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AN ALTERNATIVE FORMULATION OF CONTROLLED ROUNDING 

ABSTRACT 

In this report we introduce a technique for controlled rounding which allows a 

non-zero multiple of the base to either increase or decrease by the value of 

the base. In the more standard definition of controlled rounding a non-zero 

multiple of the base can increase but not decrease. We display the step-by- 

step procedure for finding controlled roundings under this new definition and 

contrast this procedure with the more standard methods. 

- I. INTRODUCTION 

*The objective of.this report is to introduce a technique for controlled 

rounding that allows a non-zero multiple of the base to either increase or 

decrease by the value of the base. In the more standard definition of 

controlled rounding a multiple of the base can increase by the value of the 

base, but not decrease, see Cox and Ernst (1982) and Cox (1982). In this 

section we define what is meant by a controlled rounding in general and 

contrast the two formulations with regards to non-zero multiples of the 

base. In the solution of a controlled rounding problem there is an underlying 

network; and for each of the two procedures the networks employed are slightly 

different both with respect to arcs and costs. In Section II the two methods 

are worked through step-by-step to show how they differ, and examples of each 

procedure are provided to contrast performan ce. 

We begin by stating the problem, establ 

and defining a controlled rounding. Given a 

additive table of non-negative integers 

ishing notation and terminology, 

positive integer band an 



-2- 

“00 a01 a02 l ** aoc 

a10 a11 a12 ‘** a1c 
A= a20 a21 a22 l ** a2c 

. . . . . . . 

. . . . . . . 

. . . . . . . 

aRO aR1 aR2 l ** aRC 9 

that is, 

C 
1 aij = aiO i=l,...,R 

j=l 

R 
1 aij = aoj j=l,...,C 

i=l 

a >o 
ij - 

i=l ,..., R and j=l,..;,C 

a controlled rounding, B of A, is an additive table 

boo I b01 b02 l ** 4⌧ 

b10 bll b12 l ** blC 

b20 b21 b22 l *’ b2C 
B = . . . . . . . 

. . . . . . . 

. . . . . . . 

bRO bR1 bR2 0.0 bRC 

where 

C 
1 bij = biO i=l,...,R, 

j=l 

% bij = boj j=l,...,C, 
i=l 
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b ij = bmij for mij a non-negative integer, and 

(1) lbij - aijl 2 b for i=O,...,R and j=O,...,C. 

Replacing (1) above by 

(2) lbij - aijl < bs 

we say B is a zero-restricted controlled rounding of A. Replacing (1) by 

lbij - aijl 5 b if aij > 0 

(3) . 
b 
ij 

=o if aij = 0, 

we cay B is a weakly zero-restricted controlled rounding of A. 

All two dimensional tables have zero-restricted controlled roundings, and 

under many circumstances one prefers a zero-restricted controlled rounding 

rather than one that is not zero-restricted, for example, in order to obtain 

an unbiased controlled rounding, see Cox (1987). When seeking a controlled 

rounding which is minimal with respect to some measure of closeness, zero- 

restricted controlled roundings will not suffice, as will be discussed in 

Section III. 

The definitions above differ from those more commonly considered -- see 

Cox and Ernst (1982) and Cox (1987). Under the definition of controlled 

rounding as in Cox and Ernst, instead of (1) above, one has 

(1’) bij = Caij/bIb or [aij/bIb + b* 
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where [x] represents the greatest integer less than or equal to X. The notion 

of zero-restricted controlled rounding remains the same, but for a counterpart 

of weakly zero-restricted controlled rounding, one replaces (3) by 

[aij/b]b or [aij/b]b + b if a.. > 0 
(3’) bij = ‘J 

0 if a.. = 0. 
1J 

That is, under the usual definition of controlled rounding, a mulitple of the 

base aij can remain as either aij or go to aij+b. For the definition above, a 

non-zero multiple of the base, aij, can go to either aij - b or aij + b. Of 

course, if zero is to change, it can only go to b since a controlled rounding 

is always positive. w The added definition, weakly zero-restricted, recognizes 

the special role of zero -- zero is always to remain fixed, but a non-zero 

multiple of the base can either increase or decrease by the value of the base. 

We first go though a step by step procedure for finding a traditional 

controlled rounding conforming to (l'), (2), or (3') -- incorporating a step 

in which the problem is reduced to the solution of a zero-one network flow 

problem. That procedure is then contrasted with one for finding a controlled 

rounding under the new definition conforming to (l), (2) or (3). In the 

latter case, we also incorporate the step of solving an alternative zero-one 

network flow problem. For a discussion of the two dimensional problem and 

many of the steps in Section II, we refer the reader to Cox and Ernst (1982) 

and Cox (1987). For a discussion of network flows as will be used in this 

report, see Gondran and Minoux (1984). 

II. STEP-BY-STEP PROCEDURE FOR SOLVING THE TWO DIMENSIONAL CONTROLLED 

ROUNDING PROBLEM 

A. Controlled rounding under definition that bij = [aij/b]b or [aij/b]b + b 

First reduce the problem modulo the base. That is, write 

A= bD + R 

where D and R are RxC matrices and 



-5- 

'ij = bdij+ rij 

where 0 < r.. < b for i=l,...,R and j=l 
- 1J ,***, c. 

Define 

I 

and 

d i0 .jfldij 
= 

dOj 
=;d 
i;l ij 

do0 = ; f ‘d.. = ; diO = f d 
i-1 j=l ‘J it1 j=l Oj 

i=l 9.*** R 

j=l C s***s 

C 
riO = 1 r.. 

j-1 'J 
i=l s**** R 

% = iflri j 
j=l C s***I) 

rOO = F f rij = F riO = F 
i=l j=l i=l jil % ’ 

With these definitions, one obtains additivity of the followiny system of 

tables -- including the marginal positions: 
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a00 a01 a02 l * l aoc do0 do1 do2 l ** dot roe r01 r02 l *' rOC 

a10 “11 a12 l -* dlC d10 dll d12 l ** %C r10 r11 r12 l *’ r1c 

90 a21 a22 l ** a2c d20 d21 d22 l ** d2C r20 r21 r22 . . . r2C 
. . . . . . . = (b) . . . . . . . + . . . . . . . 

. I . . . . . . . I . . . . . . . I . . . . . . 

. . . . . . . . . . . . . . . . . . . . . 

'R() aRl aR2 l =. aRC dRO dR1 dR2 l ** dRC rRO rR1 rR2 . . . rRC l 

If S is a (zero-restricted, weakly zero-restricted) controlled rounding of the 

last table on the'right, the sum 

B = bD+S 

is a*(zero-restricted, weakly zero-restricted) controlled rounding of A. 

Thus, our objective is to form a controlled rounding of R, and we 

observe r.. < b for i=l ,..., R and j=l,..., C. 

FollA&ng Cox and Ernst, "fold-in" the RxC table to form an R+l by C+l 

table C by adding a slack row and slack column. That is, - 

. . . ... . . 

. . . ... . . 

. . . ... . . 

'RO CR1 CR2 . . . CRC cR ,C+l 

CR+1 ,0 CR+l,l CR+1,2 l ** CR+l,C CR+1 ,Ctl 

where 

‘ij = rij i=l ,...,R and j=l,...,C 

Ci ,c+l = IItjfl Cij )/bib + b -jilCij 
= 

i=l s***B R 



CR+l,j = CCiFl Cij)/bIb ' b -iflcij 
f 

‘Rtl ,Ctl 
=; “r c.. 

i=l jZ1 'J 

- C( ~ F: Cij)/bIb 
ii1 jil 

Cio = C( ~ Cij)/b]b + b 
j;l 

Ctl 
= 1 'ij 

j=l 
i=l 9**** R 

. 'Oj = C( ~ 
i;l 

cij)b/]b t b 

I 

Rtl 
= 

iil 'ij 
j=l C s-*-s 

C+l 

‘R+l,O = c j=l ‘R+l,j 

Rtl 

‘0,Ctl = ipl ‘i ,Ctl 1 

R+l Ctl Rtl Ctl 

coo= c c =c 
i=l j=l 

'ij 7 i=l 'i0 = j;l 'Oj l 

j=l C s*‘*s 

Note that at this stage all marginal values of C are multiples of 1 and Lx] 

refers to the greatest integer less than or equal to x. 

Let us take a 4x4 table and follow the steps through to this point. 

Letting the base b=3 and 
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119 24 40 18 37 102 21 33 15 33 17 3 7 3 4 

A= 15 4 8 3 0 3D= 12 3 6 3 0 R= 

41 7 13 1 20 36 6 12 0 18 5 1 1 1 1 

19 1 5 9 4 15 0 39 3 4 1 2 0 1 

44 12 14 5 13 39 12 12 3 12 

t 3 1 2 0 0 

5 0 2 2 1 

it is easy to see that 

A= 30 + R. 

In addition: 

36 6 9 6 6 9 

6 1 2 0 0 3 

c = 611121 

612012 

602211 

12 3 2 3 2 2 . 

Our objective is to reassign values for Cij for i=l,...,R+l and j=l,...,Ctl 

from the set {O,3) (in general, from the set {O,b) ) to maintain additively to 

the marginals. Having done this , and calling the new table F (with the same 

marginals as C), we observe that 

Coo Co1 Co2 . . . cot Co ,C+l 

Cl0 fll f12 l ** flC fl ,Ctl 

C20 
F = . I 

f21 f22 ‘** f2C f2 ,Ctl 
. . . . . . . 

. I . . . . . . . . I . . . . . . . 

CRD fR1 fR2 l ** fRC fR,C+l 

CRt1 ,0 fRtl,l fR+l,l l ** fR+l,C fR+l ,Ctl 

is a controlled rounding of C. 

In particular, we solve the following system of equations for fij: 
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Ctl 
= Cio i=l,...,Rtl 

R+l 
$1 fij = cOj j=l,...,C+l 

f 
ij E {O,b) .i=l ,...,R+l and j=l,...,C+l. 

This system does have a solution, (see Cox and Ernst) and an easy way to 

obtain one is to find a saturated flow across the complete directed bipartite 

network shown in Figure 1, see (Cox, Fagan, Hemnig, Greenberg (1986) and 

Gondran and Minoux (1984)). In this network nodes correspond to marginal 

constraints, all arcs flow from left to right, and the directed arc between 

. node nio and nUj corresponds to cell (i,j). 

* ROWS 
COLUMNS 

=R+I,O /b /b 

FIGURE 1 



The nodes on the left correspond to sources, nodes on the right 

correspond to sinks, supplies and demands (marginal values) are shown 

alongside each source and sink respectively, each arc has upper capacity equal 

to one, and all arcs are directed from left to right. A saturated flow does 

exist, and we set fij equal to the flow over arc (ni0, floj) times k 

The table 

foe 1 f01 f02 . . . f oc 

* 

f10 fll 
s = f20 f21 

. . 

. . 

. . 

fRO fR1 

where C 
f 
i0 = 1 fij 

j=l 

=; f 
fOj i=l ij 

fO() = i! E fij 
i=l jfl 

f12 . . . flC 

f22 . . . f2C 
. . . . . 

. . . . . 

. . . . . 

fR2 . . . fRC 

i=l ,***, R 

j=l R ,***, 

R C 

= C fiO 
i-l 

= JL1 fOj 
-= 

is a controlled rounding of R. To see this, one need only show that 

l'ij -fijl 2 1 for i=O,...,R j=O,...,C. 

(a) For i=l,..., R j=l,...,C: 

rij = Cij SO (rij-fijl = lCij-fijl 2 1 l 
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(b) For i=l,...,R: 

C 
CiO = 1 cijt ~~,~+l, and since 

j=l 

C 

'i0 = f i0 •t f ictland xc..=riO 
, j=l ‘J , 

f 
i0 - riO = ‘i,C+l 

- f 
i,C+l. Thus, 

If iOmriOl = I’i,C+l - fi,C+ll I ’ l 

. 

,(c) For i=l,...;R: 

If ojBr()jl 2 ’ as in (b) above . 

(d) Lastly: coo = f! c: '*' + c,,C+l + CR+l,O ii1 jil ‘J - ‘Rtl,Ctl and 

‘o()= ! ff*- +coc+l +CR+lO-fR+l&l. is1 j-1 ‘J , , , 

But ! f f =foO and % 5 c..= roO 
i=l j;l ij i=l j=l 'J , 

so 
'00 = “00 + ‘O,C+l + ‘Rtl,O - ‘Rtl,Ctl , 

and 
'00 = foe + %,c+l - CRtl,O - fRtl,Ctl . 

Hence "00 - foO = CRtl,C+l - fRtl ,Ctl 
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and la ()(&I L 1. 

In each of the cases above, it is easy to see that if aij is a multiple of the 

base, aij- bij = 0 or b. 

Letting 

B = .bD+S 

A-B = bD+R - (bD+S) = R-S, so 

aij-bij = rij-Sij i=O ,...,R j=O,...,C, 

hence B is a controlled rounding of A when S is a controlled rounding of R. 

To explicitly relate the 

(a) for i=l,...,R 

f. .=l 
1J 

then 

fij'0 then 
a 

(b) for i=l,...,R 

f i ctl=l then 

fi:C+1'0 then 

(c) for j=l,...,C 

fR+l,j'l then 

fR+l,j=O then 

values fij with the corresponding bij note that if: 

j-1 C ,--0, 

b ij= [aij/b]b+b 

b ij= Caij/bIb 9 

b io= CaiO/bIb 

b io= Caio/bIb+b 9 

bOj = Caoj/bIb 
bOj= [aOj/b]b+b , 

(d) fR+l,C+l'l then boo= CaoO/blb+b 

fR+1,C+l=D then boo= CaoO/blb . 

itrarily assigned to arcs, an arbitrary 

. To obtain a weakly zero-restricted 

If costs in the network are arb 

controlled rounding will be obtained 

controlled rounding, arcs correspond 

zero-restricted controlled rounding, 

ing to zeros are removed. To ensure a 

arcs corresponding to multiples of the 

base in the interior or grand total of the table are removed, and in other 

marginal positions they are given a lower capacity of one. 

To set up the network for a sample controlled rounding problem base 3, 

let 



. A= 'v, so 3lI=.w, 

The network to find a base 3 controlled rounding, F of C, is shown in 

Figure 2 with a flow displayed by each arc. 

coLuMm 

I 2 

1 

3 

ROWS 

FIGURE 2 

The arc corresponding to the zero cell of A, cell (2,1), has been omitted from 

the network to force a weakly zero-restricted controlled rounding. To force a 

zero-restricted controlled rounding, the arc corresponding to a non-zero 

multiple of the base, 9 in cell (1,3), has also been omitted and the arcs 

.I 
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corresponding to marginal multiples of the base have a lower capacity of 

one. Interpreting the saturated flow through this network in terms of a base 

3 controlled rounding, F of C, and from that to a zero-restricted controlled 

rounding, B of A, yields: 

-F='F B=*. 

To continue with the base 3 example started earlier: 

w 119 24 40 18 37 102 21 33 15 33 

15 4 8 3 0 12 3 6 3 0 

Ai 41 7 13 1 20 30 = 36 6 12 0 18 

19 1 5 9 4 15 0 3 9 3 

44 12 14 5 13 39 12 12 3 12 

17 

3 

R 5 = 

4 

5 

3 7 3 4 36 

12 0 0 6 

1 1 1 2 C= 6 

1 2 0 1 6 

0 2 2 1 12 

69669- 

1 2 0 0 3 

1 1 1 2 1 

1 2 0 1 2 

32322. 

Our objective is to obtain a controlled rounding, F of C, extract the upper 

left RxC subtable, derive marginals to obtain a controlled rounding S of R, 

and form 

B =3DtS 

which will be a controlled rounding of A. Below are three controlled 

roundings, F of C, the corresponding controlled rounding, S of R, and finally 

the base 3 controlled rounding, B of A (which was our objective all along). 
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Bi 

1. 

36 6 9 6 6 9 

603003 

630030 

603003 

600330 

12 3 3 3 0 3 

120 24 39 18 39 

15 3 9 3 0 

42 9 12 0 21 

18 0 6 9 3 

45 12 12 6 15 

2. 

. 

t 18 63003 63300 3 30300 0 6 6 0 3 3 0 3 120 213 42 39 18 27 12' 6 6 39 12 15 9 3 18 9 6 0 3 36 18 12 0 6 

t 18 60330 6 30003 30300 3 3 9 3 0 3 0 3 120 45 210 39 15 24 15 6 3 42 15 15 6 6 12 18 3 0 3 18 12 36 3 3 

One can see that each of the tables in the "8" column is a controlled 

rounding of A. We note that Bl is a zero-restricted controlled rounding, 

B2, is weakly zero-restricted, and 83 is the only table in which a true zero 

is given the value 3. In all, a wide range of possible roundings exist. 

B. Controlled rounding under defintion that Iaij - bij I 2 b 

In this section, we define a controlled rounding to have the property 

where zero-restricted and weakly zero-restricted are defined as earlier. 
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The broad outline of this approach will be very much like that above. As 

before, reduce the problem by writing 

A =bDtR 

where D and R are RxC matrices where 

dij = rij' 0 if aij= 0 

otherwise write 

aij = “ij + Pij 0 < r.. < b for i=l 
1J - 

,..., R and j=l,..., C. 

It is important to observe that the range on rij is 

0 < r.. < b 
1J - 

whereas in the previous procedure the range as rij was 

0 5 rij < b. 

Define the tables D and R exactly as earlier, and form a controlled 

rounding, S of R. The sum 

B= bD + S 

will then be a controlled rounding of A. To find S, begin by introducing a 

slack row and a slack column to "fold-in" R to form the R+l by 01 matrix C 

exactly as earlier with the single exception that 

'+tl,Ctl = rci!l Cj,C+l)/blb + b - iil 'i,Ctl f 

C C 
=CC~ c j=l Rtl,j)'b3b ' b - 1 

j=l �R+l,j l 
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For the base 3 example introduced earlier: 

119 24 40 18 37 

15 4 8 3 0 

A= 41 7 13 1 20 

19 44 1; 1: g 4 5 13 

26 6 7 9 4 

6 1 2 3 0 

R= t 5 1 1 1 2 

7 1 2 3 1 

8 3 2 2 1 

93 ! 18 33 9 33 

93600 

30 = 36 6 12 0 18 

12 0 3 6 3 

36 9 12 3 12 

45 9 9 12 6 9 

912303 

C =611121 

912312 

932211 

12 3 2 3 2 2 . 

In ieneral, form a controlled rounding, F of C, where 

f 
{O,b,2b) if Cij is a non-zero multiple b 

ij ' 
EO,bl otherwise, 

for i=l ,..., R+l and j=l,..., Ctl. That is, solve the following system of 

equations for fij: 

C+l 
C fij f ‘i0 

j=l 

R+l 
1 fij= coj 

i=l 

i=l ,...,R+l 

j=l.=,...,C+l 

{O,bl if c.. < b 
f ij' 

1J 

CO,bJW if c.. = b , 
1J 
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for i=l,...,R+l and j=l,...,C+l. This system does have solutions each of 

which corresponds to a saturated flow through the network in Figure 3. Nodes 

correspond to marginal constraints and arcs between node nio and noj 

correspond to cell (i,j). In this network, if amn is a non-zero multiple of 

the base there will be two arcs between the pair of nodes nmo and no,, , 

otherwise there is exactly one arc between those nodes. That is, if cell 

(m,n) of table C equals 1, that is, cmn = 1, then there are two arcs between 

row node m and column node n. 

ROWS coLums 

FIGURE 3 



. 

The nodes on the left correspond to sources, nodes on the right correspond to 

sinks, supplies and demands are shown alongside each source and sink 

respectively, each arc has upper capacity equal to one, and all arcs are 

directed from left to right. Set fij equal to the total flow between nodes 

ni0 and nOj times L To obtain an arbitrary controlled rounding, set all 

costs arbitrarily. To obtain an arbitrary weakly zero-restricted controlled 

rounding, all arcs corresponding to true zeros are removed from the network 

(so f.. = 
‘J 

0 for these arcs) and all other costs are set arbitrarily. To 

obtain a zero-restricted controlled rounding, remove all arcs corresponding to 

zero cells and for arcs that do not correspond to cells which are a multiple 

of the base, let the cost equal zero. If a cell is a non-zero multiple of the 

base, let one of the arcs have cost -1 and the other arc have cost +l. This 

assignment will encourage the flow of exactly one unit between the pair of 

nodes corresponding to a non-zero multiple of the base and make it equally 

costly to send no units as to send - units, thus encourage non-zero 

multiples of the base not-to change. Since a zero-restricted controlled 

rounding always does exist, this will find such a controlled rounding. 

We define the table S as before and observe that S is a controlled 

rounding of R (according to the new definition) by adapting the proof in 

Section A above and 

B= bD + S 

is a controlled rounding of A. One can see that for cells which are either 

zero or not a multiple of the base in A, if: 

(a) for i=l,...,R j=l,...,C 

f.. rl 
1J then bij = [aij/blb+b 

f.. =(-J 
1J then bij = Caij/blb 9 

(b) for i=l,...,R 

fi,C+l ~1 then bi0 = [aiO/b]b 

fi,C+I ~0 then bi0 = [aiO/b]b+b , 

(c) for j=l,...,C 

fR+l,j ~1 then bOj = [aOj/b]b 

fR+l,j then = , 
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(d) fRtl ,Ctl 11 then bD0 = [aij/blb+b 

fR+l,C+l =O then bO0 = Caij/blb . 

For cells which are non-zero multiples of the base, if: 

(a) for i=l,...,R j=l ,***, C 

f.. =2 
1J 

then bij = aij+b 

f.. =I 
1J 

then bij = aij 

f ij =o then bij = aij-b, 

(b) for i=l,...,R 

w fi,C+l -2 then bi0 = aiO-b 

fi,c+l -1 then bi0 0 ai 

* fi,C+l -0 then bi0 = aiO+b, 

(c) for j=l,...,C 

fR+l,j ~2 then bOj = aOj-b 

fR+l,j ~1 then bOj = aOj 

fH+l,j ~0 then bOj = aOj+b, 

(d) fR+l ,C+l' 2 then bO0 = aOO+b 

fR+l,C=l' 1 then bOD = a00 

fR+l,J+l= 0 then bO0 = aOO-b . 

To set up the network for the base 3 sample problem used earlier, let 

29 7 6 16 

A= t- 21 7 5 9 

8 0 1 7, so 

3D='F, R=c, and ciF 

. 
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. 

The network to find a controlled rounding for C is shown in Figure 4 with 

a flow displayed by each arc. Note that each arc is directed from left to 

right. For each pair of nodes having two arcs between them, assume the upper 

arc has cost -1 and the lower cost +l, all other arcs have cost zero. 

COLLJMNS 

ROWS 

FIGURE 4 



FIGURE 4 

The arc corresponding to the zero cell of A, cell (2,1), has been omitted from 

this network to force a weakly zero-restricted controlled rounding. To ensure 

a zero-restricted controlled rounding, the pairs of nodes corresponding to 

cells with a non-zero multiple of the base in A; namely, 

cell (0,2) with value 6 

cell (1,0) with value 21 

cell (1,3) with value 9, 

have two arcs between them; one with cost -1 and the other with cost tl. 

interpreting the saturated flow through this network in terms of a base 3 

controlled rounding, F of C, and then a base 3 zero-restricted controlled 

roundi;g, B of A, yields: . 

F=.E B=c. 

Contining with the base 3example used earlier, let 

119 24 40 18 37 93 18 33 9 33 

15 4 8 3 0 9 3 60 0 

A= 41 7 13 1 20 30 = 36 6 12 0 18 

19 15 9 4 12 0 3 6 3 ..-I 

*-I 44 12 14 5 13 36 9 12 3 12 

26 6 7 9 4 45 9 9 12 6-9 

6 1 2 3 0 

-t 5 1 1 1 2 

9 1 2 3 0 3 

R = 6 1 1 1 2 1 

7 1 2 3 1 c= 9 1 2 3 1 2 

9 3 2 2 1 1 

12 32322. 
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As above, our objective is to obtain a controlled rounding, F of C, extract 

the upper left RxC subtable with derived marginals which will be controlled 

rounding, S of R, and form 

B= 30 t S 

which will be a base 3 controlled rounding of A. Below are three controlled 

roundings, F of C, the corresponding controlled rounding, S of R, and finally 

the controlled rounding, B of A. 

Fi si Bi 

1’. 

. 45 1 9 9 12 6 9 
I 

9 0 3 3 0 3 

43 3 0 0 3 0 

9 0 3 3 0 3 

9 3 0 3 3 0 

12 3 3 3 0 3 

2’. 

451 9 9 12 6 9 
I 

9 I 3 3 3 0 0 

6 0 3 0 D 3 

9 

9 

12 

3’. 

45 
9 

6 

9 

9 

12 

3 0 3 3 0 

3 0 3 0 3 

0 3 3 3 3 

9 9 12 6 9 

0 0 3 3 3 

0 3 0 0 3 

0 3 6 0 0 

6 3 0 0 0 

3 0 3 3 3 

24 - 
6 

6 

6 

9 

27 - 
9 

3 

9 

6 

27 
6 

3 

9 

9 

6 6 9 6 

0 3 3 0 

3 0 0 3 

0 3 3 0 

3 0 3 3 

9 6 9 3 

3 3 3 0 

0 3 0 0 

3 0 3 3 

3 0 3 0 

6 9 4 3 

0 0 I 3 

0 3 1 0 

0 3 9 3 

6 3 4 0 

120 

15 

42 

18 

45 

120 

18 

39 

21 

42 

24 39 18 39 

3 9 3 0 

9 12 0 21 

0 6 9 3 

12 12 6 15 

27 39 18 36 

6 9 3 0 

6 15 0 18 

3 3 9 6 

12 12 6 12 

24 42 18 36 

3 6 3 3 

6 15 0 18 

0 6 12 3 

15 15 3 12 
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Note that the tables Bi are exactly those derived in the preceeding section so 

all remarks in that section apply; the tables Fi and Si, however are different 

from those earlier. Table Bll is a zero-restricted rounding, 828 is weakly 

zero-restricted, and B3' is neither. The objective of this little exercise 

was to show how this alternative definition plays out and to show (as one 

would expect) that every controlled rounding under the previous definition is 

a controlled rounding in the new definition. In fact, 

dij (old definition) = dij + 1 ,new definition) 

and 

fij (old definition) = fij - 1 (new definition) 

for>hose cells, aij which are non-zero multiples of the base for i = l,...,R 

and j = l,...,C. 

In the next few examples we show controlled roundings which conform to 

the new definition but not the old. We employ the same tables A, 0, R and C 

used earlier. 

4. 

45 

9 

6 

9 

9 

12 

5. 

45 

I 
t 

9 

6 

9 

9 

12 

Fi 

9 912 6 9 

0 0 3 0 6 

0 3 0 3 0 

0 3 3 0 3 

3 3 0 3 0 

6 0 6 0 0 

9 912 6 9 

3 3 0 0 3 

3 3 0 0 0 

3 0 6 0 0 

0 0 3 3 3 

0 3 3 3 3 

si 

24 3 9 6 6 117 

3 0 0 3 0 12 

6 0 3 0 3 42 

6 0 3 3 0 18 

9 3 3 0 3 45 

27 9 6 9 3 

6 3 3 0 0 

6 3 3 0 0 

9 3 0 6 0 

6 0 0 3 3 

120 

15 

42 

21 

42 

Bi 

21 42 15 39 

3 6 3 0 

6 15 D 21 

0 6 9 3 

12 15 3 15 

27 39 18 36 

6 9 0 0 

9 15 0 18 

3 3 12 3 

9 12 6 15 
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6. 

451 9 9 12 6 9 
I 

9 0 3 6 0 0 

6 0 3 0 0 3 

9 0 0 6 0 3 

9 3 0 0 3. 3 

12 6 3 0 3 0 

7. 

45 9 9 12 6 9 

9 3 3 0 0 3 

6 3 0 3 0 0 

9 3 3 0 0 3 . 
9 0 3 3 3 0 

12 0 0 6 3 3 
I 

8. 

451 9 9 12 6 9 
I 

9 0 0 0 3 6 

6 0 3 3 0 0 

9 3 3 3 0 0 

9 3 3 3 0 0 

12 3 0 3 3 3 

24 

5 

3 

6 

6 

27 

6 

6 

6 

9 

27 

3 

6 

9 

9 

Note that B4 throught B7 are all \ 

I , 
t 

3 6 12 3 

03 60 

03 00 

00 60 

30 03 

117 

18 

39 

18 

42 

9 9 6 3 

3 3 0 0 

3 0 3 0 

3 3 0 0 

0 3 3 3 

120 

15 

42 

18 

45 

6 9 9 3 

0 0 0 3 

0 3 3 0 

3 3 3 0 

3 3 3 0 

120 

12 

42 

21 

45 

i 
t 
I 

tieakly zero-restricted and 

21 39 21 36 

3 9 6 0 

6 15 0 18 

0 3 12 3 

12 12 3 15 

27 42 15 36 

6 9 0 0 

9 12 3 18 

3 6 6 3 

9 15 6 15 

24 42 18 36 

3 6 0 3 

6 15 3 18 

3 6 9 3 

12 15 6 12 

in B8 the 

zero cell (1,4) becomes a & In B4 all marginal multiples of the base 

decrease and interior multiples of the base do not change. In B5 all marginal 

multiples of the base increase or stay the same while non-zero multiples of 

the base both increase and decrease in the interior. The remaining tables 

illustrate additional variations. 
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MINIMIZING A MEASURE OF CLOSENESS 

Controlled rounding under definition that bij = [aij/blb or [aij/b'Jb+b 

Given a two way table A, Cox and Ernst (1982) seek a zero-restricted 

controlled rounding, B of A, which minimizes the objective function 

R C 
G1 = 1 1 laijmbijlP 

i=l j=l 

for llpL= . In this note, we confine our attention to the cases lg<=~ . For R 

as defined earlier it suffices to find a (zero-restricted) controlled 

rounding, S of R, to minimize 

and-form 

B =bDtS 

to obtain a (zero-restricted) controlled rounding which minimizes 

R C 
1 C laijBbijlP 
is1 j=l 

since 

“ij 
- bij = rij - Sij i=O ,..., R j=O ,..., C. 

Thus all computations can be done over R and since rij<b for i=l,...,R and 

j=l ,...,C we can divide all entries of R by b and assume without loss of 

generality that b=l and rij’l for i=l,...,R and j=l,...,C. By folding in R to 

form C, it suffices to minimze: 

Fi = % F Ic..-f..lR 
is1 jr1 1J ‘J 

subject to 
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C+l 
t4) jilfij = ‘10 

Rtl 
(5) 7 f.. = coj 

ii1 ‘J 

i=l ,...,Rtl 

j=l ,...,Ctl 

(6) fijE{O,ll i=l,...,R+l j=I,...,CtI 

(7) fij = Cij if CCijIzcij i=l,..., Rtl j=l,..., Ctl 

to obtain a zero-restricted controlled rounding of C which minimizes Fi . One 

. derives from table F as in Section II a zero-restricted controlled rounding, B 

of A, which minimizes 

I .R c 
iIl ☺I1 laijBbijlP l 

= -= 

As shown in Cox and Ernst, the controlled rounding which minimizes Fi will 

also minimize 

F1 = = ._ ,il Jfl((l-Cij)p-Lcij)p)fij 9 

and conversly. However, F1 is linear in the fij so we can take advantage of 

integer linear techniques. In particular , use the network in Figure 1 in 

which all arcs have upper capacity one and, 

(a) if Cij f 0, remove arc (flio,floj) 

(b) if Cij = 1, set lower capacity on arc (niO,nOj) 

equal to 1 

(c) the cost dij over arc (niO,nOj) is 

(l-Cij )‘-(Cij 1’ i=l,..., R j-l ,..., C 
d 
ij = 0 otherwise . 
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The minimal cost saturated flow over this network will yield a controlled 

rounding, F of C, and hence a zero-restricted controlled rounding, B of A, 

which minimizes, F1 and hence G1. 

The notion of closeness can be extended to include marginal positions. 

One can seek a zero-restricted controlled rounding, B of A, to minimize the 

objective function: 

G2 = t! 4 la..-b..lP . 
ii0 jio ‘J ‘J 

Employing arguments as above, forming R and finding a zero-restricted 

. controlled rounding, S of R, to minimize 

I F f lr..-s..IP 
i;o j-0 ‘J ‘J 

will yield a zero-restricted controlling of A, 

B = bD + S, 

which minimizes G2. Folding-in R to obtain C, a zero-restricted controlled 

rounding, F of C, which minimizes 

R+l C+l 
F; = iLl jL1/Cij-fijiP 

will produce, as in Section II, a zero-restricted controlled rounding, S of R, 

which minimizes 

This is proved in the Appendix by showing that the two objective functions 
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* 

Rtl Ctl 

ill JIIIcij =: .Z 
- fijIP and ifo jEolrij - sfjlp - - 

differ by a constant when R, C, S, and F are related as in Section II. By 

using techniques as in Cox and Ernst (1982) one can show that to find the 

zero-restricted controlled rounding, F of C, which minimizes F2 it suffices 

to find a controlled rounding which minimizes 

Rtl Ctl 
F2 = 

To find such a controlled rounding, use the network of Figure 1, as before, in 

which all arcs have upper capacity one and where now: 

. (a) if Cij = 0, remove arc (flio,floj), 

(b) if Cij = 1, set lower capacity on arc (niG,nGj) equal to 1, 

I (c) let the cost over arc (niG,nGj) be equal to ((l-cij)'-(cij)') for 

i=l ,...,R+l, jil,...,C+l. 

The minimal cost saturated flow over this network will yield a zero-restricted 

controlled rounding, F of C, which minimizes F2 and (as in Section II) a zero- 

restricted controlled rounding, B of A, which minimizes G2. 

The objective functions G1 and G2 are not equivalent, and in fact, if 

then under an integer (base 1) controlled rounding B1 minimizes G1 and B2 

minimizes G2, however, 61 does not minimize G2 nor does 82 minimize G1 as can 

be verified by direct computation. 

Only zero-restricted controlled roundings of a table A were considered by 

Cox and Ernst in minimizing either of the objective functions G1 or G2. Since 

zero-restricted controlled roundings are a proper subset of all controlled 

roundings, it is reasonable to expect that given a table A the minimum of G1 

or G2 over all controlled roundings will be strictly less that over only zero- 
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restricted controlled roundings. This is the case as is shown by the example 

below. Let 

3 314 314 314 314 4 1111 

3/4 3/4 0 0 0 1 1 0 0 0 

3/4 0 3/4 0 0 1 010 0 

A= 3/4 0 0 3/4 0 B3 = 

3/4 0 0 0 314 

t 1 0 0 1 0 

1 0 0 01 

and note that 83 is a (non-zero-restricted) controlled rounding of A. One can 

compute: 

Gl(Bl) = 4(1/4)P $031) = 12(1/4)' + 1. 

For any zero-restricted controlled rounding of A, the grand total, "00, must 

remain as 3, so exactly one column marginal and exactly one row marginal must 

equal 0. Thus, exactly one diagonal in A must equal zero. By a row and 

column exchange, the table 

3!0111 

0 0 0 0 0 

1 0 1 0 0 

B4= 1 0 0 1 0 

1 0 0 0 1 

is the unique zero-restricted controlled rounding of A. Thus the minima of Gl 

and G2 over all zero-restricted controlled roundings are realized at B4, and 

G1(B4) = 3(1/4)' + (3/4)' G2(B4) = 9( 1/4y + 3(3/4P . 

It is clear that 

for all pal and 
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for p = 1,2,3. Thus, in general, the minimum of Gl and G2 are not realized 

over zero-restricted controlled roundings. Note however that controlled 

roundings, 83 and B4 are both are weakly zero-restricted. It remains an open 

question as to whether Gl and G2 do achieve their minima over weakly zero- 

restricted controlled roun.dings. 

To formulate a linear approach to address non-zero-restricted controlled 

roundings, B of A, with respect to minimizing a distance function, we can 

'. focus on either G1 or G2 -- the analyses are comparable. Below we examine G2 

and couch the discussion in terms of F2 over C. The goal is to find a 

controlled rounding, B of A, to minimize: 

Rtl Ctl 
. 

This objective is equivalent to minimizing the linear function 

F2 = 

subject to (4), (5), and (6). This is most easily done by finding a minimal 

cost saturated flow over the network in Figure 1 where the cost on arc 

(nio9noj ) is 

(l-Cij)'-(Cij)' 

for i=l,..., Rtl and j=l,...,C+l. 

Note that a zero in C corresponds to an internal multiple of the base in 

A and a one in C corresponds to a marginal multiple of the base in A. To 

ensure a weakly zero-restricted controlled rounding of A, remove arcs from the 

network that correspond to true zeros in A (i.e., aij = 0). AS noted above, 

however, it is not clear that such a step is needed as controlled roundings of 

A that minimize G1 or G2 may always be weakly zero-restricted. 
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B. Controlled rounding under definition that lbij - aijlc b 

In this section, we examine the distance measure G2 under the extended 

definition of controlled rounding. A comparable analysis can be carried out 

for Gl. If A is a table, one seeks a controlled rounding, under the extended 

definition, B of A, which minimizes 

G2 = i9, jEo IbijmaijIP 

for lip<=. Since every controlled rounding under the extended definition is 

also a controlled rounding under the Cox-Ernst definition the minimum of G2 

- under the extended definition is less than or equal to the minimum under the 

earlier definition. Strict inequality holds as can be seen by considering the 

table I 

1 l/4 l/4 l/4 l/4' 

l/4 l/4 0 0 0 

l/4 0 l/4 0 0 

A = l/4 0 0 l/4 0 

l/4 0 0 0 l/4 

which has minima for G1 and G2 realized by the weakly zero-restricted 

controlled rounding under the extended definition, 

0 0 0 0 0 

0 0 0 0 0 

0 0000 

B= t 0 0000 

0 0000. 

3-t 

2-t 

As in Section A above, to find a control led rounding, B of A, to minimize 

G29 it suffices to find a controlled rounding, S of R, to minimize 

i%. jfolrij~sijlp~ P *t 
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To find the controlled rounding, S of R, to minimize this function it suffices 

to find a controlled rounding, F of C, to minimize 

R+l C+l 

E;’ = C C lcij-fijlP 
i=l j=l 

as can be seen by modifying the proof of the Proposition in the Appendix to 

fit the extended definition of controlled rounding. For the extended 

definition of rounding, as we pass from A to R and from R to C observe that 

rij - > 1 and a zero in R corresponds to a true zero in A and a one in the 

interior of R corresponds to a non-zero multiple of the base in A. Letting 

. 

T= {(i,j)E(R+l)x(C+l)lcij * 1) 

I S = {(i,j)E(R+l)x(C+l)lcij = 1) , 

the objective is to minimize: 

E;= , . (. 5, TICijmfijIp+ 1 
, E (i ,j )ES 

Il-(gij+hij)lP 

subject to 

(8) 
(i,J)cT 1, c 

Z fij +(. T, s(gij+"ij)z Cio i=l,...,R+l 

(9) (i,j eT fij +(i,~)ES(gij+hij)=cOj 
F 

j-L-4+1 

(10) fij *Sij ,hij c{O,l) i=l,...,Rtl j=l ,...,C+l . 

(Note that the sum gij+hij for (i,j )<, corresponds to the two arcs in Figure 3 

between (nio,noj) for (i,j)cS). 

We can replace the second Summand 1n E; by 
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if we add to (8)-(10) the additional constraint 

(11) hij 1. Sij for i=l,...,R+l j=l,...,C+l 

since 

Il-(gij+"ij)l=~'-(gij-hij)l 

subject to (10) and (11). But 

*'subject to (10) and (11) so 

* I l-(gij-“ij) 1 ‘=l-(gij-“ij ) 

subject to (10) and (11). Thus, 

E2 = (i j') T((l -Cij)P-(Cij)p)fij+ C (l+hij-gij) 
, c (i,j)ES 

subject to (8)-(11) is equivalent to E; subject to (8)-(lo), where IS( is the 

cardinality of the set S. 
. 

Note that hij and 9ij are symetric with respect to (8) and (9) and the 

value of Ei will always be less for 

hij ~0 and 9ij=l 

than for 

hij = 1 and 9ij = 0. 

Thus, the minimum of E; subject to (8)-( 11) is identical to the minimum 

of'E2 subject to (8).(10). That is, condition (11) is not needed. 
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Hence, to find a controlled rounding, B of A, under the extended 

definition to minimize G2 it suffices to find the minimum of E2 subject to 

W-W) l 
To find the minimum of E2 subject to (8)-(10) employ the network in 

Figure 3 and assign costs as follows 

(a) for (i,j)E T the cost on (niO,nOj) is equal to (l-cij)‘-(cij)’ 

(b) for (i,j)ES the cost on one of the arcs between niu and nOj 

is equal to -1 and on the other arc equal to tl. 

A minimum cost saturated flow over this network will yield a controlled 

rounding, F or C, leading to a controlled rounding, B of A, as in Section 

- II. By deleting all arcs from this network corresponding to zero cells in C, 

one obtains the weakly zero-restricted controlled rounding that minimizes G2. 

I 

c. Concluding Remarks 

In this section, we considered controlled roundings, B of A, to minimize 

either of the objective functions G1 or G2, either zero-restricted or not 

zero-restricted, and using either the Cox-Ernst definition of-controlled 

rounding or the definition introduced here. Similiarities have been examined, 

and examples have been provided to exhibit differences. The open question 

remains as to whether the minimum of G1 or G2 under any of the scenarios above 

can be achieved with a weakly zero-restricted controlled rounding. 

IV. SUMMARY 

In this report we extend the definition of controlled rounding to allow a 

non-zero multiple of the base to either increase or decrease by the value of 

the base. Under the more standard definition of controlled rounding (Cox, 

Ernst) a non-zero multiple of the base can increase but not decrease. We 

exhibited step-by-step method for finding two dimensional controlled roundings 

under this new definition and contrasted the methods and results with the 

usual definition. 

Procedures were developed to find controlled roundings of a table which 

minimize a measure of closeness-of-fit which can be applied under either of 

the two definitions for not-necessarily zero-restricted controlled roundings. 



Examples were provided to show that the "closest" controlled rounding of a 

table need not be zero-restricted and in fact, may be a rounding under the new 

definition but not the standard definition. The notion of weakly zero- 

restricted controlled rounding has been introduced -- under which a non-zero 

multiple of the base can change while zeros must remain zeros. It is an open 

question as to whether each of the measures of closeness examined in this 

report can be optimized over all controlled roundings by a weakly zero- 

restricted controlled rounding. 

The extended definition of controlled rounding and weakly zero-restricted 

introduced here for two dimensional tables can be applied to three (and 

higher) dimensional tables, see Fagan, Greenberg, and Hemmig (1988). 
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APPENDIX 

We freely use here the notation and conventions established in the body 

of the text. Let 

Ooo OUl a02 l l l aOC 

a10 all a12 l l l OLIC 
a = a20 a21 a22 l * l a2C . . . . . . . . . . . . . . 

aio aRi aR; : z : sic 

be an arbitrary RxC two-way table having a base 1 controlled rounding as 

. defined in Cox and Ernst (1982) 

I %I0 801 802 ’ l l 8oc 

810 %l 812 l l l 81c 

8 = 620 821 822 l l l 82c . . . . . . . . . , . . . . 
8io 8Ri 8~; : : ‘. 8ic . 

To find a linear expression for the distance measure 

R C 

I 7 IBij-aijI’ 
i=O j=O 

for l~pc=, we follow along the lines of Cox and Ernst. Letting 

--I 

D = c(i,j)l8ij=Caij ]I and U = {(i,j)lBij=[aij]+lJ )-* 

and 

- = aij-Caijl* "ij 

then 

i!o jE, IBij-aij I’ = 

= - 

~ (O,j)‘+ C (l-aij)’ 

D U 
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R C 

+ ! E ((aij)P-(l-~ij)P)Caijlt f i (Fij)� l 

i20 j=O i=f☺ j=O 

Similarly, 
w 

R C 
I ): Ifidj-aijIP = 

j=l j=l 
it.,l J~l(l-‘ii)p-(~ij )'Bij F ._ 
= - 

(If a.. < 1 for i=l,..., R j=l ,...,C then a.. = a.. and [a..]=O-, 

and this last equation reduces to equation'fl5) :i Cox anAJErnst.) Thus, if 

a and 8 are RxC tables 

(1) 

and if a and 8 are (Rtl) by (Ctl) tables 

(2) 

Rtl Ctl k)+l Ctl 
I 7 IBij-aijiP = - 
i=l j;l 

r ((l-~ij)P-(dij)P)8ij+K2 
I=1 j=l 

where K1 and K2 are constants. 

Given an RxC table A, write the tj31e sum 

A= D+R 
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where dij = [aij] and SO O(rij<l i=l,...,R j=l,...,C. If C is the "fold-in" 

of R then 

(3) Cij = rij i=l ,...,R j=l,...,C 

(4) Ci,c+l = Criol+l-ri0 i=l ,..*, R 

(5) CRtl,j = [rojl+l-roj j=l ,*-*, C 

(6) cRt1,Ctl = rOO +OO] 

and if F is a controlled rounding of C, then F induces a controlled rounding, 

'S of R, as in Section II of the text. Furthermore, every controlled rounding, 

S or R, can "fold-in" to a controlled rounding, F of C, where 
* 

(7) fij = Sij i=l ,..., R j=l,..., C 

t8) fi,Ctl = [rj o]+l-Si 0 

(9) fR+l,j = [rOj~tl-soj 

i=l ,**-, R 

j=l ,***, C 

(10) fRtl,Ctl = SOo-Cr001 . 

That is, there is a one-one onto correspondence between controlled roundings 

of R and those of C where the correspondence is through the mapping of "fold- 

in“ as indicated. 

Proposition: Given R and C as above and the correspondence between controlled 

roundings of R and of C, the controlled rounding S of R which minimizes 

corresponds to the controlled rounding F of C which minimizes 
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Rtl Ctl 
Hz(F) = 1 1 Ifij-Cij 1’ 

i=l j=l 

for lg+. 

Proof: Let S be a controlled rounding of R, F a controlled rounding of C, and 

assume S and F correspond as above. Note that 

Rtl Ctl 
7 7 ((LCijf -(cij)P)fij 

i<l jiZ1 
= ; ; ((l-c 
i=l j=l 

ij)pm(cij)P)fij 

+ ((l-c 
Rtl ,Ctl)p-(CRtl ,Ctl)p)fRtl ,Ctl 

= ; ; (( l-~ij)p-(~ij)p)si jt Kg 
i=O jzo 

employing relations (3)-(10) where K3 is a constant. Thus 

Rtl Ctl 
ill J~llfij~cijlP = R~l C~l((l-Cij)P-(Cij)P)fijt ‘2 

f ‘5 i=l j=l 

= F i Is..-rijlP-K1 t K2 t K3 , 
iso j=O 'J 
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using (l), (2) and the operations above. 

Thus, if S and F correspond as defined above, H1(S) and Hz(F) differ by a 

constant -Kl tK2 +Kj. Hence the rounding S of R which minimizes Hi(S) 

corresponds to the controlled rounding F of C wnich minimizes Hz(F), so the 

proof is complete. 
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