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Spatial Modeling of Regional Variables 
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Abstract 

In developing the statistics of spatial data there is a need 

for methods in both the areas of data analysis and statistical 

z modeling. Here we analyze a data set of Sudden Infant Deaths, 

1974 - 1978, in the counties of North Carolina, using a Markov- 

random-field approach to spatial modeling. We model the spatial 

trend with what we call large-scale-variation parameters, and the 

variance and spatial dependence with small-scale variation 

parameters. We show that a combination of resistant trend 

fitting to the data, and simple spatial auto Gaussian fitting to 

the residuals, is an effective way to analyze the (transformed) 

data. 

Keywords: auto Gaussian, auto Poisson, large-scale variation, 

Markov random field, small-scale variation, sudden infant death 
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1 Introduction 

Statistical analyses of data sets often assume, even at the 

exploratory stage, that the data are a random sample from a 

possibly multivariate distribution; i.e. data ZI;**,Z, are 

independent and identically distributed (i.i.d.) as F say. At 

the model-building stage F is often assumed to be a Gaussian 

distribution function (perhaps after a transformation Yi = g(Zi)). 

More often than not, a large amount of "data preparation" is 

needed before the above assumptions are realistic. The not 

necessarily disjoint areas of robustness, (heteroscedastic) 

regression, and time series, all attempt to deal with departures 
* 

from the i.i.d. Gaussian paradigm. Closest of interest to us in 

this article is the time series approach that looks for 

dependence in data received over time, where often the data occur 

at equally-spaced time points: (Z(t): t = l;**,n). 

However our concern here is with data occurring at a finite 

number of spatial locations that are not necessarily regularly - 

spaced: (Z(zi): i = I;*=,n), where {A~: i = l,***,n) are the 

data locations in d-dimensional Euclidean space IRd; usually d = 2 

or 3. Modeling of spatio-temporal data: (Z(zi,t): i = l;",nt; 

t = l;**,m), will not be considered here. 

Our emphasis in this article is on fitting Markov-random- 

field models to data which are spatially "labeled". We have 

chosen a data set which is representative of many problems 

encountered in the health and social sciences. Counts of 

individuals from a known base occur in epidemiological studies 

(e.g. cancer incidence in a particular year from the base of 



. 

population-years-at-risk, for the counties of the USA), Census 

surveys (e.g. the dual-system-estimate of uncounted people in a 

decennial census from the base of total number of people, for the 

states of the JJSA), etc. Here we analyze the number of sudden 

infant deaths (SIDs) from the base of number of live births, for 

the counties of North Carolina, 1974-1978. 

Sudden infant death syndrome (SIDS) is currently a leading 

category of postneonatal death yet its cause is still a 

mystery. Goldberg and Stein (1978) show there to be excess 

mortality in the winter months, which is consistent with, say, a 

ge2etic defect in the respiratory system; Fogerty et al. (1984) 

present evidence that poor nutrition in the form of high liver 

fatty acids has an effect; Symons, Grimson, and Yuan (1983) 

(hereafter, SGY) find geographical clustering in the North 

Carolina data set, which could be due to some surrogate variable 

such as race; and Cressie and Read (1986) (hereafter, CR) find 

both geographical clustering (large-scale variation) and spatial 

dependence (small-scale variation) from a spatial exploratory 

data analysis. Atkinson (1978) provides a review of the SIDS 

literature. 

We shall present spatial models of the North Carolina data 

given by Atkinson (1978), and augmented by SGY and CR. The 

latter's Table 1 gives the complete data set; our Figure 1 shows 

a map of the counties (the numbers refer to their alphabetical 

ordering). Section 2 gives a summary of the spatial exploratory 

data analysis in CR and discusses other possible plots that look 

for association of SID rates with other variables. Section 3 



develops the Markov-random-field models for both discrete and 

continuous data, featuring in particular the auto Poisson and the 

auto Gaussian models. Section 4 analyzes the North Carolina SIDS 

data using these models: when the mean structure is assumed 

constant, significant spatial association is detected, when a 

spatial trend is removed (by an additive two-way structure), the 

spatial association is no longer significant. Conclusions are 

drawn in Section 5. 

Figure 1 here 

2 Spatia 1 exploratory data analysis of S IDS - -- 

The very use of the word "sudden" to describe this category 

of postneonatal death implies that very little is known about 

it. A recent "Request for Applications" from the National 

Institutes of Health (NIH Guide for Grants and Contracts, 

vol. 15, no. 2, January 31, 1986) gives the following background: 

l ** SIDS accounts for about 7000 deaths a year, 
taking the lives of two infants per 1000 live 
births. The syndrome is defined as the sudden death 
of an infant that is unexpected by life history and 
where the death remains inexplicable after post-mortem 
examination. The [National Institute of Child Health 
and Human Development] Cooperative Epidemiological 
Study has identified some features found more 
frequently in SIDS victims than in age-matched control 
infants. The peak incidence of SIDS is between 2 and 
4 months of age. It is more common in male infants, 
low birth-weight infants, black infants, infants of 
teenage mothers, and infants of mothers who smoked 
during pregnancy. SIDS infants also were likely to 
have received less postnatal pediatric care. Research 
has also revealed that SIDS victims as a group, tend 
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to have more serious neonatal and early infant medical 
problems of various kinds. Pathologic and physiologic 
studies suggest that some SIDS victims have had 
chronic problems of respiratory control, which may 
make these infants vulnerable, especially in the event 
of mild upper respiratory infections. 

Despite the fact that various aspects of 
development physiology of young infants have been 
studied extensively over the past fifteen years, no 
specific biological markers for SIDS have been 
discovered, and the cause or causes of the syndrome 
remain unknown. l ** 

The number of SIDs and the number of live births from 

July 1, 1974 to June 30, 1978, for each of the counties of North 

. 
Carolina and their county-seat locations, are found in Table 1 of 

CR a- In that article, the authors went through the steps of a 

spatial exploratory data analysis to gain some understanding of 

how the data were behaving and to see whether a spatial 

statistical model would be appropriate. In the absence of any 

known cause for SIDS it is sensible to take this "univariate" 

look at the data: much as time series modeling looks to see how 

a particular value is influenced by its past values, spatial 

process modeling looks to see how a particular value is 

influenced by its "neighboring" values. The construction of 

spatial models is more complicated than temporal models however, 

because the space index does not possess the natural ordering 

that the time index does. 

Exploratory data analysis is mostly distribution free, but 

we believe it is important when doing it to always have a vague 

statistical model in mind. CR were guided by this in their 

spatial data analysis of the North Carolina, 1974-1978, SIDS 

data. We summarize their techniques and findings here. 
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Q Thinking of the sudden death of an infant or not, as being 

a Bernoulli "experiment", then the number of SIDs Si out 

Of nj live births in county i is the sum of ni (spatially 

dependent) Bernoulli random variables. Independence 

between the Bernoulli experiments means Si N Bin(ni,pi); 

j = 1;•-, 100, where it is of interest to determine the 

heterogeneity (or not) of E(Si/ni) = pi. Note that the 

parameter of interest is also contained in var(Si/ni) = 

Pj(I-Pj)/nj* Even when there is local spatial dependence 

between the Bernoulli experiments, E(Si/Ni) z pi is still 

the parameter of interest but now Var(Si/Ni) = 
* 

{Pi(l-Pi)/ni}{ltkij, where ki accounts for the local 

spatial covariation. It makes sense then to look for a 

transformation of the data which removes the (gross) 

dependence of the variance on the mean. The presence of 

the unequal ni 's causes some difficulty, but by 

partitioning the set of 100 counties into six similarly 

sized subsets with roughly equal ni values, CR are able to 

conclude that the Freeman-Tukey square root transformation 

'i = (1000Si/ni)I~2 t (lOOO( Si tl)/ni )li2, (2.1) 

is a variance-stabilizing transformation; i.e. 

2 Var(Yi) = T /ni. (2.2) 

A comparison of stem-and-leaf plots of {IOOO(Sitl)/ni: 

j = I,..., IOnl and (Yi: i = I,**~,1001 shows the 
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transformation (2.1) also to symmetrize the data. 

0 Thinking of the data as being made up of large-scale 

variation (spatial trend) plus small-scale variation 

(spatially dependent noise), each component could then be 

isolated and interpreted. The principle of transforming 

to achieve additivity over all scales (Cressie, 1985) and 

the two-dimensional (spatial) coordinates representation 

of the counties' locations, leads naturally to a two-way 

additive decomposition for the spatial trend. CR overlay 

* a rectangular grid with 20 mile x 20 mile grid spacing 

onto North Carolina. This yields 9 east-west transects 

and 24 north-south transects, and 9x24 nodes of the grid; 

a county is identified with the node that is closest to 

its county seat. Let Yi be written as Y(u(i),v(i)); i = 

l,.“, 100, where (u(i),v(i)) E {(u,v): u = 1,***,9, v = 

1;**,24). Decompose 

WU)dOi)) = m + ruti) + ‘v(i) + ‘(‘j,Yj), 

where (Xi ,yi) are the Cartesian coordinates (given in 

Table 1 of CR) of the i-th county seat. Then 

( mtru(i)tcv(i)) is a candidate for the large-scale 

variation component, and v(xi,yi) for the small-scale 

(2.3) 

variation component, with var(v(xi,yi)) = rL/ni. Because 

of the exploratory nature of the analysis, a resistant 

two-way decomposition is preferable; CR carry out a 
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weighted medsn polish, weighting each yi proportional to 

its (nj)Ii2. They check for the presence of a cross- 

product spatial trend using a diagnostic plot described in 

Cressie (1986), and do not find it. They map the fitted 

values (G + "r 
uu 1 

t cvIi): i = 1;. ',lOOl, now free from 

the unequal variation due to unequal nils, and note its 

essential agreement with a Poisson model-based probability 

n a p . 

. 
0 Thinking of the residuals 

R(Xi ,Yi) = Yi - m" - mu - TV (2.4) 

as estimating the small-scale variation, stationary error 

models could be fit to the detrended and standardized data 

f/q K(x~,Jc): i = 1,***9100?. (2.5) 

CR use its stem-and-leaf plot to estimate the stationary 

density, and to show that the standardized residual of 

Anson county (county 4) is unacceptably high. It is 

removed from subsequent analysis in CR and from our model- 

based approach in Section 4. An estimate of the variogram 

(a measure of spatial dependence) is computed from the 

standardized residuals (2.5), and positive spatial 

dependence is found up to 30 miles (i.e. local 

dependence). 



Therefore, from CR's data analysis we conclude that county 4 

is unusual and should be removed, and that Freeman-Tukey 

transformed SID rates can be sensibly modeled as two-way additive 

spatial trend plus stationary error that is positively correlated 

over short distances. 

This 'univariate' data analysis should in general be 

followed up with various scatter plots of Y on potential 

explanatory variables X. Any dependence observed could be 

modeled as large-scale variation, helping to explain the spatial 

. 
trend. With an additive rrlodel, the coefficients of both 

explanatory variables and trend variables can then be estimated 
* 

efficiently by maximum likelihood, based on a model that includes 

the spatial correlations. An explanatory variable whose 

regression coefficient is significantly different from zero, 

offers an exciting possible advance towards explaining the 

mystery of SIDS. We show here in Figure 2 a plot of Y versus 

X = arcsin(% black), where each point is (Yi,Xi), Xi being the 

(arcsin transformed) percentage of blacks in the i-th county of 

North Carolina (source: County and City Data Book, 1977, Bureau 

of the Census, U.S. Department of Commerce, Washington D.C. 

20233). This shows a very weak positive relationship, although 

it is expected from some of the introductory remarks in this 

section. Unfortunately this relationship is even weaker for more 

recent values, 1979 to 1984. Other plots (not shown here) drawn 

were: Y versus X = population density, Y versus X = sin-l($ 

urban), Y versus X = log(no. hospital beds t 1); none showed any 

relationship between (transformed) SID rate Y, and variable X. 
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Therefore we look for a model for the {Yi: i = l,=**,n} based 

purely on spatial considerations. 

Figure 2 here 

3 Markov random fields and spatial models 

If the data set {Z(i): i = l;** ,n) is in fact indexed by 

time; i.e. (1,2,"', n) are the times of occurrences of the data; 

then it is often not appropriate to build a statistical model 

that assumes the Z(i)'s are independent. Assuming that the data 
a 

are generated by a Markov process, is many times a very effective 

way of introducing dependence. Simply stated, the Markov 

property says that given the whole history of the process up to 

the present, the distribution of the present value depends only 

on the immediate past value observed (this property is sometimes ~ 

generalized to include the immediate past two values, etc.). 

It is not obvious how to generalize this type of temporal 

dependence to a spatial dependence. Recall that the data are 

): i = I,*-•,n 19 (3.1) 

i = i;**,nl, (3.2) 

are the spatial locations of the Z's. For the purposes of this 

article, these locations will determine entirely the spatial 

dependence structure between the data, although more general 
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formulations are possible. For example, the same type of 

modeling can be carried out when the regions l;**,n can be 

represented as the vertices of an undirected graph (Kindermann 

and Snell, 1980). Fix consideration on county i and consider the 

conditional distribution of Z(Si) given all other values 

{Z(sj): j f i). Then the spatial analogue to the Markov 

property is that this conditional distribution in fact depends 

only on a subset IZ(~j): jc:Ni). The set Ni is called the 

neighborhood of region i, and for the purposes of this article 

. 
will be defined according to the distance d(zi,sj) between region 

i and region j; j f i. More generally, the edges of an 
I 

undirected graph with vertices 1,2;**,n, can be used to define 

1~~: i = l;**,nI. (3.3) 

The Hammersley-Clifford theorem (Besag, 1974) gives the 

conditions needed for the conditional probability distributions, 

viz. 

Pr(Z(si)IIZ(sj): jENi); i = l,***,n, 

to yield a well-defined joint probability distribution 

(3.4) 

(3.5) 

Expressions (3.4) and (3.5) are examples of the notation 

Pr( CZ(Sj ): iEEl}({Z(sj): jcE2)), for El, E2 disjoint subsets 
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of (1,2,***,n), which is shorthand for the conditional 

probability measure of {Z(si): ieEl}, conditioned on the 

o-algebra generated by {Z(S~): j&E2). When expressions (3.4) 

( i.e. when the neighborhoods (3.3)) define (3.5), the joint 

probability distribution is called a Plarkov random field. -- 

One consequence of the Hammersley-Clifford theorem is that 

Q(;) = 109(P(~)/PQ)), (3.6) 

. 
where p(a) is the joint density or probability mass function 

of {Z(si): i = l,***,n), can be represented as a sum of 

functions of subsets of {zl;**,zn), those subsets being indexed 

by the cliques. A clique is a single region, or a set of regions 

for which any pair in the set are neighbors; it is defined 

uniquely by the neighborhoods (3.3). By assuming further that 

only pairwise interactions are nonzero, i.e. 

r)(z) = &ZiGi (Zi) + 
n 

C C z.z.G. .(zi ,zj), 
i<j=l 1 J 1J (3.7) 

and (3.4) is of the exponential family form, Besag (1974) shows 

the spatial models to take on an easily interpretable form. 

Suppose the density or probability mass function of (3.4) 

can he written as 

P(ZiIIZj: jcNi)) = exp[Ai({zj: jcNi])Bi(zi) + Ci(zi) t Di({z j: jENil)I, (3.8) 

and Q(z) is of the form (3.7). Then Besag (1974) shows that 



Aj(lz* J : j”Ni} 
> = ai + c 

j&Ni 
aijBj(Zj), (3.9) 

12 

where in the terminology of Section 2, ai is a parameter that can 

be used to model the large-scale variations, and {a..: jsNi} are 
1J 

small-scale variation parameters that model the spatial 

dependence (when aij = 0; i,j = l;**,n in (3.8), the joint 

independence model results). It is a consequence of the model 

that aji = aij; further define aij = 0; j f Ni. 

We shall give two examples, both of which will be used in 

. the next section to model the SIDS data. The first is a discrete 

m o d e 1 , whose conditional probability mass functions are 
* 

z * 
P(ziI{zj: jcNi)) = exp(-ei)oi'/zi!; i = l,***,n, (3.10) 

where ei = ei({z.: 
J 

jENi}) is a function of values observed for 

the neighboring regions. Then (3.8) and (3.9) together yield 

ej ( Cz j: jcNi)) = E(Z(zi)J{zj: jcNi)) = exp(ai+ C aijzj) (3.11) 
jcNi 

which is of log linear form. This spatial model is often called 

the auto Poisson. 

The second example is a continuous model, whose conditional 

density is 

where ei = ei({z.: jcNi)). 
J 

Then (3.8) and (3.9) together yield 



which is of linear form. This spatial model is often called the 

auto Gaussian. 

With the parameters (ai: i = l,"*,nI and Caij: jEWi, 

i = l;*- ,n) specified through the conditional model, but 

estimated by maximum likelihood, there is a need to reconstruct 

the joint probability distribution (3.5). The auto Poisson and 

auto Gaussian cases will illustrate some of the difficulties 

involved. The auto Poisson defined by (3.10) has a joint 

dicribution which can be obtained from 

n n n 
Q(iI) = C aiZi + C C 

i=l i=l jENi 
aijZiZj - i=l c log(zi!); 

specifically from (3.6), 

P(5) = exp(Q(~>)/cexp(Q(~)), (3.15) 

(3.14) 

Z 

provided the normalizing constant Cexp(Q(;)) < 00. This latter 
Z 

condition means that the parameter-space is restricted to be 

f(a19*o*,an), (Clij): Cexp(Q($)) < ml, which in turn restricts 
Z 

< 0, ("ij _ for all i,j (Besag, 1974). Thus the auto Poisson can 

only model negative spatial dependence, a consequence we shall 

discuss in Section 4. By substituting (3.14) into (3.15) and 

interpreting it as a function of (the parameters) 2 and (aij), we 

obtain the likelihood. In practice its maximization is not 

possible because the normalizing constant in (3.15), involving n- 
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fold infinite summations, is intractable. This led Besag (1975) 

to propose maximizing the pseudo likelihood function 

n 'i 
II eXp(-9i)ei /'i!' 

i=l 
(3.16) 

which from (3.11) can be seen to be an easily calculable function 

of the parameters. In special cases (Besag, 1977) the loss of 

efficiency due to using maximum pseudo likelihood estimation, is 

found to he acceptable over most of the parameter space. There 

. 
are no general results available for the behavior of these 

For the auto Gaussian case, we rewrite (3.12 

equivalently as 

n 
E(Z(Si) I {z(sj): jcNi)) = pi t c c~~(z(~~ ), 

j=l 

estimators. I 

var(Z(~i)lIZ(~j): jENi)) = T?, 

and (3.13) 

-u . 
J 13 

(3.17) 

and the conditional distribution of Z(si) is Gaussian; i = l;**,n. 

Resag (1974) shows that provided M-l(I-C) is symmetric, positive 

definite and invertible, 2 = (Z("l),**o,Z(~n)) has joint Gaussian 

distribution: 

N - G~u(~(I-c)-lo), Z (3.18) 

2 where k = (~~,***,u~), M = diag(rl;**,rn , and C = (Cij); cij = 2, 

0, j d Ni; Cij~i = Cji':. Notice that k captures the large-scale 
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variation and C models the spatial dependence. Hence the 

likelihood is: 

(3.19) 

which is to be maximized with respect to k, M, and C. 

Equivalently, the negative log likelihood: 

(3.20) 

L(k,M,C) = (n/Z)log(Zm) + (l/Z)log[(I-C)-‘Ml + (l/2)(;-JJ)-M-'(I-C)(;-IA), 

. 

is to be minimiz* with respect to k, M, and C. There are a 
* 

number of exact and approximate ways to do this minimization 

depending on how the model is further parametrized; see Cressie 

(1987), Section 7.2 for the details. 

In general, these models are over-parametrized; some 

reduction is necessary to allow accurate estimation of variances 

of estimators, and good predictive power of the model. In 

classical statistics we have a lot of experience with 

parametrizations like x = Xg, but very little experience with how 

to parametrize the spatial dependence matrix C. In fact it is 

easy to show that the partial autocorrelation satisfies 

corr (Z (sj 13' (Sk) 1 t’(zj)’ j # i,k)) = sgn (‘ik) (C ikCki 
)1/Z , (3.21) 

which is symmetric in i and k since cik~E 
7 

= Cki~~’ Thus the 

Cij’S are essentially (conditional) correlation coefficients; in 

particular (3.21) implies that 0 < cikcki < 1, Or Cik 2 (T$Ti)) < 1. 
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In the next section, various suggestions for further 

parametrizing the large-scale and small-scale variation 

parameters will be made. 

4 Spatial modeling of SIDS data - 

We shall try two approaches to the analysis of these data: 

one is to recognize that {Si: i = l;**, n) are counts and to fit 

a discrete model, in particular the auto Poisson given by (3.10) 

and (3.11); the other is to transform the data (here the Freeman- 

. 
Tukey transformation will be used) so that they follow a 

(;pproximate) Gaussian distribution and to fit the auto Gaussian 

given by (3.17). Both are approximations. The auto Poisson 

implicitly assumes that the rate pi is small and the number of 

live births ni is large, SO that nipi = E(Si) = 

E(E(Si/{Sj: jENi))) = E(var(SiI{Sj: jcNi})). This seems 

reasonable since the overall SID rate is ;) = 
100 100 
C Si/ C ni = 

i=l i=l 
. 0020214, and 248 < ni < 21,588; i = l;**,lOO. The auto 

Gaussian is a model for continuous data fit to transformed 

counts; Figures 5 and 8 of CR (stem-and-leaf plots of {Yil and 

{JniRi)) show this approximation to be reasonable. 

The heterogeneous live-birth counts (ni: i = l;**,lOO), 

necessitate caution when parametrizing both scales of variation 

in the models. We start with the large-scale variation. 

4.1 Modeling large-scale variation 

In the absence of any obvious explanatory variable for SIDS, 

we resort to fitting spatial trend to account for the large-scale 



17 

variation. For the auto Poisson model (3.10) and (3.11), where 

the SID counts Si play the role of the Z(zi), we fit 

I: exp(ai) = nip ; i = 1;.•,ioo 

II: exp(ai) = n.p , R(i); 1 = l,***,lOO 

III: exp(ai) = n.p , T(i); 1 = l;**,lOO, 

where model I fits only one large-scale-variation parameter, and 

corresponds to a homogeneous rate model. Flodel II uses 12 

. 
parameters, each corresponding to one of 12 artificially created 

groups of counties (see Figure 1) which partition the counties of 
* 

the state into contiguous parcels. Thus, 

K:{1,2, “‘,1001 + {1,2,***,12). (4.1) 

Model III uses 32 parameters, which are obtained by overlaying 

the same 3x24 grid referred to in Section 2 onto the county map 

of North Carolina. For i = l;**, 100, county i is assigned to 

the nearest node (u(i),v(i)) of the grid and its rate is modeled 

via 

exp(ai) = n.p 1 T(i) 

= niexp(mtr 
u(i)+‘v(i) 13 (4.2) 

a multiplicative two-way fit to the SID rates. With restrictions 

on the parameter to make them identifiable, there are 9+24-l = 32 
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large-scale variation parameters to be estimated. 

Now consider the auto Gaussian model (3.17), where the 

Freeman-Tukey transformed Yi given by (2.1) play the role of the 

'(Sj >* We fit knxl = X 
nxp&pxl 

as follows: 

I: 'i 
= m . , i = l;**,lOO; 

i.e. E = m. 

II: = mR(j); i = 1,*"~100; 

i.e. & = (ml,*=*'m12). 

* 

III: Pi = mT(i); i = l,a**,lOO; 

i.e. g = (m.rl;*~,r8,cl;*~,cz3). 

(4.3) 

(4.4) 

(4.5) 

In model II, R(O) is defined by (4.1) where there are p = 12 

large-scale-variation parameters to be estimated. In model III, 

mT(i) = m + ru(i) + Cv(i); i = l,***, 100; with identifiability 

restrictions on the parameters, there are p = 32 of them to be 

estimated. 

4.2 Modeling small-scale variation 

To define the Markov random field we used the same 

neighborhood system as CR, namely 

jcNi iff d 
ij 

= {(xi-xj)' + (yi-yj)'ll" 5 30 miles, (4.6) 

where recall that (Xi,yi) is the location of the i-th county 
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seat. NOW any j k Ni has aij = 0, and for those 

nonzero a..‘S left, 
‘J 

we tried to capture the spatial association 

with just one parameter 0, and model different dependencies 

between county i and its neighbors as a function of distance 

(Cliff and Ord, 1981, p. 144): 

"ij 
a +d;;; js Ni ; k = 0,1,2, 

for the auto Poisson, and 
. 

* C 
ij 

a $d~~(nj/ni)1/2; jsNi ; k = 0,1,2, 

for the auto Gaussian. For comparability across different values 

of k, we chose the constant of proportionality (it has to be in 

the same units as dk ij) to be 

C(k) = (min{dij: jENi, i = l,e**,lOO})k. 

Thus 

"ij 
= +.{C(k)dTi}; jaNi; k = 0,1,2, 

for the auto Poisson, and 

C 
ij 

= $.{C(k)dii](nj/ni)1'2; je Ni ; k = 0,1,2, 

(4.7) 

(4.8) 

(4.9) 

for the auto Gaussian; (4.9) is compatible with 
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var(Yi) = T2/ni, (4.10) 

the variance relationship alluded to in Section 2. Note that 

2 
Wj = 

2 
“jiTi, and c..c 

IJ ji 
= +*{C(k)d$l', independent of ni and 

n.. 
J 

Putting these small-scale variation parameters together with 

the large-scale ones, we see that the auto Poisson model I, II, 

III has respectively 2, 13, and 33 parameters to be fit, and the 

auto Gaussian model I, II, III has respectively, 3, 14, and 34 

. parameters (~2 in (4.10) is the extra parameter) to be fit. 

4.3 Pseudo likelihood-based fitting of the auto Poisson model 

In all of the analysis to follow, Anson County (county 4) is 

omitted. Its SID count of 15 out of 1570 live births is very 

unlike the other 99 counties. This unusually high rate was not 

repeated from 1979 to 1984 when only 4 SIDs out of 1875 live 

births were reported for that county. 

We used the pseudo likelihood (3.16), to fit the auto -- 

Poisson models I, II, and III with spatial dependence modeled by 

(4.8). The pseudo likelihood was maximized by the IMSL 

subroutine ZXMIN, which is based on a quasi-hewton optimization 

method. Starting with the ver,y simple two-parameter auto Poisson 

model I, and putting k = 1 in (4.8), we obtained i = 1.785 x 10-3, 

and i - 8.216 x 10-3. The first thing to note is that i > 0; 

i.e. positive spatial dependence is obtained, which as has been 

shown in Section 3 does not correspond to a well-defined auto 

Poisson model. This pattern is repeated when (unconstrained) 
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maximum pseudo likelihood fitting of the data to auto Poisson 

models II and III is carried out for k = 1 and 2. Negative 

values of + were obtained for k = I), however the minimized value 

of the pseudo likelihood in this case was always larger than the 

corresponding minimized values for nonzero k's. 

Even should a well-defined auto Poisson model result, we 

still need to make inferences on the parameters, based on their 

estimators. For example, an important (spatial) hypothesis to 

test is HO: a = 0, versus Hl: 0 < 0. Finding (asymptotic) 

distribution theory for maximum pseudo likelihood estimators is 

at,present an open problem. Clayton and Kaldor (1984) model lip- 

cancer incidence by assuming that their joint distribution, 

conditional on the county rates {pi: i = l,***,n), are -- 

independent Poisson random variables with means xi = nipi. They 

then assume that the rates themselves are random and follow a 

Markov random field. In particular they assume (-log pi: 

i = l,*=* ,n) is auto Gaussian with large-scale variation (mean) 

modeled using an age variable, and small-scale variation 

(variance matrix) modeled by essentially the k = 0 case in (4.9). 

These parameters are estimated by empirical Bayes methods. 

4.4 Likelihood-based fitting of the auto Gaussian model. -- - 

We now proceed with fitting an auto Gaussian model to the 

Freeman-Tukey transformed SID rates for 99 of the 100 counties of 

North Carolina, 1974-1978. The negative log likelihood is given 

by L(l,M,C) in (3.20), which after the parametrizations lo = Xfj in 

(4.3), (4.4), (4.5), M = T2diag(n;1,***,n;~0) in (4.10), and Cij 
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in (4.9), we shall write as 

L(&T2 ,+) = (n/Z)log(Za) t (n/Z)logT' - (l/Z)loglD-'( 

t (1/2)(~-Xf~)-D-~( I-$H)($Xs)b’, 

1-O) 1 

(4.11) 

-1 where D = diag(nl ,"',n -1 
100 

) and H = (h ij); hij = C(k)dig(nj/ni)"' 

if j&hi, = 0 otherwise. 

To minimize (4.11), assume for the moment that 4 is fixed. 
. 

The maximum likelihood estimators (mle's) of g and T 2 are 

I 

&d = (X-D-l( I-$ti)X)-lXV-l( I-+H)z (4.12) 

Q2($) = (;-Xi)*D-‘( I-$H)(z-XjJ/n 

= z'D-l(I-$H)lI-X(X'D-l(I-+H)X)-lXOD-l(I-~H)l;/n. (4.13) 

Substituting (4.12) and (4.13) back into (4.11), the mle of 4 can 

be obtained by minimizing L(4) = L(i(+),;'(+),+) given by 

L(4) = (99/2)1og(Zn) + (99/Z) - (l/Z) c log(ni) 
i+4 

+ (99/2)log~2(~) 
99 

- (l/Z) c log(l-$+), (4.14) 
i=l 

where {Si: i = l,*** ,99) are the eigenvalues of the symmetric 

matrix D -14,$/2. We would like to remind the reader here that 

county 4 has been omitted from the analysis, and hence there are 
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n = 99 pieces of data to analyze. Figure 3 shows a plot 

of L(rg) against 4 for auto Gaussian model I given by (4.3), (4.9) 

and (4.10), and for k = 1 (i.e. c.. = dyf). This enables a 
1J 1J 

lOO( l-a)% confidence interval for 4 to be determined. 

From Whittle (1954), 

Figure 3 here 

(n-P-2))rF(a /2) = 1 - a, (4.15) 

where L(4) is given by (4.14), Q A is the mle obtained by 

minimizing L(e), p is the number of large-scale parameters 

fitted, and x:(a) is the upper lOO(1 -a)% point of the chi-square 

distribution on one degree of freedom. For n = 99, p = 1, 

a=. 05, the 95% confidence interval becomes {g: L(+)<L(i)t1.981. 

Now for auto Gaussian model I, i = 0.833, L(i) = 124.87, and 

hence (+: _ L($)<126.85) is a 95% confidence interval. Since L(0) 

= 130.26, we reject the null hypothesis HO in 

Ho: 4 = 0, versus H1: c$ f 0. 

Thus the spatial interaction is significant. 

(4.16) 

We shall see in 

Table 1 what happens to this spatial interaction as more and more 

parameters are used to model the large-scale variation. 

To see the effect on the models for varying values of k, we 
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show in Figure 4 a plot of L(4) against 6 for auto Gaussian model 

II (given by (4.4), (4.9) and (4.10)) for k = 0 (Cij a l), k = 1 

(cij OL d;:), and k = 2(cij = dyi) together. The likelihoods are 

considerably flatter, and it can be seen from (4.15) and Table 1 

that + = 0 is in the 95% confidence interval for 4 (for k = 1, 

and incidentally for k = 0, and 2 as well). 

--- 

Figure 4 here 

- 

Table 1 here 

To see the effect on i and the confidence intervals for 4, 

of fitting more and more large-scale parameters, we show these 

statistics in Table 1 for auto Gaussian models I, II, III given 

by (4.3), (4.4), (4.5) respectively. For model III, it looks as 

though the 32 large-scale parameters in E remove all spatial 

dependence (as measured by i). Mardia and Marshall (1984) and 

Cressie and Glonek (1984) note that these maximum likelihood 

(linear) estimates for spatial trend cause problematic negative 

bias in the estimation of the covariance parameter $. Cressie 

(1984) suggests a resistant, median-based (nonlinear) fit to the 

spatial trend, namely median polish (see Section 2). The 

residuals {Ri: i = l;**,n) from this fit, defined by (2.4), can 

be analyzed then according to auto Gaussian model I, viz. (4.3), 
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(4.9) and (4.10). To maintain comparability we chose k = 1, and 

plot simultaneously the graph of L(+) against (b, for Model III on 

the Yi 's and for Model I on the Ri's; see Figure 5. It is clear 

that the resistant method of fitting has the anticipated effect, 

namely to revive spatial correlation in the data, although it is 

not significant; see Table 1. This agrees with the findings of 

CR, who observe spatial correlation in the Ri’S up to thirty 

miles. 

------ 

Figure 5 here 

To see the effect of the different models on the 

correlations between pairs of counties, we use (3.18) to conclude 

that for the auto Gaussian model defined by its conditional 

distributions, 

and hence 

A 

corr (Y 

where 

var(I = ( I-C)-~Dr2, 

i ,Y* 
J 
) = aij/(aiiajj)1'2, 

A = (aij) = (I_~D-~/~H~~/~)-~. 

(4.17) 

(4.18) 
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Figure 6 shows a plot of cOrr(YBO,Yj) Versus d80,j = {(x80-xj)2 + 

(y8()-Yj) 1 2 1'2 for model I, model II, and model I on the Ri's, all 

for k = 1. The effect of fitting more and more large-scale 

variation parameters is apparent: the more parameters, the 

smaller the 9, the weaker the intercounty correlation. 

- 

Figure 6 here 

-_----- 

. We turn now to the mle's i in X&, defined by (4.3), (4.4), 

and (4.5). Table 2 presents the estimates for k = 1. Its 
i 

variance matrix is estimated by 

vir($) = (XjD-I(I-iH)X)-';2, (4.19) 

but not shown here since for model II, III this is a 12x12, 32x32 

matrix respectively. For model I, k = 2.838 with vir(i) = 0.006218. 

To give some idea of i under the different models, let us choose 

say county 80 and find its corresponding entry in the 99 x 1 
A 

vector Xk: For model I, jeO = 1; = 2.84; for model II, i80 = m5 = 

2.15 (reflecting its presence in a group of counties with low 

rates); for model III, iso = I; t r A4 + ill = 1.96; for model I on 

the Ri's, jBo = 'i; t ?, t ?I, t m(R) = 2.13 (cf model II). Its 

actual observed value is Y80 = 1.74. 

Table 2 here 
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By conditioning on a county's neighboring values, we can use 

the model to predict that county's value. Under the auto 

Gaussian model the joint distribution is Gaussian, given by 

WW, and hence the optimal predictor (minimizes mean-squared 

error) is 

'i 
= E(Yil{Yj: jENi1) = LJi + 1 

j E N i 
Cij (‘j-Dj ); i = l;**,n. 

Therefore 

. 

I 
E = k + CQ-)I), 

which is estimated by 

^p = Xi t (;H IQ-q). (4.21) 

Ignoring the variation in i, the prediction variance is vir(i) = 

GF, where F = (I-~H)(X'~-'X)-'X'~-l t ;H, and i = (I-~H)-10;2. 

Since county 4 was omitted, we might predict it from its 

neighbors, viz. counties 62, 77, 84, and 90. Fix k = 1. For 

model I, ^y4 = 2.82 (i = 2.84); for model II, ?, = 2.68 (ig = 

2.68); for model III, ^Y4 = 2.17 (r~t~6t212 = 2.17). For model I 

on the Ri's, ^Y4 = 5 t 76 + ?,, + ^R4 = 1.81 (i?+T6+?12+"(R) = 1.75). 

The actual observed value is Y4 = 6.28. 

Finally, 2 we need to interpret the estimates of T . For 

-2 
model I, T = 1443.17; for model II, Q2 = 864.61; for model III, 

i2 = 681.91; for model I on the Ri's, ;2 = 841.37. These mle's 
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are biased estimates of ~2 for the same reason the i are biased 

estimates of 4 (Mardia and Marshall, 1984; Cressie and Glonek, 

1984). Between i2 = 681.91 and i2 = 841.37, least biased will be 

the resistance-based t2 = 841.37. Thus 2i2 - 1683, which is 

roughly the "sill" value of the variogram estimator given in CR's 

Figure 11, as it should be. 

Recall in Section 2 we addressed the question of spatial 

dependence between Bernoulli experiments, which can be 

characterized by the parameter ki in 

data. It can be shown that 

ii = aii - 1, (4.23) 

where aii is given by (4.18). For examp 
A 

for model I, kg0 = 0.0584; for model II, 
A 

le, consider county 80: 

^kRo = . 0405; for model 

III, kg0 = . 0005; for model I on the Ri's, i80 = . 0299. The same 

pattern is present: as more and more large-scale variation 

parameters are fit, the local spatial dependence decreases, 

revived somewhat by (weighted) median polish fitting of trend 

followed by fitting auto Gaussian model I to its residuals. 

I var(Si/ni) = {pi(l-pi)/nil(l+ki); i = l;**,n. (4.22) 

NOW although the ki 's are parameters of the local spatial 

dependence, we can estimate them from the more global county 
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5 Discussion and Conclusions 

Sudden infant death data {(Si,ni): i = l;**,lOO) of the 

counties of North Carolina, 1974-1978, have been analyzed as 

follows: 

0 Transform the data to 

Yi = ( 1000Si/ni)1'2 + ( OOO( Sj +l)/ni ) li2, 

the Freeman-Tukey-transformed death rates per thousand. 

0 Delete county 4 from the analysis as an outlier. 

0 Using the Markov-random-field approach, fit by maximum 

likelihood, the spatial model 

Y = XE + 5 (5.1) 

where the large-scale-variation parameter vector & has 

either one component m (model I), 12 components mI,...,m12 

(model II), or 32 components m, rl ,-**, r-8, cI,**=,c23 

(model III), and 

E - Gau(g,(I-+H)-lDT2); 

D = diag(n~I,***,n;~G), H = (d;iC(k 

(5.2) 

)I(jcNi)). Sm ll- 

scale-variation parameters of the model are T 2 and '4 

(respectively variance and spatial dependence parameter). 
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0 An adhoc but nevertheless less-biased (in estimation of 

small-scale-variation parameters) approach was to fit by 

maximum likelihood 

,lJ = rnJ + 5, (5.3) 

where the Ri 's are the residuals from a weighted median 

polish on these data, performed by Cressie and Read (1986). 

. 
Transforming the data is usually for the statistician's 

"Lonvenience". It would be remiss of us not to interpret our 

results back on the original scale. Recall from Section 2, it is 

loOopi z E(lOOOSi/ni); i = I;**,lOO, (5.4) 

that are the parameters of interest. In the context of spatial 

variation, it is naive and statistically inefficient to estimate 

Pi by si/ni- Besides, what confidence can one put in (i.e. what 

is the standard error of) such an estimator? 

To interpret the estimation of (5.4) in terms of the Yi'S, 

we see that 

looopi = E(Y;/4) 

= (1/4){var(Yi) t (E(Yi 

The quantities in (5.5) are each available from the model (5.1): 

to estimate pi, simply substitute the maximum likelihood 
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estimates of 8, T 2, 0 into the right hand side of (5.5), to yield 

a maximum likelihood estimator of 1OOOpi 3 the SID rate per 

thousand in county i. For example, consider county 80, and fix 

k = 1 (i.e. hij CC dTj). We obtain, 

. 

model I : 1ooo~80 = 2.04 (s,^ = O.ll), 
. 

model II : l”ooP8” = 1.17. (sii = 0.21), 
,. 

model III: IOOOP~O = 0.97 (se” = 0.24), 
,. 

model I on R: - 10@DP8,3 = 1.14 (s,^ = 0.06), 

Standard error estimates (s;) are obtained from, 
* 

(5.6) 

The naive estimator is lOOOSi/ni = 0.65; an even more naive 

binomial assumption yields sg = 0.38. The value of 0.65 is 

clearly too low. 

Which is the most appropriate model for these data? Model I 

is clearly a gross over-simplification; to capture the clusters 

of low and high counties seen in the probability map of Cressie 

and Read (1986) with just one spatial dependence parameter is 

asking too much. Model I on the weighted-median-polish residuals 

is our choice although it is always comparable in its fitting 

with model II. The 9 in model III is small, but because of bias 

in the mle's it is probably too small; this negative bias gets 

worse as the number of large-scale variation parameters 

increases. The weighted median polish solves these bias 

problems, and still has the flexibility to fit two-way spatial 
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trend (large-scale variation) plus spatially correlated error 

(small-scale variation). Cressie and Read (1986) perform an 

exploratory investigation of the spatial nature of the weighted 

median polish residuals and show them to have no trend and 

spatial correlation up to thirty miles. To check the "trend" 

conclusion we ran model II on the Ri's and found their estimated 

means to be roughly the same; to check the "spatial correlation" 

conclusion, we made plots like Figure 6 for a number of the 

counties. 

. 
Although we have taken the Markov-random-field approach to 

buildinq the spatial statistical models, there is another 

approach which constructs the spatial dependence simu 

Instead of (5.1), write 

ltaneously. 

where (I-B)D 
-l/2 

1 u N(i,Ia2); i.e. x N N(fl( I-B)-lD( I-B+02), 

which is often called a spatial autoregressive process. Besag 

(1974) and Cliff and Ord (1981) discuss the differences between 

(5.7) and (5.1), and Ord (1975) shows how (5.7) can be fit to 

regional variables. 

In conclusion, we have built a spatial statistical model 

which allows estimation of the sudden-infant-death rate of the 

counties of North Carolina, 1974-1978. M. Symons and 0. Atkinson 

kindly sent us the 1979-1984 data, and we repeated our analysis. 

Broadly speaking, we saw the same pattern emerging although the 

spatial dependence tended not to be quite as strong. 
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model I 
I 

i 

ci 

model II 

i- 

ci 

model III 

i 

ci 

Table 1 

Maximum likelihood estimates (i) and 95% confidence 

intervals (ci) for spatial dependence parameter 0. 

Upper (+,) and lower (4,) bounds on 4 are determined 

so that (I-$D -1/&l/2) is positive definite. 

k - 

(-0.328,0.190) (-0.997,0.902) (-0.999,0.998) 

0.173 0.833 0.596 

[0.13,0.18*] [0.53,0.90*] [-0.73,0.99”] 

0.0792 0.710 0.810 

[-0.06,0.17] [-O.LO.891 L--0.22,0.99*1 

0.117 0.081 0.0336 

[-0.2,0.17] [-0.98,0.89] [-0.99*,0.99*1 

model I on 
median-polish 

residuals 

i 0.0811 0.620 0.405 

ci [-0.33,0.16] [-0.11,0.89] [-0.90,0.99*1 

*These limits of the confidence interval are rounded inwards to avoid 
being outside the permissible range (~p,,$,). 



Table 2 -- 

Estimates (i) of & in E(J) = Xg, for k = 1 in (4.9). 

model I - 
A 

m = 2.8378 

model II 

,% 6 

y!l = 2.0559 ‘,“2 = 2.8704 

11\14 = 2.4778 m = *5 2.1505 

* y7 = 3.2788 m 
n.8 

= 3.1126 

m10 = 2.8369 “11 = 3.1786 

model III 

; = 

; = 
-1 

14 = 

:7 = 

El = 

:4 = 

:7 = 

:10 = 

:13 = 

:16 = 

E19 = 

c22 = 

2.8256 

0.5332 

-0.0551 

0.3464 

0.0994 

-0.6183 

0.4522 

-0.2663 

0.0699 

-0.3301 

0.5548 

0.2892 

; = 
-2 

-0.4364 

,r5 = 0.1798 

:8 = 
1.7900 

:2 = -1.1723 

:5 = -0.2885 

:8 = -0.1693 

fll = -0.8086 

Cl4 = 
0.7044 

:17 = 
-0.1000 

:20 = 
0.3764 

‘23 = -0.4697 

e. 

:3 = 4.2564 

:6 = 2.6388 

:9 = 2.6793 

m12 = 3.6866 

I 

,r3 = 
-0.1554 

,r6 = -0.2261 

,‘9 = -0.1751* 

c, = -0.0449 
,J 
Z6 = -0. 

Eg = -0. 

;I2 = -0. 

:I5 = 0. 

rz18 = 0. 

f21 = 0. 

c24 = -1. 

3209 

5585 

4334 

2574 

4031 

7087 

2848* 

*There are 32 independent parameters in model III; cg and 2,, are 
9 

obtained from the linear constraints, c qiri = 0 and 
i=l 

= 0, where qi = 
i=:(k) 

"k and w. = 
J j=:(k) 

"k' 
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Fisure Caotions 

Figure 1: Counties of North Carolina numbered alphabetically, 

featuring the 12 groups of counties used in defining 

model II. 

Figure 2: Plot of Freeman-Tukey transformed SIOs versus 

arcsin(percent black) for the counties of North 

* 
Carolina, 1974-1978. 

I 

Figure 3: Plot of likelihood as a function of spatial dependence 

parameter 4; auto Gaussian model I, and k = 1. 

Figure 4: Same for Figure 3, except auto Gaussian model II is 

shown for k = 0 (dotted line), k = 1 (dashed line), 

k = 2 (solid line). 

Figure 5: Same for Figure 3, except model III (solid line; scale 

on the left) is shown with model I on weighted-median- 

polish residuals (dotted line; scale on the right), 

for k = 1. 

Figure 6: Plot of corr(Y80,Yj) versus Euclidean distance dgo j, , 

as j varies. 


