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AN ALTERNATIVE FORMULATION OF CONTROLLED ROUNDING

ABSTRACT

In this report we introduce a technique for controlled rounding which allows a
non-zero multiple of the base to either increase or decrease by the value of
the base. In the more standard definition of controlled rounding a non-zero
multiple of the base can increase but not decrease. We display the step-by-
step procedure for finding controlled roundings under this new definition and
contrast this procedure with the more standard methods.

I. INTRODUCTION

«The objective of -this report is to introduce a technique for controlled
rounding that allows a non-zero multiple of the base to either increase or
decrease by the value of the base. In the more standard definition of
controlled rounding a multiple of the base can increase by the value of the
base, but not decrease; see Cox and Ernst (1982) and Cox (1987). In this
section we define what is meant by a controlled rounding in general and
contrast the two formulations with regards to non-zero multiples of the
base. In the solution of a controlled rounding problem there is an underlying
network; and for each of the two procedures the networks employed are slightly
different both with respect to arcs and costs. In Section II the two methods
are worked through step-by-step to show how they differ, and examples of each
procedure are provided to contrast performance.

We begin by stating the problem, establishing notation and terminology,
and defining a controlled rounding. Given a positive integer b and an
additive table of non-negative integers




apo | 401 202 -+ 20C
a10 | 211 212 .- AC
A= agg| apy a2 ... ap
43R0 | 3R1 3R2 arc
that is,
C -
jzl aij = ai0 i=l,...,R
R
c.o= an. §=lyeesC
by 3 Ty
a5 2 0 i=1,...,R and j=1,...,C

a controlled rounding,

B of A, is an additive table

bog | bo1 bp2 ... bpc
bjo { b11 b12 ... byg
bzo | b21 b22 ... bz
B = * * L] aee ®
bro | PR1 DPR2 ... bRe
where
c
7 by, = b, i=1,40.,R,
je1 ij i0
R
b,., = bn.. i=1,...,C,
Zl 1 0j J



bij'= bmij for m; @ non-negative integer, and

(1) - aijl‘5 b for i=0,...,R and j=0,...,C.

|b, .
1]
Replacing (1) above by

() by

we say B is a zero-restricted controlled rounding of A. Replacing (1) by

we gﬁy B is a weakly zero-restricted controliled rounding of A,

A1l two dimensional tables have zero-restricted controlled roundings, and
under many circumstances one prefers a zero-restricted controlled rounding
rather than one that is not zero-restricted, for example, in order to obtain
an unbiased controlled rounding, see Cox (1987). When seeking a controlled
rounding which is minimal with respect to some measure of closeness, zero-
restricted controlled roundings will not suffice, as will be discussed in
Section III, ,

The definitions above differ from those more commonly considered -- see
Cox and Ernst (1982) and Cox (1987). Under the definition of controlled
rounding as in Cox and Ernst, instead of (1) above, one has

(1) bij = [aij/b]b or [aij/b]b + b.



where [x] represents the greatest integer less than or equal to x. The notion
of zero-restricted controlled rounding remains the same, but for a counterpart
of weakly zero-restricted controlled rounding, one replaces (3) by

(a,./b]b or [a../blb + b if a.. > 0
(3') b= M 1
L if a.. = 0.

That is, under the usual definition of controlled rounding, a mulitple of the
base aij can remain as either ajj or go to aij+b. For the definition above, a
~non-zero multiple of the base, ajj, can go to either ajj - b or aj; + b. Of
course, if zero is to change, it can only go to b since a controlled rounding
is always positive. The added definition, weakly zero-restricted, recognizes

the special role of zero -- zero is always to remain fixed, but a non-zero
muitiple of the base can either increase or decrease by the value of the base.

We first go though a sfep by step procedure for finding a traditional
controlled rounding conforming to (1'), (2), or (3') -- incorporating a step
in which the problem is reduced to the solution of a zero-one network flow
problem. That procedure is then contrasted with one for finding a controlled
rounding under the new definition conforming to (1), (2) or (3). In the
latter case, we also incorporate the step of solving an alternative zero-one
network flow problem. For a discussion of the two dimensional problem and
many of the steps in Section II, we refer the reader to Cox and Ernst (1982)
and Cox (1987). For a discussion of network flows as will be used in this
report, see Gondran and Minoux (1984).

I1. STEP-BY-STEP PROCEDURE FOR SOLVING THE TWO DIMENSIONAL CONTROLLED
ROUNDING PROBLEM

A. Controlled rounding under definition that bij = [aij/b]b or [aij/b]b +b
First reduce the problem modulo the base. That is, write

A =DbD +R

where D and R are RxC matrices and



aij = bd1j+ rij

where 0 ﬁ.rij <b for i=1,...,R and j=1,...,C.

Define
C
d. = Z d-. i=1,-oc,R
i0 jo1 1J
R
d . = Z d-. j=1,.oogc
0j y2p1d
© R C. R C
d D) =75 d, yd
00 i=1 j=1 ij =1 i0 j<1 0j
and ;
5
r.. = r,. i=1,...,R
i0 j=1 1
;
Ph: = r J=l,¢e.,C
03 4z ¥
L e d e ]
Fan = r;. = r.. = Fe: o
00 51 joa ij i1 i0 j=1 0j

With these definitions, one obtains additivity of the followiny system of
tables -- including the marginal positions:



agol ap1 202 .- A0C doo| do1 dp2 doc roo | ro1 ro2 roc
ajpl 211 212 ..e g digf 911 d12 dic 1011 r12 ric
3| a1 22 ... ayc dag| d21 d22 dac roo | r21 ra2 rac

) . coe .« = (b) . . + . . .
a d PR

RO| #R1  2R2 aRC dpo | dr1  dr2 dre rRo | FR1 R2 rRC -
If S is a (zero-restricted, weakly zero-restricted) controlled rounding of the

last table on the right, the sum

is a'(zero-restricted, weakly zero-restricted) controlled rounding of A.

B = bD+S

Thus, our objective is to form a controlled rounding of R, and we

observe rij

<b for i=l,...,R and j=1,...,C.
Following Cox and Ernst, "fold-in" the RxC table to form an R+l by C+l

table C by adding a slack row and slack column. That is,
€00 €01 €02 oo Coc 0,C+1
€10 €11 €12 cee ¢1c C1,c+1
C= ¢y 1 €22 oo cac C2,c+1
Cro CR1 CR2 cee CRC CR,C+1
CR+1,0 | CR41,1 CR+1,2 - CR+1,C CR+1,C+l
where
Cij = riJ i=l,...,R and j=1,...,C
c c _
i el " [(.Z cij)/b]b +b -7 Cij i=l,..4,R

j=1

j=1



R R
Cour s = L0 T c:)/bIb+b - c.. J=lyensC
Rrbd o Thap M i1 '
R C R C
¢ =y 7V ¢, -0CY T c;.)/blbd
T R O SR = U S B
c
;g = [ E C‘ij)/b]b +b
j=1
C+1
= : '=1,.00,R
jzl ClJ i
R
cos =[0I ciy)b/Bo + b
i=1
- R+1 : '
= 1'551 Cij j=lyee.,C
c+1
Re1,0 T Ly CRelg ‘
R§1
c = C.
0,041 T L, Ci,041
R+l C+l R+1 c+1
c = z ): C,. = z C.: = 2 CAh: o
00" 42 4o N4 0y W

il

EXYS

Note that at this stage all marginal values of C are multiples of b and [x]
refers to the greatest integer less than or equal to x.

Let us take a 4x4 table and follow the steps through to this point.
Letting the base b=3 and



119 | 24 40 18 37 102 1 21 33 15 33 171 3 7 3 4
15! 4 8 3 0 3= 12 3 6 3 0 R= 3112200
41 7 13 1 20 36 6 12 0 18 511 1 11
19 1 5 9 4 15 0 3 9 3 411 2 0 1
44 | 12 14 5 13 39 {12 12 3 12 510 2 2 1

it is easy to see that

A =30 + R,
In addition:
36 6 9 6 6 9
“ 611 2 0 0O 3
cC=96]1 11 2 1
611 2 0 1 2
610 2 2 1 1
1213 2 3 2 2 . B

Our objective is to reassign values for cj; for i=1,...,R+1 and j=1,...,C+]
from the set {0,3} (in general, from the set {0,b} ) to maintain additively to
the marginals. Having done this, and calling the new table F (with the same
marginals as C), we observe that

€00 €01 €02 «ee COC €0,C+1

10 fn 2 oo fic f1,c+1
€20 fa1 oo foc f2.C+1

F = * L ] * o e [ ] L ]
CRO fr1 fre oo fRe fR,C+1
CR+1,0 frRe1,1 FrR+1,2 «oo fRe1,c fRel,CH1

is a controlled rounding of C.
In particular, we solve the following system of equations for fij:



C+l
) fis=c¢

j'l J 10 1=1,oo.’R+1

R+1
izl fij = coj J=lyee.,C+1

fij e {0,b} .i=1,...,R+1l and j=1,...,C+l.
This system does have a solution, (see Cox and Ernst) and an easy way to
obtain one is to find a saturated flow across the complete directed bipartite
network shown in Figure 1, see (Cox, Fagan, Hemmig, Greenberg (1986) and
Gondran and Minoux (1984)). In this network nodes correspond to marginal
constraints, all arcs flow from left to right, and the directed arc between
. hode njg and noj corresponds to cell (i,j).

- ROWS

c
R+1,0/

FIGURE 1



The nodes on the left correspond to sources, nodes on the right
correspond to sinks, supplies and demands (marginal values) are shown
alongside each source and sink respectively, each arc has upper capacity equal
to one, and all arcs are directed from left to right. A saturated flow does
exist, and we set fij equal to the flow over arc (njq, "Oj) times b.

‘The table

- fRo | fR1 frR2 .-« fRe
where c
for= 1 f.. i=1,...,R
i0 j=1 ij
R
foo = ) f.. Jj=l,e..,R
0 4o W
L B Lo
f o= f,. = f,. = £
00 3o ga1 ¥ 4 100y W

is a controlled rounding of R. To see this, one need only show that

|r1j-f | <1 for i=0,...,R j=0,...,C.

ij

(a) For i=1,...,R j=l,...,C:
rij = ij so |rij'f'



(b) For i=1,...,R:

C
Cip = _Z Cij+ Ci C+1, and since
j=1
c
50 = fig * Ty,cey and jzlcij - Mo,
fi0 7 Mo = Si,ce1 ~ Fi,ce1. Thuss

«(C) For i=l,...,R:

|f0j-r0j|_i 1 as in (b) above .

R C
() Lastlys coo = L 1S5 * Co,0n * SRe1,0 7 CRe1on
; c
Chn = yf.. +c +c - f
00 % o5 b5 T Co,ee T GReLL0
R C R ¢
But f.. =f and c..=r
4 jzl 1300 h jzl 300
so €00 %00 * C0,c+1 * CR+1,0 ~ CR+l,C+1 ,
and c = f f

00 = Too ¥ Co,c+1 T SRe1,0 T TR+1,CH+1 .

Hence 300 - foo = SRe1,c+1 - TRe1,041

R+1,C+1 °

and
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and  [agy-foel < 1.
In each of the cases above, it is easy to see that if aj; is a multiple of the
base, ajj-bjj = 0 or b.

Letting

1

bD+S
bD+R - (bD+S) = S0
i 0,...,R J=0,...,C,

B
A-B

3i§=bij = rij-sij

hence B is a controlled rounding of A when S is a controlled rounding of R.
To explicitly relate the values fjj with the corresponding bj; note that if:

(a) for i=1,...,R j=l,eeesC
fij=1 then b [a /b]b+b
f;:=0 then b [a /b]b .

ij

(b) for i=1,...,R
fi,C+1=1 then b10= [aiO/b]b
fi,C+1=0 then biO= [aio/b]b+b .

(c) for j=1,...,C
fR+1’j=1 then b0j= [aoj/b]b
fR+1’j=0 then b0j= [aOJ/b]b+b Y

(d) fR+l,C+1=l then b00= [aOO/b]b+b
fR+1,c+1=0 then bya= [age/blb .

If costs in the network are arbitrarily assigned to arcs, an aFBitrary
controlled rounding will be obtained. To obtain a weakly zero-restricted
controlled rounding, arcs corresponding to zeros are removed. To ensure a
zero-restricted controlled rounding, arcs corresponding to multiples of the
base in the interior or grand total of the table are removed, and in other
marginal positions they are given a lower capacity of one.

To set up the network for a sample controlled rounding problem base 3,
let



29 7 6 16 2816 3 15
A= 21|17 5 9 ID=18]6 3

g8lo 1 7, so 600 6,

s 1 3 1 1813 6 3 6

R= 3112 0 , c=6112 0 3

210 1 1, and 3]0 1 11

gl2 3 2 2.

The network to find a base 3 controlled rounding, F of C, is shown in
Figure 2 with a flow displayed by each arc.

COLUMNS

FIGURE 2

The arc corresponding to the zero cell of A, cell (2,1), has been omitted from
the network to force a weakly zero-restricted controlled rounding. To force a
zero-restricted controlled rounding, the arc corresponding to a non-zero
muitiple of the base, 9 in cell (1,3), has also been omitted and the arcs
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corresponding to marginal multiples of the base have a lower capacity of
one. Interpreting the saturated flow through this network in terms of a base
3 controlled rounding, F of C, and from that to a zero-restricted controlled
rounding, B of A, yields:

181 3 6 3 6 3019 6 15

F= 613 0 0 3 B= 2119 3 9
310 3 0 O 910 3 6 .
910 3 3 3

To continue with the base 3 example started earlier:

- 119] 24 40 18 37 102| 21 33 15 33
150 4 8 3 o0 12 3 6 3 0
Aec 414 7 13 1 20 3= 36| 6 12 0 18
1911 5 9 4 151 0 3 9 3
44 |12 14 5 13 3912 12 3 12
17 13 7 3 4 %16 9 6 6 9 .
311 200 611 2 00 3
R= 5|11 1 2 cC= 6|1 11 21
411 2 0 1 6|11 2 01 2
5 10 2 21 121323 2 2 .

Our objective is to obtain a controlled rounding, F of C, extract the upper
left RxC subtable, derive marginals to obtain a controlled rounding S of R,
and form

B=3+3S5S

which will be a controlled rounding of A. Below are three controlled
roundings, F of C, the corresponding controlled rounding, S of R, and finally
the base 3 controlled rounding, B of A (which was our objective all along).
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Fj S5 B
1.

36 6 9 6 6 9 18 316 3 6 1201 24 33 18 39
60 3 0 0 3 3 013 0 O 150 3 9 3 0
6§3 0 0 3 O 6 310 0 3 421 9 12 0 21
610 3 0 0 3 3 0|3 0 O 18 0 6 9 3
610 0 3 3 O 6 0{0 3 3 45112 12 6 15

1213 3 3 0 3

2.

3616 9 6 6 9 1816 6 3 3 1204127 39 18 36
613 3 0 0 O 613 3 0 O 18y 6 9 3 0
6{0 3 0 0 3 310 3 0 O 391 6 15 0 18
613 0 0 3 O 6{3 0 0 3 211 3 3 9 6
610 0 3 0 3 310 0 3 O 42112 12 6 12

3. )

361 6 9 6 6 9 1813 9 3 3 120}24 42 18 36
60 0 0 3 3 310 0 0 3 15y 3 6 3 3
610 3 0 0 3 310 3 0 O 39y 6 15 0 18
60 3 3 0 O 6|0 3 3 O 211 0 6 12 3
613 3 0 0 O 613 3 0 O 45115 15 3 12

One can see that each of the tables in the “B" column is a controlled
rounding of A. We note that By is a zero-restricted controlled rounding,
By, is weakly zero-restricted, and B3y is the only table in which a true zero
is given the value 3. In all, a wide range of possible roundings exist.

B. Controlled rounding under defintion that |aij - bij | <b

In this section, we define a controlled rounding to have the property

| -b..| <b

a,.
1 1J

where zero-restricted and weakly zero-restricted are defined as earlier.
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The broad outline of this approach will be very much like that above. As
before, reduce the problem by writing

A =bD +R

where D and R are RXC matrices where

d1J = rij= Q0 if a1J= 0
otherwise write
aij= bdij + rij 0 < rij-i b for i=l,...,R and j=1,...,C.

It is important to observe that the range on Fij is

0« rij-i b
whereas in the previous procedure the range as rjj was

0 <r,. <b.

1]

Define the tables D and R exactly as earlier, and form a controlled
rounding, S of R. The sum

B=0bD+S

will then be a controlled rounding of A. To find S, begin by introducing a
slack row and a slack column to “fold-in" R to form the R+l by C+l matrix C

exactly as earlier with the single exception that

R R

c
[(y ¢
j=1

]

)/blb + b -

c
R+1,] jZI “Rel,j .
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For the base 3 example introduced earlier:

119] 24 40 18 37 9318 33 9 33

150 4 8 3 0 9! 3 6 0 o

A= 41| 7 13 1 20 3D=36|6 12 0 18
19 1 5 9 4 12{0 36 3
44112 14 5 13 619 12 3 12
266 7 9 4 4519 9 12 6 9

6l1 2 3 o 1 2 30 3

R= 50111 2 C=6/1 11 21
711 2 3 1 12 31 2

8l3 2 2 1 32211

1213 2 3 2 2

In aéneral, form a controlied rounding, F of C, where

{0,b,2by if Cij is a non-zero multiple b
f.. ¢
H {0,b} otherwise,

for i=1,...,R+l and j=1,...,C+1. That is, solve the following system of
equations for f;;:

C+1
¥ fii=c i=1,...,R+1
. J i0
j=1 .
R+1
I 1= cos J=l.e=,...,C+1
. J 0§
i=1
‘. {0,b} if Cij <b
1J {0,b,2b} ifc,.=b,

1]
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for i=l,...,R+1l and j=1,...,C+1. This system does have solutions each of
which corresponds to a saturated flow through the network in Figure 3. Nodes
correspond to marginal constraints and arcs between node n;y and noj
correspond to cell (i,j). In this network, if app is a non-zero multiple of
the base there will be two arcs between the pair of nodes n,q and ng, ,
otherwise there is exact]y‘one arc between those nodes. That is, if cell
(m,n) of table C equals 1, that is, ¢y, = 1, then there are two arcs between
row node m and column node n.

- ROWS COLUMNS
/b c /b
10 01
c
m0 con/b
c
R+1,0 ‘0,041 /e

FIGURE 3



bl S B

The nodes on the left correspond to sources, nodes on the right correspond to
sinks, supplies and demands are shown alongside each source and sink
respectively, each arc has upper capacity equal to one, and all arcs are
directed from left to right. Set fij equal to the total flow between nodes
Nio and "Oj times b. To obtain an arbitrary controlled rounding, set all
costs arbitrarily. To obtain an arbitrary weakly zero-restricted controlled

rounding, all arcs corresponding to true zeros are removed from the network

(so fij = 0 for these arcs) and all other costs are set arbitrarily. To

obtain a zero-restricted controlled rounding, remove all arcs corresponding to

zero cells and for arcs that do not correspond to cells which are a multiple
of the base, let the cost equal zero. If a cell is a non-zero multiple of the
base, let one of the arcs have cost -1 and the other arc have cost +1. This
assignment will encourage the flow of exactly one unit between the pair of
nodes corresponding to a non-zero multiple of the base and make it equally
costly to send no units as to send two units, thus encourage non-zero
multiples of the base not to change. Since a zero-restricted controlled
rounding always does exist, this will find such a controlled rounding.

We define the table S as before and observe that S is a controlled
rounding of R (according to the new definition) by adapting the proof in
Section A above and -

B=0bD+S

is a controlled rounding of A. One can see that for cells which are either
zero or not a multiple of the base in A, if:

(a) for i=1,...,R J=lyees,C
f:: =1 then bij [aij/b]b+b
fi5.=0  then bjj = [aij/b]b ’

1J

ij

(b) for i=1,...,R
f'i,C"'l =1 then by

Ca;g/blb
fi,c+1 =0 then bio = [aio/b]b+b ’

(¢) for j=1,...,C

fR+1,j =1 then b [aoj/b]b
fR+1’j =0 then boj = [aoj/b]b+b Py



(d)

fR+1,C+1
fRe1,C41

=1 then
=0 then

bpo =

bgo

-20-

[a33/bb+b
= [aij/b]b .

For cells which are non-zero multiples of the base, if:

(a)

for i=1,...,R j=l,...,C

fij =2 then bij = aij+b
f,. =1 then bii = 35
1J LY N
(b) for i=1,...,R
fj,c+1 =2 then bjg = ajq-b
fi,C+1 =1 then bjg = 3;g
- f.i ,C+1 =0 then bjg = 2jp*b,
(c) for j=1,-oo,c
fR+l,j =2 then bOj = agj-b
fR+1’j =1 then b0j = aoj -
fR+1,j =0 then bOj = agjtb,
(d) fR+1,C+1° 2 then bgp = apptd
fR+1,C=1= 1 then bgg = agg
fR+1,c+1= 0 then bgg = agg-b -«

To set up the network for the base 3 sample problem used earlier, let

291 7 6 16
A= 2117 5 9
810 1 7, SO
2106 3 12 g1 3 4 2113 6 6 6
D=15]6 3 6 R= 6112 3 and 91 2 3 3
6o o o, 210 1 1, 30111
2 3 2 2
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The network to find a controlled rounding for C is shown in Figure 4 with
a flow displayed by each arc. Note that each arc is directed from left to

right. For each pair of nodes having two arcs between them, assume the upper
arc has cost -1 and the lower cost +1, all other arcs have cost zero.

FIGURE 4



FIGURE 4

The arc corresponding to the zero cell of A, cell (2,1), has been omitted from
this network to force a weakly zero-restricted controlled rounding. To ensure
a zero-restricted controlled rounding, the pairs of nodes corresponding to
cells with a non-zero multiple of the base in A; namely,

cell (0,2) with value 6
cell (1,0) with value 21
cell (1,3) with value 9,

have two arcs between them; one with cost -1 and the other with cost +1.
interpreting the saturated flow through this network in terms of a base 3
controlled rounding, F of C, and then a base 3 zero-restricted controlled
roundi;g, B of A, yields:

309 6 15

21] 3 6 6 6
F= 9| 3 0 3 3 B=21]9 3 9
3l 0 3 0 0 9o 3 6 .

_Contining with the base 3example used earlier, let

119 | 24 40 18 37 93 }j18 33 9 33
15 4 8 3 O 9 3 6 0 O
A= 4l 7 13 1 20 3D = 36 6 12 0 18
19 1 5 9 4 12 0 3 6 3 .
44 |12 14 5 13 36 9 12 3 12 B
26| 6 7 9 4 4519 9 12 6 9
6j1 2 3 0 911 2 3 0 3
R= 51111 2 11121
1 2 31 C = 1 2 312
3 2211
1213 2 3 2 2 .
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As above, our objective is to obtain a controlled rounding, F of C, extract
the upper left RxC subtable with derived marginals which will be controlled
rounding, S of R, and form

B=3+5S
which will be a base 3 controlled rounding of A, Below are three controlled

roundings, F of C, the corresponding controlled rounding, S of R, and finally
the controlled rounding, B of A.

i i b

1'. -

4509 9 12 6 9 2|6 6 9 6  120[24 39 18 39
910 3 3 0 3 6]0 3 3 0 1503 9 3 0
430 030 6{3 0 0 3 29 12 0 2
9{0 3 3 0 3 6/0 3 3 0 18] 0 6 9 3
9{3 0 3 3 0 913 0 3 3 45112 12 6 15
1233 303

2'.

4519 9 12 6 9 27]9 6 9 3  120|27 39 18 36
33 300 9{3 3 3 0 18/ 6 9 3 0
03 00 3 3l0 3 0 0 | 6 15 0 18
30 330 9[3 0 3 3 2113 3 9 6
30 30 3 6{3 0 3 0 212 12 6 12

12/0 3 3 3 3

3.

45019 9 12 6 9 27|6 9 3 3  120|24 42 18 36
00 3 3 3 6]0 0 3 3 5] 3 6 3 3
0 3 0 0 3 310 3 ) O 391 6 15 0 18
03 600 9{0 3 » 21l 0 6 12 3
6 3 00 0 96 3 4 0 15015 15 3 12
1203 0 3 3 3




Note that the tables By are exactly those derived in the preceeding section so
all remarks in that section apply; the tables F; and S;j, however are different
from those earlier. Table By is a zero-restricted rounding, By« is weakly
zero-restricted, and B3+ is neither. The objective of this little exercise
was to show how this alternative definition plays out and to show (as one
would expect) that every controlled rounding under the previous definition is
a controlled rounding in the new definition. In fact,

djj (old definition) = dj; + 1 new definition)
and

fij (old definition) = fij - 1 (new definition)
for.yhose cells, 35 which are non-zero muitiples of the base for i = 1,...,R
and j = 1,...,C.
In the next few examples we show controlled roundings which conform to
the new definition but not the old. We employ the same tables A, D, R and C
used earlier.

Fi S5 B4
4,
45 9 9 12 6 9 24 3 9 6 6 117 21 42 15 39
9 0 0 3 0 6 3 0 0 3 0 12 3 6 3 0
6 0 3 0 3 0 6 o 3 0 3 42 6 15 0 21
9 0 3 3 0 3 6 0 3 3 0 18 0 6 9 3
9 3 3 0 3 0 9 3 3 0 3 45 12 15 3 15
12 6 0 6 0 O
5.
45 9 9 12 6 9 27 9 6 9 3 120 27 39 18 36
3 3 0 0 3 6 3 3 0 O 15 6 9 0 0
3 3 0 0 O 6 3 3 0 O 42 9 15 18
3 0 6 0 O 9 3 0 6 O 21 3 3 12 3
9 0 O 3 3 3 6 0 0 3 3 42 9 12 6 15
12 0 3 3 3 3
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6.
45 9 9 12 6 9 24 3 6 12 3 117 21 39 21 36
9 0 3 6 0 O 9 0 3 6 0 18 3 9 6 0
6 0 3 0o 0 3 3 0 3 0 0 39 6 15 0 18
9 0 0O 6 0 3 6 0 0 6 O 18 0 3 12 3
9 3 0 0o 3 3 6 3 0 0 3 42 12 12 3 15
12 6 3 0 3 0
7.
45 9 9 12 6 9 27 9 9 6 3 120 27 42 15 36
9 3 3 0o 0 3 6 3 3 0 O 15 6 9 0 0
6 3 0 3 0 O 6 3 0 3 0 42 9 12 3 18
9 3 3 0 0 3 6 3 3 0 O 18 3 6 6 3
9 0 3 3 3 0 9 0 3 3 3 45 9 15 6 15
12 0 0 6 3 3
8.
45 9 9 12 6 9 27 6 9 9 3 120 24 42 18 36
0 O 0 3 6 3 0 0 0 3 12 3 6 0 3
0 3 3 0 0 6 0 3 3 0 42 6 15 3 18
3 3 3 0 O 9 3 3 3 0 21 3 6 9 3
3 3 3 0 0 9 3 3 3 0 45 12 15 6 12
12 3 0 3 3 3

Note that Bg4 throught B; are all weakly zero-restricted and in Bg the
zero cell (1,4) becomes a 3. In By all marginal muitiples of the base

decrease and interior multiples of the base do not change. In Bg all marginal

multiples of the base increase or stay the same while non-zero multiples of
the base both increase and decrease in the interior. The remaining tables

illustrate additional variations.
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[II. MINIMIZING A MEASURE UF CLOSENESS

A. Controlled rounding under definition that bij = [aij/b]b or [aij/b]b+b
Given a two way table A, Cox and Ernst (1982) seek a zero-restricted

controlled rounding, B of A, which minimizes the objective function

R C p
Gy = ¥ ¥ Ja;.-b,.]
Loy ge TR
for 1<p<= . In this note, we confine our attention to the cases 1l<p<= . For R
as defined earlier it suffices to find a (zero-restricted) controlled

rounding, S of R, to minimize
R C
P
4 jzllr‘j iy

and, form
B=0bD+S

to obtain a (zero-restricted) controlled rounding which minimizes

R C
..=D. .
121 jZ1|a‘J Y

P
|
since

Q:: = b.. = rgi

1J .IJ iSO,OOO,R j=0,ooo,Co

i oS4

1-J.<b for i=1,...,R and
j=l,...,C we can divide all entries of R by b and assume without loss of
generality that b=l and rij<1 for i=1,...,R and j=1,...,C. By folding in R to

form C, it suffices to minimze:

Thus all computations can be done over R and since r

subject to
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C+l _
(4) jzlfij = Cip i=1,...,R+1
R+1 '
(5) izlfij = ;5 3=1l,...,041

(6) f..e{0,1} i=1,...,R+l j=l,...,C+1
(7) f,. =c¢c,. if [cij]=cij 1=1,..7,R+1 j=l,...,C+1

to obtain a zero-restricted controlled rounding of C which minimizes Fi . One

derives from table F as in Section II a zero-restricted controlled rounding, B
of A, which minimizes

- R C-

4 jzl 1215713

p
1" .
As shown in Cox and Ernst, the controlled rounding which minimizes Fi will
also minimize

R C

Fy o= 1-c,
A

and conversly. However, Fy is linear in the fij so we can take advantage of
integer linear techniques. In particular, use the network in Figure 1 in
which all arcs have upper capacity one and,

v
\

(a) if cjj = 0, remove arc (njg,ng;)
(b) if Cij = 1, set lower capacity on arc ("10'"0j)
equal to 1

(c) the cost dy; over arc (njg,ng;) is

P P . .
d (l-CiJ-) -(C.ij) 1=1,.00,R J=1,...,C
1 0 otherwise .
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The minimal cost saturated flow over this network will yield a controlled
rounding, F of C, and hence a zero-restricted controlled rounding, B of A,
which minimizes, F1 and hence Gl'

The notion of closeness can be extended to include marginal positions.
One can seek a zero-restricted controlled rounding, B of A, to minimize the

objective function:

Employing arguments as above, forming R and finding a zero-restricted
controlled rounding, S of R, to minimize
C

R
. D)
i20 j=

P
|r..-s. .|
o W W

will yield a zero-restricted controlling of A,

B =bD+S,

which minimizes G2' Folding-in R to obtain C, a zero-restricted controlled
rounding, F of C, which minimizes

e b Sle oyl
Fl = c..=-f..
2 qa1ger WO

will produce, as in Section II, a zero-restricted controlled rounding, S of R,
which minimizes

R C D
DU TR LTS T
i=0 j=o 9

This is proved in the Appendix by showing that the two objective functions
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R+l C+1
Z 5 |Cij - fijl

i=1 j=1

R C

and § ¥ |r.. - s,
i=0 j=0 W

P lP

J
differ by a constant when R, C, S, and F are related as in Section II. By
using techniques as in Cox and Ernst (1982) one can show that to find the
zero-restricted controlled rounding, F of C, which minimizes F! it suffices

2
to find a controlled rounding which minimizes

R+1 C+1
Fo= ¥ ¥ ((l-c..) -(c,.) )f.. .
2 i=1 je1 ij ij ij
To find such a controlled rounding, use the network of Figure 1, as before, in
which all arcs have upper capacity one and where now:

(a) if Cjj = 0, remove arc ("iO’”Oj)s
(b) if Cij = 1, set lower capacity on arc (”10’"0j) equal to 1,
« (c) 1let the cost over arc ("10s“0j) be equal to ((l-cij)P-(cij)P) for
i=l,44.4,R+l, j=1,...,C+l.

The minimal cost saturated flow over this network will yield a zero-restricted
controlled rounding, F of C, which minimizes Fo and (as in Section II) a zero-
restricted controlled rounding, B of A, which minimizes Gp.

The objective functions G; and Gy are not equivalent, and in fact, if

8/3 1 2/3 1 211 01 3|1 11
A=2/3 0 1/3 1/3 By=010 0 0 Bb=110 01
1 11/3 1/3 1/3 170 01 1101 0

1 12/73 0 1/3, 1{1 0 0, 111 0 0,

then under an integer (base 1) controlled rounding Bl minimizes Gl and 32
minimizes Gp, however, Bj does not minimize Gy nor does By minimize Gy as can
be verified by direct computation.

Only zero-restricted controlled roundings of a table A were considered by

Cox and Ernst in minimizing either of the objective functions Gy or Gp. Since
zero-restricted controlled roundings are a proper subset of all controlled
roundings, it is reasonable to expect that given a table A the minimum of G
or Gp over all controlled roundings will be strictly less that over only zero-
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restricted controlled roundings. This is the case as is shown by the example
below. Let

3 3/4 3/4 3/4 3/4 41 1 1 1 1
3/413/4 0O 0 0 111 0 0 0O
3/41 0 3/4 0 0 1101 0 0
A = 3/41 0 0 3/4 0 B3=110 0 1 0
3/41 0 0 0 3/4 110 0 01

and note that B3 is a (non-zero-restricted) controlled rounding of A. One can

compute:
G1(By) = 4(1/8)P 65(By) = 12(1/4)P + 1.

For any zero-restricted controlled rounding of A, the grand total, apg, must
remain as 3, so exactly one column marginal and exactly one row marginal must
equal 0. Thus, exactly one diagonal in A must equal zero. By a row and
column exchange, the table

By =

— = = O lw
O O O o |o
o O - O |
o = O O |
- O O C |

is the unique zero-restricted controlled rounding of A. Thus the minima of Gy
and G, over all zero-restricted controlled roundings are realized at B4, and

G1(Bg) = 3(1/8)% + (3/4)P Gy(Bg) = 9(1/4)° + 3(3/4)P .
It is clear that
G1(B3) < Gy(By)

for all p>1 and

62(83) < 62(By)
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for p = 1,2,3. Thus, in general, the minimum of G; and Gy are not realized
over zero-restricted controlled roundings. Note however that controlled
roundings, B3 and B4 are both are weakly zero-restricted. It remains an open
question as to whether Gy and Gp do achieve their minima over weakly zero-
restricted controlled roundings.

To formulate a linear approach to address non-zero-restricted controlled
roundings, B of A, with respect to minimizing a distance function, we can
focus on either G1 or G2 -- the analyses are comparable. Below we examine G2
and couch the discussion in terms of F, over C. The goal is to find a
controlled rounding, B of A, to minimize:

Rs1 c§1| e
G, = b..-a.;.
2 yip3a WU

This objective is equivalent to minimizing the linear function

R+1 C+1

F o= ((1-c,
2 121 jzl i

-)P-(c

; )t

ij J

subject to (4), (5), and (6). This is most easily done by finding a minimal

cost saturated flow over the network in Figure 1 where the cost on arc
(nio,noj) is

p P
(l-cij) -(cij)

fOF i=1,--c, R+1 GI'Id j=1,on-,c+1-

Note that a zero in C corresponds to an internal multipie of the base in
A and a one in C corresponds to a marginal multiple of the base in A. To
ensure a weakly zero-restricted controlled rounding of A, remove arcs from the
network that correspond to true zeros in A (i.e., ajj = 0). As noted above,
however, it is not clear that such a step is needed as controlled roundings of
A that minimize Gy or Gy may always be weakly zero-restricted.
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B. Controlled rounding under definition that |bij - aij|ii b

In this section, we examine the distance measure Gy under the extended
definition of controlled rounding. A comparable analysis can be carried out
for Gy. If A is a table, one seeks a controlled rounding, under the extended

definition, B of A, which minimizes

R C | IP
G, = 2 X b..-a..
2 430 g=g YN
for 1<p<=., Since every controlied rounding under the extended definition is
also a controlled rounding under the Cox-Ernst definition the minimum of Gy
under the extended definition is less than or equal to the minimum under the
earlier definition. Strict inequality holds as can be seen by considering the

tabl.e

1 1/4 1/4 1/4 1/4

1/411/4 O 0 0

1/41 0 1/4 0 0
A= 1/41 0 0 1/4

174 1 0 0 0 1/4

which has minima for G; and Gy realized by the weakly zero-restricted
controlled rounding under the extended definition,

v
v

[+ )

]
O o O O o
O o O O (o
©C o © oo
o O O O |o
o o O oo

As in Section A above, to find a controlled rounding, B of A, to minimize
Gp, it suffices to find a controlled rounding, S of R, to minimize

R C
s =S, .
izo jzolr‘J H

p
I
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To find the controlled rounding, S of R, to minimize this function it suffices
to find a controlled rounding, F of C, to minimize

Rgl c§1 ‘
EM' = c..-f..
2 4o ogap 0 WO

P

|

as can be seen by modifying the proof of the Proposition in the Appendix to
fit the extended definition of controlied rounding. For the extended
definition of rounding, as we pass from A to R and from R to C observe that

rij > 1 and a zero in R corresponds to a true zero in A and a one in the
interior of R corresponds to a non-zero multiple of the base in A. Letting

T = {(i,j)s(R+l)X(C+l)|Cij # 1}
- S = {(i,j)e(R+l)X(C+1)|cij =1},
the objective is to minimize:
P P
Eh = ¥ Jese-fo T+ T |la(g;.th )|
20 (i,5er WO (g 5)es T
subject to
(8) f.. + (g;.+h..)= ¢, i=1,...,R+1
<i,§)er K (i,§)es 13 o
(9) ; fo.o+ (g..+nh; .)=Cn: 3=l eee,C+l
(1,557 N (4,5)es 910 ’
(10) fij ’gij!hije{o)l} 1:1)"'9R+1 j=1’o.o’c+1 .

(Note that the sum 9ij+hyj for (i,j)=> corresponds to the two arcs in Figure 3
between (njg,ngj) for (i,j)eS).

We can replace the second summand 1n Eé by

P

Z |1-(gij-h )I

(1,5)es 1
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if we add to (8)-(10) the additional constraint
(11) hij f.gij for i=1,..o,R+1 j=1,...,C+1
since

subject to (10) and (11). But
1‘(91j'hij)€{0:1}
“subject to (10) and (11) so
- 1-(g; =1y )1 P=1=(g4 5-n5)
13 "1 11

subject to (10) and (11). Thus,

£, = 7 ((tecyp)’

) -(c-.)P)fij+ y (1+"ij'gij)

)
1 (i,d)eS

(isj)eT 1

P P

= 3 ((1-cys) =(cgs) Mfs.+ ¥ (h, =g, . )+|S]|
(irg)er T I T s T

subject to (8)-(11) is equivalent to Eé subject to (8)-(10), where |S| is the

cardinality of the set S.

Note that “1j and gij are symetric with respect to (8) and (9) and the
value of Eé will always be less for

Ll
—

nij 0 and 9j =

than for

h; 1 and 95 j 0.

J
Thus, the minimum of Eé subject to (8)-(11) is identical to the minimum

of'E2 subject to (8)-(10). That is, condition (11) is not needed.
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Hence, to find a controlled rounding, B of A, under the extended
definition to minimize G, it suffices to find the minimum of E, subject to
(8)-(10). To find the minimum of E, subject to (8)-(10) employ the network in
Figure 3 and assign costs as follows

(a) for (i,j)e T the cost on (”iO’“Oj) is equal to (1l-c,

a

= {2 OB Y (g | PR
Tor (1,J)e> tne cos
3 1

[ O T PR amd
e arcs beilween Hiu dana no

cir

P PR - L
on one orv

e
o
~—
i

is equal to -1 and on the other arc equal to +1.

A minimum cost saturated flow over this network will yield a controlied
rounding, F or C, leading to a controlled rounding, B of A, as in Section

II. By deleting all arcs from this network corresponding to zero cells in C,
one obtains the weakly zero-restricted controlled rounding that minimizes Gz.

C. Concluding Remarks

In this section, we considered controlled roundings, B of A, to minimize
either of the objective functions Gy or G,, either zero-restricted or not
zero-restricted, and using either the Cox-Ernst definition of controlled
rounding or the definition introduced here. Similiarities have been examined,
and examples have been provided to exhibit differences. The open question
remains as to whether the minimum of Gl or Gz under any of the scenarios above
can be achieved with a weakly zero-restricted controlled rounding.

IV. SUMMARY

In this report we extend the definition of controlled rounding to allow a
non-zero multiple of the base to either increase or decrease by the value of
the base. Under the more standard definition of controlled rounding (Cox,
Ernst) a non-zero multiple of the base can increase but not decrease. We
exhibited step-by-step method for finding two dimensional controlied roundings
under this new definition and contrasted the methods and results with the
usual definition,

Procedures were developed to find controllied roundings of a table which
minimize a measure of closeness-of-fit which can be applied under either of
the two definitions for not-necessarily zero-restricted controlled roundings.



Examples were provided to show that the "closest" controlled rounding of a
table need not be zero-restricted and in fact, may be a rounding under the new
definition but not the standard definition. The notion of weakly zero-
restricted controlled rounding has been introduced -- under which a non-zero
multiple of the base can change while zeros must remain zeros. It is an open
question as to whether each of the measures of closeness examined in this
report can be optimized over all controlled roundings by a weakly zero-
restricted controlled rounding.

The extended definition of controlled rounding and weakly zero-restricted
introduced here for two dimensional tables can be applied to three (and
higher) dimensional tables, see Fagan, Greenberg, and Hemmig (1988).
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APPENDIX

We freely use here the notation and conventions established in the body
of the text. Let

%00| %01 %2 ° * * %0C
%10 %11 %12 - °%1C
@7 Gl %21 %22

.
e®ee o
.
.

%Ro| %1 %R2
be an arbitrary RxC two-way table having a base 1 controlled rounding as
defined in Cox and Ernst (1982)

- 800] Bo1 PBo2 - ¢ ¢ Buc
B10] 811 B12 -+ - - By
B = B0 Ba1 822 - -+ By

Bo| BR1 Br2 - ¢ ¢ Bge . i

To find a linear expression for the distance measure

R C
5 X lsij'“ IP

i20 j=0 1]

for 1<p<=, we follow along the lines of Cox and Ernst. Letting

(3

and

then
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R C

c _ _
20(61‘]) (1+[a1J]-81J)+S‘ y (1‘0'

P

' R C
SR R(CAR LSS L5 I U S CAR L

i=1 j=1 J i=1 j=1 W

(If aij< 1 for i=1,...,R j=1l,...,C then % 5 = %5 and [aij]=0’

and this last equation reduces to equation (15) in Cox and Ernst.) Thus, if
a and 8 are RxC tables

11 Pt T ) )"
(1) Bi:=0y = ) ((1"0--)"0") B;.+K
g2 ge1 NTHD Tym e T T TG
and if o« and 8 are (R+l) by (C+1) tables
R+1 C-;:l| p Brl C+l - P - P
(2) y Y 1Bss=ascl = 7 T ((Lleags) =(a5:) )Bys+K
=1 j=1 i “ij b=l =1 1] iJ ij 2

where K and K, are constants.
Given an RxC table A, write the tiole sum
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where dij = [aij] and so 05r1j<1 i=1,..4,R j=1,...,C. If C is the "fold-in"
of R then "

(3) C‘ij = rij 1=1,""R j'—'l’o'o,c
(4) ci,c+1 = [rypltl-rig i=1,...,R
(5) cre1,j = [rojl+l-roj Jj=l,ee0,C

(6) cre1,c+1 = oo -Lroo]

and if F is a controlled rounding of C, then F induces a controlled rounding,
“S of R, as in Section II of the text. Furthermore, every controlled rounding,
S or R, can "fold-in" to a controlled rounding, F of C, where

(7) fij = sij i=1’o-¢’R J=1,-00’C
(8) fy ce1 = [ripl*l-syo 1=1,..00R
(9) fre1,j = Lrojd+l-so; I=1seeest

(10) fre1,c+1 = Sgo-Lrood -

That is, there is a one-one onto correspondence between controlled roundings
of R and those of C where the correspondence is through the mapping of "fold-
in" as indicated.

Proposition: Given R and C as above and the correspondence between controlled
roundings of R and of C, the controlled rounding S of R which minimizes

R C

Hy(S) = Ty Isi.-r

P
i=0 j=o 9 U

corresponds to the controiled rounding F of C which minimizes
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for 1<p<=,

Proof: Let S be a controlled rounding of R, F a controlled rounding of C, and
assume S and F correspond as above. Note that
R+1 C+1 R €

p Pre .
gk (e ey Sk gkt

o

P P P P
R R K S E LS LLL U

-+
N~ 0
]

p P
“Cre1,c+1) ~(CRe1,ce1) Y Re1,001

+ R — p 1.. P -
Sij 1_=1((r‘1'0) '( 'riO) )([r10]+1'510)
+ (Z: ((Fy ) "= (17, ) D) ([ 14154 )+ (1T )

ja1 i0 i0 0Jj 0j 00

P’(roo)P)(Soo'[rgoj)

Pys, .+ K

— p —
((l-rij) -(P ij 3

ij

employing relations (3)-(10) where K3 is a constant. Thus

R+1 C+l p R+l C+1 p P
5 jzllfij’°1j| =L L0y “leg) gt K
= ; g ((IJF..)P-(F..)P)S..+ K, + K
i20 j=0 ij ij J 2 3
R C

p
R jZolsij-riJI Htie i
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using (1), (2) and the operations above.

Thus, if S and F correspond as defined above, Hi(S) and Hp(F) differ by a
constant -K; +Kp +K3. Hence the rounding S of R which minimizes Hy(S)
corresponds to the controlled rounding F of C wnich minimizes Hy(F), so the
proof is complete.
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