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ABSTRACT 

Papers by Scott and Smith (1974) and Scott, Smith, and Jones (1977) 

suggested the use of signal extraction results from time series analysis to 

improve estimates in periodic surveys. If the covariance structure of the 

usual survey estimators and their sampling errors is known, these results 

produce the linear functions of the usual estimators that have minimum mean 

squared error as estimators of the population values. Thus ) current and past 

data are used in estimating the population quantity at the current time. To 

apply these results in practice one would identify and estimate a time series 

model for the time series of usual survey estimators, and estimate the 

covsiance structure of the sampling errors over time using knowledge of the 

survey design. The paper reviews the theory behind this work, obtains some 

theoretical results on this approach, discusses some considerations involved 

in applying this approach, and reports on results obtained to date regarding 

practical application of these results to Census Bureau surveys. 
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1. Introduction 

Papers by Scott and Smith (1974) and Scott, Smith, and Jones (1977), 

hereafter SSJ, suggested the use of signal extraction results from time series 

analysis to improve estimates in periodic surveys. If the covariance 

structure of the usual survey estimators (Y,) and their sampling errors (et> 

for a set of time points is known, these results produce the linear functions 

of the available Yt's that have minimum mean squared error as estimators of 

the population values being estimated (say Bt) for Bt a stochastic time 

series. To apply these results in practice one estimates a time series model 

for the observed series Yt and estimates the covariance structure of e over 
t 

. time using knowledge of the survey design. 

Section 2 of this paper gives a brief overview of the basic results and 

framzwork for this approach. Section 3 considers some theoretical issues and 

section 4 some application considerations for the approach. Our work on this 

topic has been part of our continuing study investigating the application of 

this approach to surveys at the U. S. Bureau of the Census. In section 5 we 

give results for some examples we have studied to date. 
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2. Basic Ideas of the ADDroach 

The basic idea in using time series techniques in survey estimation that 

distinguishes it from the classical approach is the recognition of two sources 

of variability. Classical survey estimation deals with the variability due to 

sampling -- having not observed all the units in the population. Time series 

analysis deals with variability arising from the fact that a time series is 

not perfectly predictable (often linearly) from past data. Consider the 

decomposition: 

yt 
- 19~ + et (2.1) 

where Y 
t 

is a survey estimate at time t, 8, is the population quantity of 

interest at time t, and e 
. t 

is the sampling error. The sampling variability of 

et 
is the focus of the classical survey sampling approach, which regards the 

et's ais fixed. From a time series perspective all three of Yt, Bt, and et can 

exhibit time series variation, as long as they are random and not perfectly 

predictable from past data. Standard time series analysis would treat Yt 

directly and ignore the decomposition (2.1); thus the sampling variation of e 
t 

is not treated explicity, it is only handled indirectly in the aggregate Y 
t' 

In fact, time series analysts typically behave as if the sampling variation is 

not present and the true 'values B 
t 

are actually observed. The most basic 

thing to keep in mind about the use of time series techniques in survey 

estimation is that there are two distinct sources of stochastic variation 

present that are conceptualized, modeled, and estimated differently. It has 

been our experience that many people (including us) trained in one of the two 

specialties have some difficulty keeping straight the source of variation 

typically dealt with in the other specialty. 



2.1 Basic Results 

Suppose that estimates Yt are available at a set of time points labelled 

t = l,... ,T. Let Y = (Y,,..., YT)' and similarly define 6' and e so we have Y = 

e + e. - - It would be usual to assume the estimates Yt are unbiased and that 8, 

and e t are uncorrelated so that 

E(Y) - E(d) = P = (P1'.."PTY 

3= ce4 c . 
e 

Here p and Ze refer to the time series structure of 0 
t' 

which is not subject 

to sampling variation. In this case it is well known that the minimum mean 

. squared error linear predictor of Bt for t - l,...,T is given by 

s^ - p + cov(e,y) Var(Y)-'(Y - lf> - f + xe ";' <‘f - y> (2.3) - - - - 
* 

Using (2.2) this can be reexpressed as 

ii = p + (I - ce $)(Y (2.4) - - - f> 

= p + (I + ce z,l)-l(Y - y> (2.5) 

Another standard result is that the variance of the error of this estimate is 

Var(i - e) =ce - - - ce ";' ce = ce - ce ";' ce (2.6) 

If normality is assumed (2.3) - (2.5) give E(elY), the conditional expectation - - 

of e given Y, and (2.6) gives Var(BIY), the conditional variance. Jones - - 

(1980) gives the results (2.4) - (2.6) assuming p - 0 (or equivalently - - 

assuming means have been subtracted). Scott and Smith (1974) and SSJ give 

equivalent results using classical time series signal extraction techniques 

which we shall consider later. 

Notice that (2.3) - (2.6) require knowledge of P and any two of XY , Ce , 

and C e (the third can be obtained from (2.2)). In practice these will not be 
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known exactly and will need to be estimated. The basic assumption underlying 

the application of the preceeding results, which we shall call the time series 

approach to survey estimation, is that /I and 
cy 

can be estimated from the time 

series data on Y 
t 

(typically using some sort of time series model) and C can 
e 

be estimated using survey microdata and knowledge of the survey design. We 

will discuss these issues further in section 4. 

2.2 Contrast with minimum variance unbiased and composite estimation 

. 
It is important to understand the distinction between the time series 

approach to estimation and the approach known as Minimum Variance Linear 
* 

Unbiased Estimation (MVLU). Smith (1978), Jones (1980), and Binder and Dick 

(1986) review and discuss the MVLU approach. While both the MVLU and time 

series approaches can use data from time points other than t in estimating 0 
t' 

they differ in that MVLU regards the Bt 's as fixed and still only treats one 

source of variation, that due to sampling. It was developed for cases (such 

as many rotating panel surveys) where more than one direct estimate of 6' is 
t 

available for each t and the e 
t 
's are correlated over time due to overlap in 

the survey design. The use of Yj for j z t in estimating Bt then comes from 

generalized least squares results and the correlation of the et's. We can see 

the distinction in terms of our results for the simple case (2.1) where only 

one direct estimate, Y 
t' 

0f e 
t 

is available, by letting Var(et) -+ ~0. This 

translates the idea that the B 
t 
's are fixed into a non-informative prior on 

them. Then (2.5) becomes 8 = Y and we are only using Yt to estimate et. - - 

These remarks also apply to composite estimation (Rao and Graham 1964, Wolter 

1979), which can be viewed as an approximation to MVLU. 



2.3 The Time Series ADDroach as a Unifying Framework 

for Related Problems 

The time series approach affords opportunities for improving estimation 

in periodic surveys through the recognition of the two sources of variability 

and the use of the results in section 2.1. There are other problems in 

repeated surveys where typically only one of the two sources of variability is 

recognized. The general framework provided offers chances for improved 

results in these other problems, as well as potentially unifying them as 

subproblems under one general approach. 

. Rao, Srinath, and Quenneville (1986) have applied time series techniques 

to the problem of preliminary estimation in repeated surveys where the 

prel.minary estimate is later followed by a final estimate using additional 

data. Time series modeling and forecasting was cited earlier as one example 

where sampling variability is typically ignored. Recognizing and 

incorporating sampling variation may lead to improved time series and 

econometric models and forecasts, especially in cases where sampling variation 

is relatively large, and the sampling errors are strongly correlated over 

time. Seasonal adjustment is another example where sampling variation is 

typically ignored; exceptions are the papers by Hausman and Watson (1985) and 

Wolter and Monsour (1981). In seasonal adjustment a time series is decomposed 

into seasonal (St), trend (Tt), and irregular (It) components. Once sampling 

variation is recognized, an appropriate decomposition is 

yt = st + Tt + It + et 

where e 
t 

is sampling error. One would probably wish to remove both St and et 



6 

. 

in adjusting, and so estimate T 
t 
+ I 

t' 
Time series trend estimation obviously 

gives us another example where recognition of sampling variation could improve 

results. Oddly, detection of statistically significant change over time in 

estimates from repeated surveys is a problem closely related to trend 

estimation where sampling variation is recognized and time series variation 

typically ignored. Smith (1978) has pointed out the difficulties in this. 

Finally, benchmarking, the reconciling of results from a periodic survey with 

the results from another survey (possibly periodic of different period) or 

census estimating the same population charcteristics, can benefit from a 

treatment recognizing both time series and sampling variation (Hillmer and 

Trabelsi (1986)). 



3. Theoretical Consideration of the Time Series ADDroach 

In this section we consider some theoretical and philosophical issues 

that come up in connection with the time series approach. The next section 

discusses application considerations. We need to make one caveat. The 

decomposition (2.1) does not allow for nonsampling errors, nor does the time 

series approach explicity treat them. This is not to say that nonsampling 

errors are not important. Whether nonsampling error is generally more or less 

of a problem for the time series approach than for the classical approach is 

an open question, but it would be wise to consider the possible effects of 

known or suspected nonsampling errors on the time series estimators when 

- actually applying them in particular situations. 

3.1 -Whv assume et a stochastic time series? 

This issue has been discussed by SSJ and at length by Smith (1978). They 

observe that (1) users of data from repeated surveys treat the data Y as a 
t 

stochastic time series in modeling and would do the same with Bt if it were 

available (as noted above sampling error is typically ignored in analyzing 

time series data), and (2) classical results for estimation in repeated 

surveys (MVLU) assume a time series structure for the individual units in the 

population, while maintaining the anomalous position that ,9,, which is a 

function of these individual units (such as the total), is a sequence of 

fixed, unrelated quantities. In observing a result analogous to that noted 

above where we considered C 
e 
+ a~, Smith (1978, p. 208) observes that: 

This indicates just how strong is the assumption that 8, is an unknown 

constant. It implies that Bt cannot be predicted in any way from know- 

ledge of the previous values Btsl, ets2, etc. Surely in most repeated 

surveys the parameter values would change only moderately with time, and 
hence knowledge of 8, 1 would be very useful in predicting et. To 



ignore this information seems very wasteful. 

We can push this philosophical argument even further. Suppose for a 

repeated survey a census is in fact done every time period, so that et drops 

out of (2.1) and we have Yt - et. If we assume et, and hence now Y,, is a 

sequence of fixed, unrelated quantities, then data through any time point t 

are irrelevant to the future behavior of the series. If this were in fact the 

case, then there would be little point in doing the survey in the first place. 

The data would be out of date as soon as they were published. The presence of 

sampling error does not invalidate this argument. Thus, we conclude that it 

is more reasonable to assume 0 
t 

is a stochastic time series than a sequence of 

- fixed, unrelated quantities. The real questions are then whether or not we 

can estimate the time series structure of B and e well enough to make 
* t t 

beneficial use of this in survey estimation, and how worthwhile these benefits 

will be. 

3.2 Model-based versus desi.Pn-based aDDrOaCh 

A subject of some controversy in survey inference is whether to use a 

model-based or design-based approach. (See Hansen, Madow, and Tepping 1983 

and accompanying discussion.) The time series approach is not model-based in 

the same sense as the classical model-based approach to survey inference. The 

classical model-based approach to inference involves a model for the 

individual units, say y 
it' 

of the population. The time series approach does 

not require a model for the yit, it merely needs a time series model for the 

aggregate function of these, 0 
t' 

as well as estimates of the variance and 

correlation over time of the sampling errors, which, it seems, could be either 

model-based or design based. Still, the results will be influenced by the 

model used for B 
t' 

While the choice of model for Bt and its estimation may 
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well be of some importance, and there may be some concern about this, it 

should be kept in mind that the alternative of assuming Bt unrelated over time 

is rather extreme, as discussed in the previous section. 

3.3 Uncorrelatedness of Bt and et 

Standard time series signal extraction results (to be given in section 

4.3 and corresponding to (2.3) - (2.6) given earlier) typically make the 

following three assumptions: 

(1) et, or a suitable difference of it, is stationary. 

(2) et is stationary 

. (3) Bt and et are uncorrelated with each other at all leads and lags. 

For our purposes here a time series is stationary if its mean, variance, and 

laggzd covariances do not depend on time. Assumptions (1) and (2) are 

probably reasonable in many situations, and ways of dealing with certain types 

of nonstationarity will be discussed in section 4. Here we focus on the 

assumption that 8, and e 
t 

are uncorrelated time series, meaning Cov(0 
,,ej) 

-0 

for all time points t and j (equivalent to independence under normality). 

Previous papers on the time series approach to survey estimation have merely 

assumed this, but since ,9 
t 

and et depend on the same population units it is 

not obvious that this assumption is valid. Fortunately, we can establish that 

it is valid under fairly general conditions, 

We let yit be the value of the characteristic of interest for the i 
th 

unit in the population at time t, and let n 
t 
= (yit i-l,...,Nt) be the 

collection of all Nt of these units. We consider time points t-l,...,T and 

let n - (nl,...,nTy. The Yit are random variables, as is 0 
t 
= et(nt), which 

is a function of the yit. The sample at time t, st (denoting the indices, not 

the values, of the units selected), has probability of selection p(stln). The 
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estimator Y 
t 

0f et is a function of the values y it for the units sampled, thus 

a function of both nt and s 
t' 

i.e. Yt = Yt(fit,st). We could let Yt depend on 

the sample at times other than t, but we ignore that here for simplicity. 

We need to make one assumption about the sample selection process, that 

p(s$) - p(stlnt) for all t. This is not as strong an assumption as assuming 

that the sample design is noninformative, which means s and fl are 
t - 

independent, implying p(sJn) - I - p(s&). Our assumption allows the 

sample selection process at time t (p(st(n)) to depend on the population 

* values at time t (nt), but assumes the population values at time points other 

than t (nj for jzt) offer no additional information on st beyond that in nt. 
* 

This assumption might even be generalized. 

The following Lemma leads to our result. 

Lemma: (1) Wtlnt) = g Yt p(s&) - g Y,(n,,s,)p(s,ln,) where the sum is 
t t 

over all possible samples s 
t' (2) EUJW = E(Ytlnt). 

Proof: (1) is essentially obvious since given 0 - w 
t t' Yt 

= Yt(nt,st) takes 

the value Yt(w t,st) with probability p(stlwt). A proof using general 

conditional expectation results can also be given. To see (2) we have 

WY, In> - g yt P(S$) 
t 

= $ yt p(s$$) - E(Y$-$). 
t 

We will be concerned with design unbiased estimators Yt of et. This can 

be written E(Ytlflt) = g Yt p(stlnt) = Bt. The usual definition of design 
t 

unbiasedness is g Yt p(s,) = et, but this assumes the yit and so hit are fixed. 
t 

Our definition coincides with the usual one in this case, and also does if the 

sample design is noninformative. We have the following. 
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Result 3.1: Yt design unbiased for all t * Bt, et uncorrelated time series. 

Proof: Consider Cov(et, ej) for two arbitrary time points t and j. Y. 
J 

design unbiased means 0. - E(Yj Inj) - E(Yj Ifi) by the Lemma. 
J 

Then E(ej In> = 

E(Y. - SjlO) = E(YjlD) - 8. - B. - 8. - 0 implying EIE(ejle)] - E(ej) = 0. 
J - J J J 

. Comment: If E(ej In> d oes not depend on n then e. is said to be "mean 
3 

independent" of n, which is known to be a stronger condition than e. and n 
* J - 

uncorrelated, though not as strong as stochastic independence (un less we have 

normality). This shows that actually we only need E(etln) = E(Y, In) - dt t0 

not depend on n to get Bt, e 
t 

uncorrelated. This would cover the cases where 

Yt has a constant additive bias (not dependent on nt> as an estimate of Bt, 

or, using approximate Result 3.2 which follows, a constant percentage 

(multiplicative) bias. 

Also E(B .e.ln) = Bt E(ej/n) - Bt*O - 0 implying E(0 
t J- 

t=ej) = 0. Thus 

Cov(B,, ej) - E(et*ej) - E(Bt)E(ej) - 0. 

In many cases we will want to take logarithms of Yt to help induce 

stationarity of Bt and the sampling errors. In such cases we write (2.1) as 

Yt 
- 8, + et = Bt(l + Ut) - etut (3.1) 

where u 
t 

= et/t9t and ut = 1 + u 
t' 

Taking logs we get 

ln(Yt) - ln(Bt) + ln(1 + Ut) = ln(0t) + ln(ut) (3.2) 



Now notice E(ut 1~) - E(et/B In> - E(e,lc)/O t - t 
- 0 if Yt is design unbiased. We 

then assume that E(ln(uj)In) = In E(ujln) - In(l) - 0 so E(ln(uj)) = 0. 

Similarly E[ln(Bt)*ln(uj)ln] - ln(Bt) E[ln(uj)In] = 0 so E[ln(Bt)*ln(uj)] = 0 

and thus Cov(ln(Bt),ln(uj)) = 0. Hence, we have 

Result 3.2: Yt design unbiased for all t = ln(Bt>, ln(ut) approximately 

uncorrelated time series. 

We could alternatively have obtained this result using the approximation 
. 
Corr(ln(Bt), ln(uj)) = Corr(Bt, uj) and noting G. and u. are mean independent 

J 3 

0f n, 

3.4 Consistency of Time Series Estimates 

Following Fuller and Isaki (1981) we let Yt (from the B 
th 

sample at time 

t) be a sequence of estimators of the characteristic B 
a th 
t 

of the 1 population 

at time t (n:) where the populations and samples for R - 1,2,... are nested. 

(See their paper for details.) Define Y', 0', e', - - - na, u', $ $, $ ;I, and - - 

i: in the obvious fashion. We consider what happens to the time series 

^a 
estimators B when the estimators YR are consistent, i.e. Y' 4 6' 

R 
t t 

in some 

fashion as 1 -+ ~0 for all t. For now we assume pp, Xi, and Cl 
e' 

or models 

leading to these, are known for each 1. Since p' and $ are really 

superpopulation parameters for the time series, B 
I 
t' 

we wish to estimate, we 

shall assume these are the same for each population R, that is, p' = p and 

(a positive definite matrix) for all R. This is also partly for 
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B 
convenience since we could get the same results assuming p -+ p and C 

a 
-+ C as - - 9 e 

From (2.5) it would appear that YR + 9' would imply s^" + 0' as long as 

c" + 0. This condition suggests we need mean square convergence of Yt t0 e 
R 

e t‘ 

We thus consider estimators Yf of 6 
J? 
t 

such that 

E[ 0’: - St)2] = E[(ef)2] + 0 as 1-m. 

Since E[(e$2] = Var(ef) + [E(e$12 this implies both Var(et) + 0 and 

E(e 
R 

- 
t 
) + 0. Assuming Y: -+ 0: in mean square for t=l,...,T then implies Ef + 0. 

We can now establish 
* 

Result 3.3: YR 
t 
+ et in mean square for t-l,... ,T implies it -+ B: in mean 

square for t=l,...,T. 

Proof: From YR - OR + e'@ with Xf + 0 we have Z$ + .X0 even if % -' and e' are 

correlated. (We have not assumed YR design unbiased.) From (2.4) we have 

(3.3) 

The first term on the right converges to 0 in mean square; the second has mean 

0 and variance Z?(g)-'<(<)-'.Ef = Et(<)-%: + 0 as R + m. Since both terms 

^R a 
converge to 0 in mean square so does 0 - 0 . 

Convergence in probability is a more familiar concept in survey sampling. 

If Yf + 8: in probability for t=l,... ,T this does not necessarily guarantee 

2 
e 
+ 0, which is mean square convergence, a stronger condition. But if there 



is a random variable rt with finite variance such that Iefl I c, (almost 

surely) uniformly in 1, then Yf -, 8: in probability implies Yf -+ 8: in mean 

square (Chung, 1968, p. 64). So a result on convergence in probability is 

a 
obtained by making this assumption to get Y' + Bt in mean square and using 

t 

Result 3.3. 

Result 3.4: If Y"t -+ in probability for t=l,... ,T and there exist random 

variables ct with finite variance such that IY: - 8:[ 5 rt (almost surely) 

^R 
uniformly in 1, then Bt + 8: in probability for t=l,...,T. 

What these consistency results show is that if the errors in the original 

estimztes Y 
h 

t 0f 0 t are small (C 
e 

is small) then the errors 0 
t 

- Bt will be 

small as well. From (3.3) we see this is because i - Y becomes small as Ce - - 

becomes small, thus when there is little error in the original estimates Y 
t 

the time series approach will not change them much. Binder and Dick (1986) 

have noted this phenomenon, and also pointed out that in this case it does not 

matter what time series model is used. That is, the convergence to 0 of (3.3) 

depends only on Zf + 0 and not on Jo or C 
8’ 

Thus, the consistency results 

extend to allowing p, Ce, and also Xf 
^R ^I 

to be replaced by estimates p , X0, and 

2 
^R ^R 

e' 
as long as p and C 

0 
converge to something as R + ~0 (it doesn't matter 

what as long as the limit of gf 
^a 

is positive definite) and Z 
e 
+ 0 (which should 

generally hold when ,Xt + 0). Estimation of model parameters is not an issue 

in regard to these consistency results. 

While it is reassuring to know that the time series estimates behave 

sensibly in the situation of small error in the original estimates, the gains 

from the time series approach (see (2.6)) will come in the opposite case -- 
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when Var(et) is large. 

We can extend the consistency results to the case where we take 

logarithms and estimate In Bt in (3.2). In this case let Xt - Var(ln(ul)) 

1 I 
where u - (u ,... 

1 a$' is from the I 
th 

population. Let p and Ce refer to 

In(e), and 4 - Ce + ZZf refer to ln(YP). Analogous to (2.4) our estimate is 

h 

ln(0') - p + [I - Xt(+)-1] (In($) - y>. (3.4) 

If we are taking logarithms it is reasonable to assume Yt and 0 
R 
t 

remain 

-bounded away from 0, say IY~I 1 v and I# - > v (almost surely) for all t and R 

for some constant v > 0. 
* 

Result 3.5: 0-f in mean square for t-l,... 

*I 

,T implies ln(Y:) -+ ln(0:) 

and ln(et) + ln(0:) in mean square for t-l,...,T. 

Proof: The analogue to (3.3) is 

ln(i') - ln(el) - (ln($) - ln(0')) - X:(g)-'(ln(Y') - y) 

If we can show Xi + 0 we will have the result since this implies ln(Y') + 

ln(B1) in mean square, and the second term on the right behaves exactly as 

that in (3.3). Notice 

E[(;tj21 = E[(e~)2/(0f)2] s (E(e$2)/v2 -+O-+asR+co 



1 5 exp(E[ln(ut)2]) 5 E(exp 
12 12 

[ln$> I> - E[(ut) I 

thus E[(;$2] - EHu: - 1)2] + 0. This implies Var(u:) + 0 and E(u:) + 1. By 

Jensen's inequality (Chung, 1968, p. 45) since exp(*) is a convex function 

But E[(u:)~] - Var(u:) + [E(u:)]~ + 1 so exp(E[ln(ut)2] -+ 1 implying 

a2 
E[ln(u ) ] + 0. 

t 
This yields Var(ln(u$) + 0 as desired. 

As before we could get a convergence in probability result by imposing a 

boundedness condition on the ln(ut). Having ln(it) as an estimate of ln(Bt), 

we might wish to take exp[ln(it)] as an estimate of 0 
t' 

We have the following 

Corollary to Result 3.5. 
. 

Coro*larv: YR + 8: in mean square as R + 00 for t=l,...,T implies (see 
t 
^JJ 

(3.4)) exp[ln(8t)l -+ 0 
R 
t in probability as 1 -+ Q) for t=l,...,T. 

Proof: 
^a 1 

Since ln(Bt) + ln(et) in mean square implies convergence in 

probability, the result follows since exp(=) is a continuous function (Chung, 

1968, p. 66). 
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4. Aonlication Considerations 

Application of the time series approach to survey estimation requires 

(1) estimation of the sampling error covariances, Cov(e t,ej), in C e' 

(2) estimation of the mean (PI) and covariance structure of 0 
t 

or Yt (Ce or 

3)s generally through some sort of time series model, and (3) computation of 
h 

the estimates 0 t from the formulas of section 2 or something else equivalent. 

In this section we make a few remarks on these aspects of implementation. 

4.1 Estimation of Samoline Error Covariances 

In principle, estimation of sampling error covariances, Cov(e 
,,ej>t 1s 

w the same problem as estimation of sampling variances, Var(et), which is 

routinely done for many periodic surveys and for which many methods are 

available (Wolter 1985). In practice, there may be difficulties in linking 

survey microdata over time to do this. SSJ refer to direct estimation of 

sampling error covariances using survey microdata as a primary analysis. If 

this cannot be done it may still be possible to estimate C 
e 

using only the 

time series data on Yt by making some assumptions about e 
t 

and 0,. SSJ refer 

to such procedures as a secondary analysis. They give examples of both types 

of analysis. 

There is a fundamental identification problem with doing a secondary 

analysis. Given time series data on Yt we can get at ZY by estimating a model 

for Yt, and given estimates of Cov(e e.) from a primary analysis we can get 
t' J 

at C e through Ce - ZY - Ce. Without an independent estimate of Ce all we 

really know about Z 
0 

and C 
e 

is that they sum to 
3. 

Thus, for any Ce and C 
e 

such that 
3 

- Ce + Xe let X0, - Ce - V and Ce, - Ce + V for some symmetric 

matrix V such that C 
81 

and C 
e' 

are positive semidefinite. Then we can also 

write 
3 Ecgt +cer* Use of X0, and Ce, will result not in the estimation of 



et’ 
but in the estimation of a time series 8; with covariance structure given 

bY 20 t * Analogous results have been obtained for time series models in other 

contexts; Tiao and Hillmer (1978) consider the simple example of et 

uncorrelated over time, and Bell and Hillmer (1984) discuss the well-known 

identifiabflity problem in seasonal adjustment. Knowledge of the survey 

design may suggest assumptions about et that will help to narrow the range of 

choices for the decomposition. Still this issue should be considered for any 

particular example where a secondary analysis is contemplated because of the 

possibility of unverifiable assumptions having a profound effect on the 

results. 

If a full primary analysis can be conducted this will yield a direct . 

estimate of C This imposes no constraints on the covariance structure of et 
e' 

othegthan Ce be symmetric and positive definite. In many cases it may be 

reasonable to assume e 
t 

is covariance stationary or (see below) relative 

covariance stationary. If this can be assumed this suggests pooling 

information over time to estimate Cov(et,et+k), which is the same for all t 

and depends only on k. This is an important consideration for practice. 

Recall that in section 3.4 it was noted that when Var(et) is small the time 

series estimates will not change the original estimates much, and that the 

gains from use of the time series estimates will come when Var(et) is large. 

Unfortunately, estimation of sampling error covariances is likely to be more 

difficult in the latter situation, such as when the sample size is small. If 

stationarity of et can be assumed then information about sampling covariances 

can be pooled over time, effectively increasing the sample size for this 

purpose. One simple approach is to average estimates of Cov(et,et+k) over t 

in some way. 

In some cases it may be possible to make further assumptions about et 



yielding a model describing its covariance structure in terms of a small 

number of parameters. SSJ suggest some models for single- and multi-stage 

overlapping surveys, and note that when the pattern of overlap is such that 

units remain in the sample for no more than q time periods, then the 

covariance structure of e t can be represented as a moving average model of 

order q. Miazaki (1986) used such a sampling error model in analyzing 

National Crime Survey data. Hausman and Watson developed an autoregressive - 

moving average model of order (1,15) depending on only one parameter for 

sampling error in the Current Population Survey. 

For many economic surveys it may be more appropriate to assume et is 

- relative covariance stationary. In this case we consider the decompositions 

previously given as (3.1) and (3.2): 

yt = et + et - ep + iit) = etut i3.11 

ln(Yt) - ln(0,) + ln(1 + Ut) - ln(Bt) + ln(ut) 13.21 

It was shown in section 3.3 that if Yt is design unbiased then E(ctln) - 0, 

E(ln(ut) > = 0, and ln(0,) and ln(ut) are approximately uncorrelated time 

series. Now we will assume it is not Var(etln) but the relative variance, 

R& - Var(ehW?, which remains stable over time. 
L L- - I. 

Considering the 

decompostion (3.1) we notice that 

Var(Gt) - Var [E(;,ln)] + EIVar(utln)] - 0 + E(Rt) 

since 

Var(ttln) - Var(et/etln) - Var(etln)/Ot - Rt. 

We then note that 

Var[ln(ut) 1 - Var[ln(l + ;,)I = Var(ut) - E(Rt) 

if U 
t 

is not too large. Applying a similar argument to lagged covariances, we 

see it would be reasonable to assume ln(ut> is stationary. If it is also 
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reasonable to take ln(et) then we can proceed with the decomposition (3.2) as 

we would have with (2.1) and exponentiate results at the end (see (3.4)). An 

alternative to this is to go ahead and estimate the time varying Var(et) and 

use the results (2.3) - (2.6) (or the Kalman filter) which do not actually 

require e t to be stationary, rather than the signal extraction formulas given 

later which do. However, this will complicate things, and it seems likely 

that often when e t is nonstationary but ln(ut) = Gt is approximately 

stationary, that we will be better off using (3.2) than (2.1). 

4.2 Time Series Modeling 

. General treatments of time series modeling are readily available 

elsewhere, a good starting point being the book by Box and Jenkins (1976). 

Here%e comment on a few aspects of modeling we consider especially important 

and a few particular to the problem of accounting for sampling error in 

modeling. 

The first step in modeling should be to deal with nonstationarity in the 

data. We have already mentioned the possibility of taking logarithms of Yt to 

help render both the sampling error and Bt (approximately) covariance 

stationary. Other transformations of Yt might also be considered, though we 

would then usually not be able to directly interpret the transformed series as 

the sum of a population value and sampling error. A choice between ln(Yt) and 

no transformation will be enough to deal with many cases. 

Simply taking logarithms is not likely to be enough to render Bt and Yt 

stationary. However, many published time series Yt have been modeled assuming 

that taking the first difference (l-B)Yt - Yt - Ytsl (B is the backshift 

operator such that BY - Y 
t t-l)' 

or a seasonal difference such as (1-B12)Yt = 

yt - yt-12' 
or both, produces a stationary series. It will thus be reasonable 



to assume that 0 
t 

suitably differenced is stationary or approximately so in 

many cases. While 8, and et could mathematically both be nonstationary in 

some offsetting way so that their sum Y t was stationary (or arguing similarly 

for some difference of all these series), this seems unlikely in practice. 

We may also want to allow Yt and et to have a mean function that varies 

over time -- the p 
t 

of section 2.1. This requires a parametric form for pt, 

such as the linear regression function p 
t - BIXlt + 

l ** + BkXlt. An example 

of this sort of thing for time series data from economic surveys is the 

modeling of calendar variation (see Bell and Hillmer 1983). For seasonal 

data, seasonal indicator variables for the X (analogous to one-way analysis 
it 

* of variance) are useful if the seasonal pattern in 0 is stable over time. 
t 

Particular examples will dictate the choice of regression variables. The type 
* 

of model we are thus suggesting for et (or ln(et)) is a regression model with 

correlated errors, with the correlation in the errors described by a time 

series model that will likely involve differencing. Notice that if we are 

differencing et we must also difference the regression variables the same way 

since the regression relation is generally specified between the undifferenced 

Bt and Xit. Thus, if we are taking (1-B)B, we should also take (l-B)Xit for 

i = 1,e.s ,k. 

These three techniques -- transformation, differencing, and use of 

regression mean functions -- appear to be sufficient in practice to render 

many time series approximately stationary. Some authors have chosen to use 

regression on polynomials of time rather than differencing to help induce 

stationarity. Jones (1980), and Rao, Srinath, and Quenneville (1986) have 

suggested this in connection with the use of the time series approach to 

survey estimation. We recommend against the use of polynomial regression on 

time. It is known that using polynomial regression on time when differencing 



is needed has potentially dire consequences for regression results and time 

series analysis, while unnecessary differencing has far less serious effects. 

(See Nelson and Kang 1984 and the references given there.) In fact, if a 

model with a polynomial function of time is really appropriate, analysis of 

the differenced data can discover this (Abraham and Box 1978). Or since 

differencing, like taking derivatives, annihilates polynomials, use of certain 

models (noninvertible moving average) for differenced data can produce results 

equivalent to polynomial regression (Harvey 1981). The moral of this is that 

polynomial regression on time can lead to trouble while differencing probably 

will not. While the literature has not considered these issues in the 

particular context of the time series approach to survey estimation, it seems 
. 

far safer to difference than to hope polynomial regression on time is 

apprepriate or that it will not have bad effects. 

Let zt - et - pt where, e.g., pt = BIKlt + l ** + skKkt. At this point 

the model we are suggesting is 

yt - et + et 

(4.1) 
6(B) [et - wlXlt + "' + Bk\$ - w>zt - Wt 

where 6(B) is a differencing operator such as (1-B) or (1-B)(l-B12) and wt is 

a stationary series. We can use an analogous model if we are taking 

logarithms of the data. We still need a model for wt, or equivalently a model 

for zt incorporating differencing. Two types of models popular in the time 

series literature are the autoregressive - integrated - moving average (AFUMA) 

models discussed by Box and Jenkins (1976), and the structural (or unobserved 

components, or state-space) models considered by Harvey and Todd (1983) and 

Kitagawa and Gersch (1984), among others. We refer the reader to these 

references for complete treatments of these models. To give a simple 

illustration, a typical ARIMA model used for monthly seasonal series is the 
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"airline model" (Box and Jenkins 1976, ch. 9) 

(1 - B)(l - B12) zt - (1 - rllB)(l - ?12B12) at (4.2) 

where q 1 and r) 12 
are parameters and a 

t 
is a sequence of iid random variables 

with mean 0 and Var(at) - 02. A typical structural model for similar data 

would use the seasonal + trend + irregular decomposition mentioned in section 

2.3 with simple ARIMA models for the components: 

Zt 
- St + Tt + It 

where (1 + B + l ** + B") St - ~~~ (4.3) 

(1 - B)2 Tt6 
2t 

and E 
It' E2t' 

and I t are independent white noise series with variances (the 

* model parameters) a2 
2 2 

1 , a2 , and aI . There is a correspondence between the 

two types of models since ARIMA component models imply some ARIMA model for 
* 

the sum of the components z 
t' 

For low order nonseasonal models this 

correspondence implies that in many cases both modeling approaches can yield 

the same model for z t Both approaches have their proponents, but even for 

seasonal series the jury is still out as to how much difference there really 

is between the models, let alone which is to be preferred. 

An important feature of modeling the time series Yt is the presence of a 

component, the sampling error e 
t' 

that we know something about. There are two 

ways to get at the covariance structure of 0 
t' 

We can directly model Yt, not 

explicitly accounting for e 
t' 

and derive the covariance structure for 6' 
t by 

subtraction. Or we can specify a model for Bt and fit a model to Yt 

corresponding to this model for 0 
t 

and the assumed known covariance structure 

or model for e 
t' 

If there is little sampling variation present (Var(et) 

small) then it will make little difference which approach is used, but this is 

also the situation where the time series approach will not make much 

difference either. If there is substantial sampling variation, but et is not 
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correlated or only weakly correlated over time (as in nonoverlapping surveys), 

or has a correlation pattern similar to that of et, directly modeling Yt may 

be adequate. The examples given by SSJ are cases in point. On the other 

hand, if et is strongly correlated over time in a very different way from 8,, 

then it w&L1 probably be important to use a model for Yt explicitly 

incorporating separate models for Bt and et. We feel more experience with 

this type of modeling is needed before firm recommendations can be given. New 

computer software may also be needed. Standard packages for estimating ARIMA 

models with regression terms are not set up to also handle sampling error 

components. Programs for estimating structural models may not handle 

components with the sorts of models that may be appropriate for sampling 
. 

errors, and may not handle components whose covariance structure is already 

known (estimated separately from the time series model estimation). 

A final problem worth considering is that of model specification, or what 

Box and Jenkins (1976) refer to as identification. Their approach involves 

looking at autocorrelations and partial autocorrelations of the data. Since 

our data is on Y t this can be used if we are directly modeling Yt, but it will 

not readily identify a model for et. Assuming that we have estimates of 

sampling error covariances, Cov(e 
Vet+k > - r,(k), 

a logical approach is to 

compute estimates of covariances for Y t, Ty(kL and then estimate covariances 

for fl, as -/g(k) - ry(k) - r,(k). Autocorrelations and partial 

autocorrelations can then be computed for et. This can also be done for 

various differences of Y 
t' et' 

and 0 
t' 

Another approach is to just specify a 

model for 0 
t 

of reasonable and simple form, or specify and fit several models 

and use a model selection criterion to choose between them. The latter 

approach is typically used with structural models. In this connection 

Kitagawa and Gersch (1984) suggest the use of Akaike's AIC criterion for model 
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discrimination. 

4.3 Sienal Extraction Computations 

Here we consider alternative approaches to doing the signal extraction 

computations. The basic results were given earlier as (2.3) - (2.6). We can 

obviously apply these by subtracting the means pLt from the data Y 
t 

to start, 

using the results assuming means equal to zero, and then adding p t back to it 

at the end. In this section we shall thus assume means equal to zero for 

simplicity. In this case (2.3) and (2.6) become 

; - x0 “;’ y Var(i - 0) - Ee - Ce ";' E - - e (4.4) 

- Scott and Smith (1974) and SSJ used classical time series signal extraction 

results given, e.g., by Whittle (1963). Assuming a doubly infinite sequence 

Yt i: available, and that Y t, et, and et are all stationary, these results for 

our problem become 

""t - Yg(B)/Yy(B) Yt Y;-~UO - Y,(B) - Y,(B)~,‘Y~W 

where -yy(B) is the covariance generating function of Yt, defined by 

yy(B) - -z yyW Bk 

ryW - cov(ytsyt+k) - (2r) 
-1 71 

I 

iXk 
e r(e -ix) dX 
-A 

(4.5) 

(4.6) 

and similarly for ye(B), etc. Comparing (4.4) and (4.5) we see that 

covariance generating functions are the analogues of covariance matrices for 

use with infinite time series instead of random vectors. Given models for Yt, 

et, 
and e 

t 
the results can be simplified. If Yt follows the ARMA model 

4(B) Yt - v(B) at, then yy(B) - v(B)s(F)oi/4(B)4(F) where F - B 
-1 

is the 

forward shift operator. The last relation in (4.6) gives one way of computing 

covariances from the generating function, and could be used to compute 

Var(it - et). Alternatively, Yi-e(B) could simply be expanded to pick out 
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yi-e (0) - Var(it - et). 

These results are useful for computing the estimate of Bt and the 

variance of the error in the estimate when we have a reasonably long time 

series of observations on Y and t is somewhere in the middle of the series. 

For t near the endpoints 1 or T alternative formulas given by SSJ and Whittle 

(1963) can be used. Another option is to use the model for Yt to forecast and 

backcast the series, append the forecasts and backcasts to the end and 

beginning of the data Yl, . . . ,YT , and apply the symmetric filter in (4.5) to 

get it. Bell (1980) established that this procedure converges pointwise (as 

the number of forecasts and backcasts extend into the infinite future and 

. past) to the results for it given by (4.4). Var(it - et) can then be obtained 

using results of Pierce (1979) or Hillmer (1985). 

*A third approach to doing the computations is to put the model for 

yt 
- Bt + et into state space form and use the Kalman filter/smoother 

(Anderson and Moore 1979). This recursively computes the it and Var(it - et) 

for t- 1, . . . ,T; covariances of the estimation errors can also be obtained. 

It is important to remember that the three approaches discussed for doing 

the signal extraction computations will, if all are using the same models and 

assumptions, produce the same results. (The variance results cited for the 

classical approach are only approximate in some cases, with the approximation 

error decreasing with the length of the series.) Thus, choice of approach 

depends on computational considerations, not on the results that will be 

obtained. Jones (1980), and Rao, Srinath, and Quenneville (1986) refer to the 

use of (4.4), or of (2.3) - (2.6), as stochastic least squares. This approach 

is rarely used in time series analysis because (1) given models for Yt and et 

there is a fair amount of work involved in solving for the elements of ZY and 

‘0 9 
(2) since fairly long time series (e.g. T - 100) are often used in 
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practice the TxT matrix EY will be large, and (3) the matrix EY can be 

ill-conditioned if the correlation in Yt is strong. These problems are worst 

if Y t is nonstationary requiring differencing, in which case direct 

application of the stochastic least squares results would be virtually 

impossible. This approach would be more practical if the correlation in Yt 

were mild and T were small. We stated results in this paper in this form to 

simplify the results and presentation, not because we advocate generally doing 

the computations this way. 

Bell (1984) extended the classical signal extraction results (4.5) under 

certain assumptions to the case of nonstationary series requiring 

-differencing. Essentially the results remain the same with the differencing 

operators carried along in the covariance generating function as 

autor:gressive operators. If Yt follows the ARIMA model 4(B)(l-B)Yt = q(B)at, 

then we use q(B)a(F)ot/(l-B)(l-F)d(B)Q(F) f or yy(B) in ..4.5) and similarly for 

Ye(B) * If et does not require differencing then Yt and Bt will both require 

the same differencing operator and this will cancel in (4.5). The Kalman 

filter/smoother does not require stationarity, but does require assumptions 

about initial conditions that have often been made rather arbitrarily, 

especially in the nonstationary case. This problem has been addressed by the 

modified Kalman filter of Kohn and Ansley (1986,1987). Bell and Hillmer 

(1987) show how to obtain results equivalent to those of Kohn and Ansley with 

the ordinary Kalman filter. 

The approach to signal extraction that is best may well depend on the 

problem at hand. The stochastic least squares results are the most general, 

but are difficult computationally unless T is small. The classical results 

cannot be used in certain important cases, such as when the variance of the 

sampling errors changes over time. Also, they sometimes provide only 
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approximations to the finite sample results, though these approximations are 

usually quite good as long as T is reasonably large. When the classical 

results are applicable they are computationally efficient, sometimes very easy 

to use, and they help give insight into what is going on through the filter 

weights of ye(B)/yy(B). The Kalman filter/smoother can be used as long as the 

problem can be put in state space form, which is sufficient for quite general 

problems, including the case of changing variances. It will accurately 

compute the exact finite sample results. For these reasons the Kalman 

filter/smoother may be preferred for a general purpose computer program. 
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5. ExamDles 

We now present some examples to illustrate the application of the time 

series approach to survey estimation to Census Bureau surveys. We have 

attempted to treat the examples realistically in the sense of recognizing and 

attempting to deal with aspects of the surveys that seem to be important in 

regard to applying the time series approach. This does not mean that we claim 

to have solved all the practical problems involved, even for the specific 

examples. The efforts here should be regarded as a first attempt. Also, some 

simplifications were made when these did not distract from the essentials of 

the problem. 

5.1 Single Family Housing Starts 

* 
Housing starts are estimated monthly in the Survey of Construction (SOC) 

for various types of structures and geographic areas. Here we consider single 

family housing starts for the total U.S. and a breakdown into four geographic 

regions -- Northeast (NE), Midwest (MW), South (SO), and West (WE). We use 

time series of the usual survey estimates from January 1964 through December 

1986 (276 observations). The following information on the SOC, and the 

variance and correlation estimates we use later, were provided to us by Jesse 

Pollock, Don Luery, and Dennis Duke of Construction Statistics Division (CSD) 

at Census. 

The SOC uses a stratified three-stage cluster sample. First, Primary 

Sampling Units (PSUs) from the Current Population Survey (CPS) are stratified 

by demographic characteristics and by builiding permit activity in a recent 

year (1982 for the current sample). Some PSUs are selected with certainty, 

others are selected one PSU per stratum with probability proportional to the 

size of the 16 and over population. Within PSUs, places covered by building 
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permit systems and land areas not covered by building permit systems are 

identified. For the latter an area sample is used to estimate new 

construction. For the former building permit offices are sampled, then 

permits in these offices are sampled and the person listed on the permit is 

contacted to determine if building has started. The sampled permits are 

tracked monthly essentially until the unit has started. The sample is redrawn 

approximately every 5 years, and the PSUs are redrawn every 10 years in 

connection with CPS redesign (the last time in November 1984). An algorithm 

is ;sed to maximize PSU overlap from old to new samples. 

Estimation of housing starts in building permit places is done by 
* 

computing start rates -- ratios of the number of units started in a month to 

the number of building permits issued in that month -- and applying these to 

estimates from the larger Building Permit Survey of the number of permits 

issued. Within each given type of structure and geographic area these figures 

are aggregated over the past 60 months (allowing for units started whose 

permits were issued as long as 5 years ago) to estimate total starts in 

building permit places in the current month. These figures are then added to 

estimates of starts in non-permit areas (which make up about 10% of starts 

over the total U.S.). Variances of sampling errors are estimated by 

collapsing pairs of strata and using the Keyfitz two-per-stratum method. 

Covariances of sampling errors at two time points can be obtained in an 

analogous fashion. 

While the files for processing the SOC are large, they are not as large 

as for some other Census Bureau surveys. In fact, after each calendar year 

CSD constructs a file on tape with the preceeding year's data. They are also 

able to link data files across successive years to estimate sampling error 

lagged covariances and hence correlations. This was done for data from 
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January 1982 through December 1986, providing 60 variance estimates and 60-k 

estimates of lag k correlations for k - 1,...,23. Sampling error variances 

depend on the level of the series, but relative variances are more stable over 

time, suggesting that we consider whether the sampling errors may be assumed 

to be relative covariance stationary. However, the redrawing of the sample 

every 5 years may present a problem in this regard. Note that the last sample 

revision in November 1984 falls in the middle of the period for which we have 

sampling error variance and correlation estimates. 

To investigate relative covariance stationarity of the sampling errors, 

log relative variances and correlation estimates for lags 1,...,6 and 12 were 

. plotted over time for all four regions and the total U.S. Figure la and lb 

show the log relative variance and lag-l correlation for the Northeast region, 

with*the point at the start of the new sample circled in la and the one lag-l 

correlation crossing the transition from old to new sample circled in lb. 

While there is considerable fluctuation over time in both plots, there are no 

apparent trends over time or obvious differences between the old and new 

samples. This behavior is typical of most of the variance and correlation 

plots at all lags. Averaging estimates separately for the old and new samples 

did not produce appreciably different results, and even time series analyses 

of correlation estimates for lags l-3 suggested these estimates were not 

themselves autocorrelated. All this suggests assuming the relative variance 

and correlations remain constant over time, and averaging the individual 

estimates in some way to improve the estimates. The exception to this is the 

South region, which showed apparent differences in the old and new samples. 

(The total U.S. results reflected some of this effect of the South results.) 

This may be due to a change implemented in the new sample for handling 

non-permit places, which are much more prevalent in the South than in the 
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other three regions. At this point we are not sure what, if anything, to do 

about this. For purposes of illustration we shall go ahead and treat the 

South the same as the other regions. 

Correlation estimates were averaged over time leaving out those 

correlations where one month was in the old and one month in the new sample, 

which are not comparable to the others. Relative variance estimates were 

produced in the spirit of maximum likelihood estimation for the lognormal 

distribution -- taking the average of the logs of the 60 relative variance 

estimates, adding one half of the sample variance of these 60 log estimates to 

this, and exponentiating the result. These results did not differ much from 

simply averaging the relative variances. (The one large outlier in February 
. 

1986 for the Northeast region, the 50th point in Figure la, was omitted from 

the calculation.) The resulting relative variance and correlation estimates 

for lags l-12 are presented in Table 1. Notice that the estimates show very 

little correlation in the sampling errors. A possible explanation for this is 

that there may be some negative correlation in the errors of the estimates for 

permit places (if start rates are high in one month there are fewer unstarted 

units with permits in future months) and stronger positive correlation in the 

non-permit areas (if a non-permit area shows more or less than average 

construction activity in a month it is likely to do the same in neighboring 

months, and it will still be in the sample unless the sample has been 

redrawn). Since the majority of construction activity is in permit areas, 

this about washes out, leaving little or no correlation in the sampling 

errors. (This is not true in the new sample for the South, which has the most 

non-permit activity.) In what follows we shall assume the sampling errors are 

relative covariance stationary, with the lag-l correlations for the Midwest 

and West regions the only nonzero correlations in the sampling errors. 
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The lack of correlation in the sampling errors simplifies some matters 

greatly. We might otherwise be concerned about the effects on the data of the 

sample revisions every 5 years, since lag-k correlations between months in two 

different samples could be quite different from those for months in the same 

sample. But there is no reason to expect correlations across sample revisions 

to be larger than correlations within the same sample, and since these are all 

small it seems we can ignore the sample revisions (again, except for the 

South). Also, since the sampling errors contribute almost uncorrelated noise 

to the time series Y 
t 

of the usual survey estimates, we proceeded by modeling 

ln(Yt) directly, rather than using a component model that explicitly allows 

* for the sampling error. We have fairly long time series (276 observations) 

available for this. Although there may be some concern about our assumption 
* 

of relative covariance stationarity of the sampling errors holding for the 

entire length of this time series, as long as we can assume the sampling error 

correlation is mild throughout we can use these long time series for modeling 

InUt). We could restrict the signal extraction to more recent data with 

little change in results if we were concerned about our assumptions on the 

sampling error (such as constant relative variance) holding into the distant 

past. 

The time series of the usual survey estimates (Y,) of single family 

housing starts for the four regions and total U.S. are plotted in Figures 2a-e 

(only the last 10 years are shown for clarity). Strong seasonality is evident 

for all five series. Examination of autocorrelation functions suggested the 

need for both regular and seasonal differencing, and suggested multiplicative 

seasonal moving average models all of the form 

(1-B)(l-B12) ln(Yt) - (1 - vlB - 02B2)C1 - v12B12) at (5.1) 

with v2 nonzero only for the Northeast. Parameter estimates for the models 
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are given in Table 2. The estimate of q12 was 1 for the South, West, and 

total U.S, indicating cancellation of the operator (1-B 
12 

> on both sides of 

(5-l), which is equivalent to using a model with a fixed seasonal (Abraham and 

Box 1978). These models were in fact then refit with seasonal indicator 

variables and used in this form, though we do not present the estimates of the 

seasonal mean parameters here. Examination of residuals from these models and 

residual autocorrelations suggested no major inadequacies in the models, 

though did suggest that one might consider using a different (higher) residual 

variance (0:) in the winter months. CSD adjusts all 5 time series for 
w 

trading-day variation; we could incorporate trading-day terms in (5.1) as in 

BelLand Hillmer (1983). While we would generally do this at least for the 

South and total U.S., for which we found trading day was strongly significant, 

it was marginal to insignificant for the other regions so in the interest of 

simplifying the presentation we shall ignore it here. 

Signal extraction estimates of the "true" level of housing starts Bt were 

produced for each region and the total U.S., using the classical signal 

extraction results given in (4.5) to estimate ln(0,J from ln(Yt) and then 

exponentiating. The results are the dotted lines in Figures 2a-e. However, 

these are often difficult to distinguish from the original estimates because 

of the strong seasonality and the fact that the changes from the original 

estimates are often small. In Figures 3a-e we show the ratio of the signal 

extraction to the original estimates for the last 10 years of data, which are 

actually the estimates of u 
-1 
t 

= exp(-ln(ut)). (The computations were actually 

done this way, estimating ln(ut) from ln(Yt) and using these results to 

estimate ln(et) - ln(Yt) - ln(ut).) We see the smallest adjustments are made 

to the South and U.S. estimates, larger adjustments to the Midwest and West, 

and the largest adjustments, often exceeding 5 and sometimes exceeding 10 
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percent, to the Northeast. We used results of Hillmer (1985) to estimate 

relative variances of the error in the signal extraction estimates. These are 

shown in Figure 4a-e, along with the (constant) usual sampling relative 

variance for comparison. Notice that the variances are higher right at the 

beginning and end of the series where we have little data before or after the 

time point for which we are estimating. Still the signal extraction relative 

variances are nearly constant over most of the length of the series. This 

constant is in fact Var(ln 8^, - In et) = v. = Rel Var(it-et) given by (4.5) 

and (4.6). Table 3 shows the usual relative sampling variances, y,(O), vo, 
* 

and their ratio, and analogous results in terms of coefficients of variation 

(CVs>. We see the largest improvements in variance are for the Northeast and 

West, on the order of 30-35%, with improvements for the Midwest, South, and 

U.S. on the order of 15%. The significance of these improvements should also 

be judged in terms of how much error there was in the original estimates to 

begin with. The reductions in variance for the South and U.S. may not be 

worthwhile in light of how small the variances were to begin with, and the 

previously mentioned difficulties in applying the results to the South and 

U.S. The results for the Northeast and West seem much more worthwhile. 

5.2 Teenage Unemoloyment 

We now analyze the time series of the total number of teenage unemployed, 

which is collected as part of the Current Population Survey (CPS) by the 

Census Bureau. The CPS is a monthly survey composed of eight rotating panels. 

Each panel is included in the survey for four months, left out of the survey 

for the next eight months, and then included in the survey for four final 

months. This rotation procedure produces a 75% overlap in the sample from 

month to month and a 50% overlap from year to year. We might expect 
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correlation in the sampling errors for months with samples that overlap due to 

the rotation scheme. We might also expect that sampling errors for months 

with no sample overlap would be uncorrelated. However, when a sample unit 

leaves the survey it is usually replaced by a neighboring unit from the same 

geographic area, which may induce correlation at months with no sample 

overlap. The correlation in the sampling errors will also be affected by the 

composite estimation procedure used to derive the published estimates. The 

composite estimates used are an average of the ratio estimate for the current 
. 

month, 

change 

(1985) 

single 

and the sum of last month's composite estimate and an estimate of the 

between the current month and preceding month. Hausman and Watson 

derive a model for the sampling error in the CPS that depends on a 

unknown parameter. Unfortunately, their derivation ignores the 

practice of replacing sample units with neighboring units. It may be 

difficult to modify the Hausman-Watson model to account for this practice. 

Sampling Error Model 

The sampling error autocorrelations can be estimated from the detailed 

survey results in the same manner that the variances of the sampling errors 

are estimated. Train, Cahoon and Makens (1978) report the average 

autocorrelations for the teenage unemployed sampling errors based upon the 

disaggregated survey results between December 1974 and December 1975. These 

autocorrelations are reproduced in Table 4a. The autocorrelatons from the 

model 

(l-4B)et = (1-vB)c, (5.2) 

with 4 - .6 and r) - . 3 are reported in Table 4b. It appears that this model 

well approximates the estimated autocorrelation structure of the teenage 

unemployed sampling errors. It should be noted that agreement between the two 

sets of autocorrelations at the higher lags is less important than at the 
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lower lags because there was more data available to estimate the lower lag 

autocorrelations, presumably making them more reliable. In our subsequent 

analysis we will use model (5.2) to describe the autocorrelations of the 

sampling errors. 

There have been many changes to CPS over the years, and for our purposes 

it is important to be aware of those changes that will possibly affect the 

correlation structure of the sampling errors. Two major changes that may 

affect this correlation structure are (i) the redesign based on the 1970 

Census starting in January of 1972 and (ii) the redesign based on the 1980 

., Census starting in January of 1984. In order to get a reasonably long time 

series that is consistent with the autocorrelations reported in Table 4a, we 
* 

use the teenage unemployed data from January 1972 through December of 1983 in 

our analysis. Once the model has been estimated it could be used to produce 

signal extraction estimates for more recent data (assuming, of course, that 

the model still applies), such as data from January 1984 through the current 

time. 

In order to compute the signal extraction estimates, we need estimates of 

the variances of the sampling errors. The Census Bureau uses the method of 

generalized variance functions (Wolter 1985, Chapter 5) for these variance 

estimates. If Yt is the composite estimate of the number in thousands of 

teenage unemployed at time t, then the estimate of the variance of the 

sampling error e t is given by 

V1r(et) = -.0000153 Y; + 1.971 Yt (5.3) 

The use of generalized variance functions in CPS is discussed in Technical 

Paper 40 (U.S. Department of Commerce, Bureau of the Census 1968). The 

particular coefficients in (5.3) were provided by Donna Kostanich of the 

Statistical Methods Division. They were developed in 1977, about the middle 



indicating that the correlation structure of the sampling errors can be 

approximated by the model 

(l-.6B)et - (l-.3B)ct (5.6) 

with the variance of et being given by equation (5.3). Since the composite 

estimates are design unbiased, it is reasonable to assume that the stochastic 

process (et) is uncorrelated with the process (et). It remains to specify the 

general form of the model for et. In doing this we can be guided by the 

correlation structure of the observed data, Yt, bearing in mind that the 

correlations of Yt and its differences are determined by the structures of 

both 8, and et. 

* The ACF of Yt fails to die out, suggesting the need to first difference 

the data. 
* 

The ACF of the first difference of Yt exhibits a persistent 

periodic pattern suggesting the need for an additional seasonal difference of 

8, to achieve stationarity. The autocorrelations of (1-B)(l-B12)Yt are 

reported in Table 5. The most prominent features are the autocorrelations at 

lags 1 and 12 suggesting the model (1-B)(l-B12)Yt - (1-alB)(1-a12B12)at may be 

appropriate. Based upon these considerations, we tentatively assumed that a 

reasonable model to approximately describe the correlation structure of 6' is 
t 

(l-B)(l-B12)et - (l-rllB) (l-v12B 
12 

)bt. (5.7) 

This choice is also based upon our experience that models of this form have 

proven to be appropriate in describing the correlation structure of many 

seasonal time series. 

Time Series Model Estimation and Checking 

Thus, we take as a model for the observed Yt; 

(1) Yt - et + et 

(2) (1-B)(l-B12)St - (1-qB)(1-q12B12)b 
t 

(3) (l-.6B)et - (l-.3B)c 
t 

(5.8) 
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of our time series, and so are reasonable for use with our data. Slightly 

different coefficients may be more appropriate for more recent data. Thus, 

the estimated variance of the error is a nonlinear function of the estimated 

level and is not constant over time. This creates the need to consider 

parameter estimation and signal extraction methods that allow for a changing 

sampling error variance. One way to deal with this problem is by use of a 

Kalman filter algorithm to evaluate the likelihood for its maximization for 

parameter estimation, and to use a Kalman smoother to compute the signal 

extraction estimates. 

If Yt - Bt + et where each of the components follow AKIMA type models, it 

is straightforward (see, e.g., Gersch and Kitagawa, 1983) to write these in 
a 

state space form 

X 
-t+l 

- F2Ct + Gvt (5.4) 

yt - HtXt (5.5) 

(Note that in our problem there is no added error in equation (5.5)). Then 

given observations Yl,... ,Yn one can use the Kalman filter algorithm to 

evaluate the likelihood function (see Jones, 1985) and use a standard 

nonlinear optimization routine to find the parameters that maximize the 

likelihood function. In our particular case, the matrix Ht in the measurement 

equation (5.5) will not be time invariant because one element of H 
t 
will be 

the standard error of e 
t' 

which depends on Y 
t' 

Once the parameters have been 

estimated, the Kalman filter and a fixed interval Kalman smoother (see 

Anderson and Moore, 1979) can be used to compute the signal extraction 

estimates and their variances. 

Time Series Model Identification 

In this example we are assuming that the observed values, Yt, are the sum 

of a true value 0 
t 

and a sampling error e 
t' 

We have external information 
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with (0,) uncorrelated with (et) and Var(et) given in (5.3). We need to 

2 
estimate the parameters vl, q12, and ab from the observed teenage unemployment 

data, (Y,). This was done by numerically maximizing the likelihood function 

under the assumption of Gaussian errors. This particular model has the 

unusual features that one of the component models has known parameter values 

and a known variance that is changing over time. Because of these features, 

as discussed earlier, the likelihood function was evaluated using a Kalman 

filter algorithm. The maximum likelihood estimates are 
h h 

y - .26 o12 - -78 
^2 
ab 

- 3931 

A time series plot of the residuals from the model revealed no reason to 

. question the model. The autocorrelations of the residuals reported in Table 6 

are all smaller than two times their standard errors, and the Ljung-Box Q 

stat.stic (Ljung and Box, 1978) computed for 24 lags is 24.6, well below the 

.05 critical value of 33.9 for a chi-squared distribution with 22 degrees of 

freedom. Thus, examination of the residuals gives no reason to question the 

validity of the model. 

SiPnal Extraction Estimates 

A Kalman fixed interval smoother was used to compute the signal 

extraction estimates and their variances, using the model (5.8) with the 

estimated parameters, and equation (5.3) for Var(et). The signal extraction 

estimates are plotted along with the usual composite estimates for the last 

100 observations in Figure 5a. The seasonal difference (l-B12) of the signal 

extraction estimates and the seasonal difference of the composite estimates 

are plotted in Figure 5b. It is apparent from these figures that there is a 

difference in these two estimates and that the signal extraction estimates are 

smoother than the composite estimate. 

The standard errors of both the last 100 signal extraction estimates and 



the last 100 composite estimates are plotted in Figure 6a. They both vary 

over time, with the standard errors of the signal extraction estimates being 

uniformly smaller than the standard errors of the composite estimates. Figure 

6b shows the ratios of the signal extraction to the composite standard errors. 

As a rough measure of the average improvement, the geometric mean of these 

ratios is .79, reflecting about a 21% reduction in the standard error, or a 

38% reduction in the variance due to signal extraction. From Figures 6a and 

6b it is also apparent that the difference in standard errors is smaller near 

the end of the data. This behavior is to be expected since at the end of the 

series the signal extraction estimates cannot make use of future data. 

. 
This example shows some of the complexities involved with applying signal 

extraction ideas when the variance of the sampling errors is known to be 
* 

changing over time. The example also illustrates the potential improvements 

that are possible by incorporating time series methods in estimating the 

monthly values for this important time series. 
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SINGLE FAMILY HOUSING STARTS 
Four Regions and Total U.S. 

. 

Table 1 
Averaged Relative Sampling Variance and Lag Correlations 

Lag 
Region Rel Var 1 2 3 4 5 6 12 

NE .007617 .038 .066 -.067 .008 -.019 .063 .089 
Mw .002829 -.136 .Oll .014 .031 .021 .035 .047 
so .001366 -.027 .031 .107 .073 .080 .112 .116 
WE .002534 -.208 -.043 -.021 -.032 .004 .OlO -.002 
us .000706 -.038 .017 .031 .027 .029 .080 .084 

Table 2 
Parameter Estimates for Time Series Model (5.1) 

h h h 

Region 
^2 

'11 112 1112 
u 
a 

NE .48 (.06) .15 (.06) .79 (.04) .03267 
* Mw .44 (.06) - .89 (.03) .03904 

so .38 (.06) - 1.00 - .01096 
WE .29 (.06) - 1.00 - .01739 
us .21 (.06) - 1.00 - .00837 

Table 3 
Original and Signal Extraction Estimates 

Relative Variances and Coefficients of Variation 

NE .007617 .005020 .66 .087 .071 .81 

Mw .002829 .002470 .87 .053 .050 .93 
so .001366 .001118 .82 .037 .033 .90 
WE .002534 .001744 .69 .050 .042 .83 
us .000706 .000607 .86 .027 .025 .93 
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TEENAGE UNEMPLOYMENT 

Table 4a 
Teenage Unemployment Sampling Error Autocorrelations 

Lag 1 2 3 4 5 6 7 8 9 10 1112 
Correlation .35 .24 .14 .08 .03 .Ol .02 .Ol .02 .06 .Ol .08 

Table 4b 
Autocorrelations for an ARMA (1,l) Model with 4 = .6 and q = .3 

Lag 1 2 3 4 5 6 7 8 9 10 1112 
Correlation .34 .20 .12 .07 .04 .03 .02 .Ol .Ol .oo .oo .oo 

Table 5 

. Teenage Unemployment -- Autocorrelations of (1-B)(l-B12) Yt 

Lag 1 2 3 4 5 6 7 8 9 10 1112 
Correlation -.34 .03 -.02 .04 -.03 -.Ol -.08 .24 -.lO .09 .04 -.32 

Lag 13 14 15 16 17 18 19 20 21 22 23 24 
Correlation .16 -.07 .07 -.17 .04 .08 .14 -.20 .06 .02 .07 -.17 

Table 6 
Teenage Unemployment -- Autocorrelations of Standardized Residuals 

from Model (5.8) 

Lag 1 2 3 4 5 6 7 8 9 10 1112 

Correlation -.02 .04 .04 .09 .02 .ll .12 .16 -.Ol .08 -.ll .08 
Std. Error .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 

Lag 13 14 15 16 17 18 19 20 21 22 23 24 
Correlation -.05 -.03 .09 -.13 -.02 .09 .13 -.ll .oo -.03 -.02 -.lO 
Std. Error .09 .09 .lO .lO .lO .lO .lO .lO .lO .lO .lO .lO 
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