Hu, X. and Batchelder, W. H. (1994). The statisti-
cal analysis of generat processing tree models with
the EM algorithm. Psychometrika, §9. 21 -47.

[3] Klauer, K. C. (19963, UrteiIez'ijbereinstimmung fir
dichotome Kategoriensysteme. Diagnostica, 42,
101-118.

[4]" Klaver, K. C. and Batchelder, W. H. (1996, Struc-
tural analysis of subjective categorical data. Psy-
chometrika, 61, 199240,

(CATEGORICAL DATA, SUBJECTIVE
KAPPA COEFFICIENT
MEASURES OF AGREEMENT)

KARL CHRISTOPH KLAUER

AIC  See AKAIKE'S INFORMATION CRITERION

AKAIKE’S INFORMATION
CRITERION I

AIC (an information criterion, or Akaike's in-
Jormation criterion) is a statistic defined for
parametric models whose parameters have been
obtained by maximizing a form of likelihood*
function. AIC values are compared in selecting
from among competing models for a data set
used for parameter estimation. The selection is
prescribed by Akaike’s minimum AIC criterion,
hereafter MinAIC, which says that the model
with smallest AIC is to be preferred {1, 2, 3].
Consider a model family with real param-
eter vector 8 = (6y,4,,. .+0p,)  specifying
a candidate family of joint probability den-
sity functions Ly(@;x),...,xy), 6 €O, for
observations xi,...,xy of the random vari-

ables Xy,...,Xy. Suppose LN(0)=LAN(();
Xiy..xy) is maximized over @ ar Oy =
Onix, ... ,xy) satisfying

d

‘a“é‘LN(Q) 62%*0 hH

(see MAXIMUM LIKELIHOOD ESTIMATION). Then
the AIC of the model for X1, ..., Xy determined
by 6y is

AICy(8y) = ~21n Ly(By) + 2 dim 6, (2)
wheredim 6@ = p + 1, p = 0. The minimum-
AIC choice can be determined from the signs

of the differences of AIC values. Therefore,
only properties of differences of AIC values

are important, not the AJC values themselves.

In particular, for comparing any two compet-
ing model familjes Lf\'})(f?(”;x;,.“,x,v), A=
O, i = 1,2 with parameter estimates 6,
and 9,22), respectively, the properties of the min-
imum AIC criterion, and their practical conse-
quences, can be determined from properties of
L6

2, A

LY (63
+ 2(dim 6 — dim §), ©)

AICK(8Y)) = AICY(%) = =2 1n

EXTENSIONS OF THE CONCEPT OF
LIKELIHOOD FUNCTION FOR AIC

Each family Ly(6), 6 € @, will be referred
to as a likelihood function, but it is important
to understand the quite general sense in which
this term is used with AIC in order to appreci-
ate the scope of MinAIC. First, the Ly(8) can
be probability density functions in the most
general sense. For example, when X Xy
are discrete-valued, as in the case of categori-
cal data*, they will be the probability func-
tions assigning probabilities to al] possible
values of (xi,...,xy) [18, I7]. [In the lan-
guage of measure theory*, the Ly(8) must be
probability density functions for some measure,
not necessarily Lebesgue measure, with respect
to which the probability measure of X, ., Xy
has a probability density.] Further, the para-
metric family Ly(6), 8 ®, is not subject:
to the traditional requirement that there be a
6y € O such that Lw(8y) coincides with the
true probability density function anv(xr, oo ay)
of Xi...., Xu. However, the model family
should provide close approximations to the
relevant characteristics of Xi,.... Xy in order
for the parameter dimension terms on the right
in (2) and (3) to play the role desired by Akaike
for the large-sample means of AIC differences
discussed in the next section.

For example, with regression models* and
time-series* models, it is common to use
parameter estimates that maximize Gauss-
tan likelihood functions, even when the data
are not Gaussian, in order to estimate just
their means, variances, and covariances, If
LV (OD:x1. . x), 09 € 00, = 1.9, are
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of Gaussian form and can_correctly describe
the first and second moments of the data, and
if the model (1) is a special case of the model
(2), so that dim 8V < dim #'?, it happens un-
der rather general non-Gaussian assumptions
that the likelihood ratio term in (3) will have
the same limiting distribution as N — o that it
has with Gaussian data, usually the chi-square
distribution* with d.f. = dim 6 — dim 6"

(1), 41
LA/(gN ),V AZ (4)
T A T Xdim 69 —dim et e )
kagxb m % —dim 4

This conclusion can be obtained from
Theorem 3 and Lemma 3 of ref. [14] in
the case of linear (stationary or suitably or-
thogonalizable) regression models, and from
ref. [5] for some other time series models; see
also ref. [16]. Since the chi-square distribution
in (4) has mean dim 8% — dim @), this
result and (3) suggest that the means of the
AIC differences satisfy

lim Ex,...xy [AIC(8Y)

,,,,,

) ~ AICy ()] =

dim 6V — dim 6%. (5)

So on average MinAIC will select the lower-
dimensional and  therefore less over-
parametrized model.

AIC can often be derived for conditional
likelihoods when the conditioning variables are
the same for all models being compared. This
is attractive when the conditional likelihoods
are easier to maximize. Consider the case of
selecting the order p of an autoregressive model

X =0X- + -+ 0,X,-p +& (6

for time-series variates Xj,...,Xy+p from a
range of orders 1 = p < P. For each model,
it is assumed that the g, have mean zero and
constant variance, and are independent of all
X,, s < t. Because of the last property, condi-
tioning on X, ..., Xp produces, for a given p,
the conditional Gaussian likelihoods

gy _ ] L
Lv(0) = 5im P~ 540

PN

> (o = O = o = By ()

r=P+1

The maximizing coefficients éj(-p), 1<j=p,
are the ordinary least squares coefficient es-

: C +N

timates minimizing S/ 5% (x, = 8x,_; —
cee 9,)):,_,))2, and subsequent maximization
with respect to 6y yields

AICY(8) = N In(2medd, ) + 2(p + 1),

(8)
with fAT/?“\/‘p =N"! Zf:PN»H(xI - é(lmx[ﬂ B
- éf;p)x,_,,)z. The unconditional Gaussian like-
lihoods for autoregressive models have a more
complex form than Lsf)(ﬂ) in (7) and require
nonlinear methods for the solution of (1) [10].
(For unconditional likelihood functions for time
series models, free software is available via the
Internet for calculating AICs and a diagnostic
for the stability of the MinAIC choice over time

(71)

THEORETICAL PROPERTIES

AICs of the form (8) will be considered first be-
cause they occur widely in the regression litera-
ture. For N large enough relative to P, the value
Pminaic of p minimizing AIC will coincide
with the p minimizing Akaike's final predic-
tion error criterion (sometimes called Akaike’s
criterion®),

N+p+
FPEy,, = N(——————-“—-p 1) 72

N -p - 1 UNJ?' (9)

Many properties of this criterion and of (8),
also for the case of nonrandom regressors, with
&,Zv, » replaced by the m.1. estimate of regression
error variance, are discussed in the ESS, in the
entries REGRESSION VARIABLES, SELECTION OF
(vol. 7, pp. 709-714); LINEAR MODEL SELEC-
TION, CRITERIA AND TESTS (Supp. pp. 83-87),
and GENERALIZED FINAL PREDICTION ERROR
CRITERIA (Update vol. 1, pp. 269-272), We do
not repeat details here, except to summarize
by referring to two properties easily stated for
AIC. When the time series X, being modeled as
a finite-order, autoregression (6) is, instead, an
infinite-order autoregression, (8) has for one-
step-ahead prediction an optimality property
discovered by Shibata [20] that is not shared
by other criteria of the form

Nin2mesy , + Clp + 1), (10)
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with C # 2, in particular not by the Schwarz
criterion® with C = log N. This property re-
quires P to approach o with N in such a way
that P2/N — 0. On the other hand, if X, is an
autoregressive process of finite order pg < P,
then Puminarc 1 an “overconsistent” estimator
of pg in the sense that Pr{ pminatc = poj — 1
as N — oo, but is not consistent [19] except
in the infinite variance case [4]. By contrast,
the minimizer of (10) consistently estimates pg
whenever C — ® as N — o with C/N — 0.
The conceptual leap from the final pre-
diction error criterion for autoregressions to
AIC for general - statistical models (2) was
made by Akaike in 197! in the context of
comparing factor analysis* models. It is not
immediately obvious how to view this as a
prediction problem. Akaike’s insight, recalled
in ref. [8], had two components. First, one
can view the maximum likelihood estimate
éN(xg,A..,xN) obtained from any parametric
family Ly(€;xy,...,xy), 6 € @, as providing
a “prediction” L,T/(éN) = LN(()N;);T,...,,‘:;)
of a probability density function for observa-
tions x;k,...,x;k} from an independent repli-
cate X,*,...,X:; of X,,...,Xy obtained in
the future. Second, the goodness of this pre-
diction can be measured by the Kullback in-
formation* discrepancy from the true density

gn(xl ... xn) to Ly(By),
1(8N;L:(é/\/)) = Ey» x:lin gn)
- EX;‘{,A...X;\?UnL:\/(éNﬂ*

more specifically by the average discrepancy
EX,MXN[I(gN;L;k}(éN))]. Using the notation
ay = by to mean ay — by — 0 as N — o,
the property desired of AIC for any two model
families being compared is

Eyx,..xy[AICK(BY) — AICK(63)]
~ 2Ex, enl1 g LY — Hgni LY (BR)Y.
(11

Then the model with smaller AIC will, on
average, be the one whose predicted density
has smaller average discrepancy from the true
density. Under some regularity conditions, this
property is achieved by the definition (2) when
each parametric family Ly{8), 6 € @, has a

density Ly(6y) that coincides with gy (or, in
some cases, reproduces the features of gy being
modeled, such as its first and second moments),

To indicate how this comes about, we ob-
serve that since

(%, A0 Q% 22)
HgniLy' (By) — Ign:Ly (Oy)) =

Exrln L2709 — n Ly 63))],
it is enough to verify
ZEX;.O.‘XN[LN(éN) - EXT...‘,X’Q{L:}(éN)H _
2dimé + K (12)

for some constant K that is the same for all
models being compared. Because Ex,. . x,
[in Ly(B0)] = Ey*.x:lIn Ly(80)]. the left-
hand side of (12) has the decomposition

+2EX;,A.4.XN{EXT,“.‘X:} Dn L:,(eo)]
- Ex;*,....x;‘,{ln Lﬁ(éN)J], (13)

and it suffices to show that each of the two
terms on the right tends to

dim 6 + K/2. (14)

As 8y is the maximizer of Exx  y*[In Ly(6))

{the minimizer of [{gy; Li}(&))], one will usu-
ally have

9 .
— Eyr_yslin Ly(6)] =0. (19
a6 o=0,

It follows from this and from (1) that, in the
second-order Taylor expansions* of the terms
inside the expectations on the right in (13) about
@y and @ respectively, only the second-order
terms are nonzero. The analysis of these and
their means leads to (14) for each expansion
[1, 18, 5, 21]. In the case of (8) for a stationary
autoregressive process of order p; whose error
process &, has variance o? and fourth cumu-
lant k4, the constant K in (12) has the value
ksl ot [5].

GENERALIZATIONS

A variety of generalizations of AIC have been
proposed in which dim @ in (2) is replaced by
an estimate of the left-hand side of (12) for
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small N [22, 11, 9]; or it is replaced by the
limit of this quantity when (12) fails because of
modifications to the likelihood or because the
model family is incorrect {21, 5, 151. The last
reference also considers anatogues of AIC when
functions other than likelihoods are optimized
to estimate parameters.

Recent research has focused on generaliza-
tions to obtain (11) when the parameter esti-
mates at which the log likelihoods are evaluated
are not maximum likelihood estimates but, say,
robust estimates, or when, instead of likeli-
hoods, Bayesian predictive densities are used
[12, 13}

When N is small, the two decomposition
terms on the right in (13) need not have
similar values. In the maximum likelihood
context, they have distinct and interesting in-
terpretations. Maximization results in a larger
value Ly(6y) than the ideal Ly(8y), so the dif-
ference In Ly(By) — In Ly(6,) quantifies the
overfit of the model to the observed data due
to parameter estimation. Similarly, the use of
Lﬁ(éN) with independent replicates instead of
L¥(60), which maximizes Ey¥ _ xx[In L)),
results in an increase in Kullback information*
discrepancy from the true density in the amount

Exr...x:lin Ly(80)] — Ex;..xilin Ly (6]

Hence this quantity measures the accuracy loss
due to parameter estimation. The asymptotic
equality of the decomposition components in
(13), which does not require correct model as-
sumptions, can be expressed as a connection
between overfit and accuracy loss,

mean overfit = mean accuracy 10ss.

(In ref. [6], this result is called an overfitring
principle.)

Thus, in many ways, Akaike’s approach to
the definition of AIC illuminates fundamental
issues of statistical modeling.
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Applications of statistics to archaeological data
interpretation are widespread and can be di-
vided broadly into two groups: those which are
descriptive in nature (used primarily to reduce
large and/or complex data sets to a more man-
ageable size) and those which are model-based
(used to make inferences about the underlying
processes that gave rise to the data we observe).
Approaches of the first type are most commonly
adopted and, in general, are appropriately used
and well understood by members of the archae-
ological profession. Model-based approaches
are less widely used and usually rely upon col-
laboration with a professional statistician.

In ESS vol. 1 Gelfand provided an excellent
survey of the application of statistics to archae-
ology up to and including the late 1970s. This
entry supplements the earlier one, and the em-
phasis is on work undertaken since that time.
Even so, this entry is not exhaustive, and read-
ers are also encouraged to consult the review
article of Fieller [15]. Statistics forms an in-
creasingly important part of both undergraduate



