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Variance Pormula for the Generalized Composite Estimator
Under a Longitudinal Nulti-Level Rotation Plan

ABSTRACT
In a previous research report (Cantwell 1988), we obtained variance
formulae for the generalized composite estimator applied to surveys using
a balanced one-1level rotation plan. The Current Population Survey
satisfies the requirements of that design. The Survey of Income and
Program Participation and the National Crime Survey, however, operate
under "multi- level" designs. In each month one of p different groups is
intervieved. Respondents then answer questions referring to the previous
p months. Currently neither the SIPP nor NCS uses composite estimation
to measure characteristics of interest. Ve derive simple expressions for
the variance of the generalized composite estimator of level, change in
level, and average level over time under longitudinal multi-level
designs. The results apply to a wide range of survey designs.

1. INTRODUCTION

In SRD Report No. 88-26 (Cantwell 1988), variance formulae are derived
for the generalized composite estimator under rotation plans satisfying
the following conditions. First the period of reference for any
interviev is the curreant time period only. Such a design has been
labeled "one-level." In addition, the rotation plan must be balanced--in
any period, a newv rotatiom group enters the sample, and follows the same
pattern of periods in and out of sample as every preceding group, before
finally retiring from the sample. Rotation groups are allowed to leave
the sample temporarily before returning. Examples of surveys employing
balanced one-level rotation plans are the Current Population Survey of
the U.S. Bureau of the Census and the Labour Force Survey of Statistics
Canada.



Nany surveys operate under different designs. In the Survey of Income
and Program Participation (SIPP), one of four different groups is
intervieved each month, and respondents supply information on the
previous four months. Under a different design, the National Crime
Survey (NCS) alternately interviews one of six panels in any month, each
group reporting crimes which occurred in the prior six months. See
Nelson, McMillen, and Kasprzyk (1984) and Bureau of Justice Statistics,
NCS Report NCJ-111456 (1988) for further details on the designs of the
SIPP and NCS, respectively. Adhering to terminology found in Wolter
(1979), we call these "multi-level" rotation plans to indicate that
several time periods before the current one are being referenced.

Yariance formulae which apply to balanced one-level designs no longer
hold for multi-level plans. Further considerations arise. Suppose that
Ty 4 is an estimator of some characteristic for month 4 obtained from the
ith group in sample. Does the variance of T, g depend on how many months
elapse before the group is interviewed? Ve think this is possible. Is
the survey "longitudinal," that is, are groups in sample interviewed many
times over an extended period? Or is it "rotationally balanced,” in that
groups are methodically entered, interviewed, and retired in a balanced
pattern?

This paper extends the results of SRD Report No. 88-26 to multi-level
rotation plans. Restricting our attention to certain types of designs,
ve derive the variances of gemeralized composite estimators of level and
change in level. The formulae are determined for single time periods
(such as months) and combinations (such as quarters or years).

To facilitate reading, the sequence and notation of this report follow
that of SRD Report No. 88-26 wherever possible. In Section 2, we discuss
multi- level rotation plans, and specify which types are the focus of this
report. Notation and previously used definitions are reintroduced. Qur
main results are stated in Theorems 1 through 3.



These theorems are proved in Section 3. Section 4 carries a discussion
of several topics #f interest, from the usefulness of composite
estimation in cerwin surveys, to the complexities of some designs not
covered in this negort. Finally, we provide in an appendix several
diagrams vhich illustrate the process for an example where each group is
intervieved every fourth month. Included are depictions of the rotation
plan with group estimates for different periods of time, and some of the
general mathematscal structures required to fill in the formulae given in
the theorems.

2. RESTRICTIONS, NOTATION AND RESULTS
In SRD Report Ns. 88-26, the term "rotation group" is used to denote the
set of respondests who enter the sample in a particular time period. To
avoid confusiom, in multi-level designs we call the entire set of people
who are interviewed in a given period a "panel." This terminology is
consistent with NCS, which employs six panels. 0On the other hand, the
SIPP uses the label "rotation group" here, and calls the collection of
these groups a "panel." Ve avoid the term rotation group, for reasons to
be seen shortldy, and use the word panel as defined above.

Throughout this report, we will use "month" to denote the period of time
(i) in which isterviews are done, and (ii) about which information is
obtained. This is the period used in SIPP and NCS. However, our
thedrems and results extend to amy period of time. VWhen data are
compiled andjer released to the public, "months" are often combined into
quarters (of the year) or years.

Vhen considering one- level rotation plans, we allowed a rotation group to
assume any sequence of inclusions and exclusions from the sample,
provided the design was balanced. For a multi-level plan, however,
because of recall bias, it makes little sense to allow "design gaps,"
intermediate periods which are never referenced.



Consider an NCS panel wvhich is interviewed in May and November. 1In
November each respondent is asked about events or situations in May,
June, July, August, September and October. Confusion may arise over
vhich events occurred in April, and which in May. However, the previous
interview in May, referencing November through April, can help place
these events in the proper month. NCS goes so far as to conduct a
preliminary "bounding interview" for those entering the sample. The
responses from this initial meeting are not included in NCS estimates,
but help to eliminate events which occurred before the reference period
of the survey.

Suppose instead that a panel is interviewed every eight months and asked
aboet the previous six, leaving gaps of two months after each interview.
If a respondent confuses events which occurred six or seven months ago,
the interviewer has no record to help determine the proper month. For
this reason, and because we are not acquainted with any multi-level
surveys which incorporate design gaps, we will restrict our efforts to
multi- level rotation plans where (i) the sample is made of p panels, (ii)
each panel is interviewed every pth "month," and (iii) the period of
reference is the previous p months.

At this point, the question of sample replacement must be addressed. Is
each panel interviewed many times, with little or no concern for
balancing the time- in-sample in an individual month? In any SIPP sample,
each of the four panels (that is, SIPP "rotation groups") is interviewed
every fourth month through eight interviews, a period of almost three
years. Ve might call such a design longitudinal, in that the panels
could remain in sample indefinitely, and no attempt is made to balance
any month’s time- in- sample.

The design used in NCS, on the other hand, might be labeled "rotationally
balanced.” Each of the six panels is interviewed seven times, including
the bounding interview. Vithin any panel there are seven rotation groups
(although the group in sample for the first time is not used in the



estimation processj, making a total of 42 panel-rotation groups in sample
at any time. After each interview, the rotation group which has just
been interviewed fsr the seventh time leaves the sample, and a nev one
enters, so that dsta from any interview is balanced with respect to
time- in- sample. The Consumer Expenditure Quarterly Survey uses a similar
balanced design--each of three panels consists of five rotation groups
(one is in sample only for "bounding" purposes).

Botationally balanced multi-level designs are obviously more involved.
For any month estimates are available (eventually) from each of the
rotation groups in each of the panels. Realistic assumptions regarding
the covariance structure and the various ways of combining these
estimates grow sore complex, and will be addressed in a later report.
Bere we consider only "longitudinal" designs with p panels. For any
month a single estimate is eventually obtained from each panel. Effects
of time- in- sample, including bias, will not be considered. This is not
to imply that a rotationally balanced design will not supply longitudinal
information, osly that the model we consider here is simpler.

The interview af a panel will refer to the collective gathering of
information ia the assigned month from all sample units in that panel.
For a particular characteristic which is to be estimated, let Zh, 4 denote
the estimate of "monthly" level for month & from the panel which is
interviewed im month A+i, vwhere i = 1, 2, ..., p. It is clear that ¢
méasures the recall time, that is, the amount of time between the
intérviev and the month of referemnce. In the appendix is a chart
depicting the estimates zh,i for a four-panel four-level design. In the
diagram solid lines separate estimates which are obtained in different
intervievs. The SIPP refers to these boundaries between the reference
periods of comsecutive interviews as "seams."

Using this motation, Ty 4o Tpogs ce0s T p represent p estimates for
9 9 ]
month A obtained from the p panels in different interviews. On the other



hand, Zh,p* Thel,p-17 "0 zh+p 1,1 denote estimates for p different
months obta1ned from one panel in a single interview.

The generalized composite estimator (GCE) for "monthly" level is defined
recursively as follows:

Yy, = E e.z2;, .- k g b.z .+ ky ’ (1)
. t°h . - -1

h i=1 y3 izl ? h-1,1 h

where k, the a.’s and the b ’s may take any values subject to 0 ¢ k<1,

s
[~
"

i 1, and E bi = 1. At this time, neither the SIPP nor NCS
i= 1=1
employs composite estimation. Each uses a simple average of the

estimators (with appropriate adjustments) from the several panels for any
given period of time. For greater detail on the GCE and how it compares
in definition and computationally to other linear estimators, see Breau
and Ernst (1983).

As in the case of a one-level design, the covariance structure of the
monthly panel estimators here is assumed to be statiomary in time. But
nov the effect of recall time on response enters. It may be reasonable
to assume that response variability changes, in fact, likely increases,
with the amount of time between the interview and the point of reference.
Ve postulate the following covariance structure:

(1) Var(zh ) = d 202 for all 4 and ¢, where d; > 0;
(ii) Cov(zh i°%h, 5 ) 0 for ¢ ¢7, i.e., estxmates for the same
month from dszerent panels are uncorrelated; and

(iii) For r 2 O: Cov(zh i Zhor J) Pe, zdzd]a , if the two z’s
refer to the same panel r months apart; or 0, otherwise.
Take Po, i to be 1 for all :. (2)

It may vell be that d < d < ... ¢ dp, if response variability increases
vith recall time. For the correlation coefficient Py ¢» T cOUNLS the
number of months between estimates zh . and Thorq The index ¢

vJ'
indicates that the estimate for month h is recorded from an interview in



month A+i. It maysppear as if the subscript j in z; g plays no part
in determining Ca(zh i Zh-r J). However, there is only one value j,

1 <7 ¢p, for vhich the estimates T, and z, .. § refer to the same
panel. (This valse is j = nodp(z+r 15 + 1, vhere mod ( ) is the value of
the integer n, mofulo p.) Othervise, the covariance 1s 0.

The coefficients p, . will likely decrease in r for fixed i, reflecting
smaller correlatnon as the separation between points in time grows. The
effect of varyirmg ¢ for fixed r, though, is harder to predict, and may be
related to the mrvey conducted and the characteristic being enumerated.
In some cases, it may be appropriate to replace Pr 1 pr 93 ++e1 Py rp
vith a commom Py Alternatively, the values of the Py s for dlfferent
i’s could depemi on how many times the relevant panel has been
intervieved between months A-r and h. Results will be stated with
general correlation coefficients Py ; the reader can make substitutions
according to dis model or experience.

Define the vectors a and b as (al, Byy +ers 8 )T and (bl’ byy «ves

bp) , respectively, from the coefficients in the GCE. The symbol I
denotes the gep identity matrix. Let D be the pxp diagonal matrix with
dl’ d2, ceesy dp down the diagonal. Similarly, for any r 2 0, let ‘r be
the pxp diagsnal matrix with Pr 1 P s toe Pr p down the diagonal.
Define the pep matrix J by: Jz 41 ° 1 for i = 1, 2, ..., p-1; J

and J j = 0, otherwise. The general forms of the matrices J, J, and l
are. shovn i the appendix for p = 4. Finally, let

1- 3 K" J". (3)
n=1
In Section 3 we will prove that the sum in (3) converges.

Ve state several theorems, and leave the proofs to Section 3. All
results agply to the limiting case where panels have been in sample long
enough to eliminate the effect of phasing in the sample. If the Py, z



decrease rapidly with r, or if k is relatively small, the "steady-state"
arrives soon. This point is discussed in greater detail in Section 4.

TxroxEw 1. If the GCE of level is defined as in (1), and the covariance
structure of (2) holds, then

Var(y,) = o2 (9% + PoT0(b-20) + 2(a-K20)DOD(a-B)} / (1-K°)
(4)
Notice that when one uses an unweighted average of the estimates for
month 4 from the p panels, £k =0, £ =0, and 8; = 1/p for i =1, 2, ...,

p. Then Var(y;) = (az/pz) g diz, as expected.
1=1

TporeM 2. Let y, - ¥, 4 be the GCE estimator of "monthly" change.

(i) If k= 0, then Var(y, - v ;) = 20%¢" D(I-1,J) Da;
(ii) if 0 < k < 1, then Var(y, - yh—l)
- 2P + K0T - 2kaTBR BB}k - (1-K)PVar(y,)/k
(5)
0ften of interest are the average over a certain period of time, for
example, a quarter or a year, the difference in these averages from one
period to the next, or even the difference in "monthly" level for two
months a year apart. Denote by Sh y the sum of the GCE’s for the last ¢
months: Sh PR T T S IRETTINE [ WY t > 1. Note that Sh ¢ is
defined sllghtly d1fferent1y here than in SED Report No. 88-26. Commonly
used values of ¢ include three, four, and twelve. Ve will leave it to
the user to divide Sh,t by ¢ if he desires an average rather than a sum.

TueoreM 3. The expressions Sh ir Yho Ypop and Sh ‘- Sh—t , can be

vritten as E v Tzh i where, for any of these expressions, v, v,
=0
Vs - is a sequence of px1 nonrandom vectors. In particular,



(i) for Sh It

{- o [k - KYY /(-0 (e-b), i
v, = i-t $+1 :
o H e - k1) (1-K))(a-b), i

1

0, 1, s e ey t-l,

t, t+1, 142, ...;
(ii) for yy- yp 4t Y =8 9= kt(a-b) - a, and

k*(a-b), i=1,2, .00, t-1,
v - i-1 t :
kYR - ET)(8-b), 1= i+l 142, t+3, ...; and
(iii) for Sh’t - Sy £t

o v (k- Ky /(- k)](a B), i=0,1, ..., t-1,

. I (¢t T R VI CS RICORE
i t, t+1, ..., 2t-1,

R kY2 (- )Y (aod), = 2t 264,

o
In each of the three cases, Var( 2 "iTzh-i )
t=0

[+ J
=a{EvTﬂzu+2EvT o)D) (6)
1=0 1=0 n=1

The sums in (6) converge because, in the three parts of the theorem, v,

is proportional to ki(a-b) for 1 2 2t.

3. DERIVATIONS OF THE THEORENS

The proofs of the theorems just stated sometimes resemble the proofs of
related theorems in SRD Report No. 88-26. Ve bave retained the
similarities wherever possible to emphasize how closely the two designs
are structured, and to facilitate the reading of the proofs by one who is
familiar vith the former report.

The letter p is used to denote the number of panels as well as the number
of months about which information is obtained during any interview. J is
the pxp matrix with 1’s for 112, J23, ceey J , and J 10 and 0’s

p-1,p
everyvhere else. It is easily seen that, 1f U is any n~p natrlx
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comprising p nx1 vectors (11, YIRS lp), then UJ = (up, %o Yy oo
'p~1)‘ That is, postmultiplication by J moves the last column to the
front, and moves each remaining column back one position. Therefore, the

product 72 has 1’s for compoments (1,3), (2,4), ..., (P-2,P), (p-1,1),
and (p,2). The pattern for general r follows. The pth power of J is

JP = I, and the cycle begins again with J*1 - J. The form of J and Jr
are illustrated in the appendix for p = 4.

Vectors are formed out of the estimates obtained from the different
pggels referring to the same month. For any month 4, let z, be the px1

vector (zh 1> Zhgr e B p)T of estimates. D was defined as the pxp
b Y ’

matrix with dl’ d2, veny dp down the diagonal and 0’s elsewhere. The

first two parts of (2) giving the covariance structure of the estimates

imply that Var{(z,) = 02F2 for all A.
h

For any r > 0, the pxp matrix 'r has correlation coeeficients Py 1
b
T on the diagonal, and 0’s elsewhere. From part three of
b ?

(2) we deduce that Cov(zk,zh_l) = vzﬂlllﬂ. This follows as the nonzero
components of J indicate the pairs of estimates, one from month h and one
from k-1, which arise from the same panel. The other matrices in the

- product ensure that (a) for ¢ =1, 2, ..., p-1, the (i,i+1) component is

2 .
¢ pl,ididi+1’ and (b) the (p,1) component is a2p1,pdpd1.

The matrix 12 vas shown to have 1’s for the components (1,3), (2,4), -+
(p-2,p), (p-1,1), and (p,2). The same development as above implies

Cov(zh,zh-z) = azﬂlzlzb. In general,
Cov(z;,2;_,) = 00 S0, for r=0,1,2, ..., and all k. (1)

As r increases, JT vas seen to run through a cycle of p matrices, that
is, it never dies out. However, the correlation coefficients in 'r may
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vell approach 0 as s increases, and the covariance terms wvould become

arbitrarily small.

In (3) the matrix § vas defined as E k" J*. The ijth cell, ”ij’ is

then an infinite sum of terms. Its pattern can be demonstrated by

shoving a

U9

T

-
For general p, %, and j, we can vrite

couple of cells:

1]

+1 2p+1
kpy y * F 051,10+ ¥ Papetsd

2p 3p
k’g .+k p2 .+k p3p,i+

4 e = k"’”’+1

’ m
. L

m=

pm+1,1;

pmip, i’

-
= Kk, ;, vhere u= pm+1+mod (p-i+j-1)
=0 v ?

To show that the sum in (3) converges, it suffices to show that the sum
of terms in msy cell 0 . COnverges absolutely. Because the correlation

coefficients #,
and 1, it is ea511y geen from the expression of 0 j above that

i are less than or equal to 1 in absolute value for any 7

14..1 £ E lk“p ;o< E k", which converges. 1f k or the
ij o wsi

n=1

correlations are small, the convergence will be rapid.

The generalized composite estimator was written in (1) as

-

Vp

igl“i’h,s - kiglbi’h-x,i + kypy

Vriting this in vector form and substituting repeatedly:

Vp

-

T
6z, - kb Tpoq* kyh 1

T T

T
;T

h+k(nb)zh1—kbzh2*kyh2

zh + k(“'b) zh_l h k b zh_2
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T T 2 T 3,T 3

L]

- .o

T T 2 T T
¢z, + k(a-b)'zy 4 + k (a-b)"z) o + k3(c-b) Zy g+ e

T TS .4
8z, * (e-b) iflk'zh-i (8)

Proofs of the thesrems follow from the results in (7) and (8).
Pr0oOF OF THEOREN 3.

~

Var{y,) = ;TVar(zh)a + (a—b)T.ElkziVar(zh_i)(a—b)
{=

o .
v+ 2a 3 k’Cov(zh,zh_i)(a-b)
=1

TR P pi+]
+ 2 (a-b)" T Tk /Cov(z, ;2 ) (a-b)
1<i ¢y h-1""h-)

& PP a (a—b)T.§1k2i 2P (a-b)
1:

i

o . .
+ 24 DK o202 .J'D (a-b)
i=1 :

[ ¢} . @® . . .
+ 2 (a-b)T Tkt s W 02DI'_iJJ'zD (a-b)
i=1  g=i+1 J

AP+ (a-)TP(a-d) 2/ (1- k%)
[ ] . .
+ 240 [ 2RI Ma-b)
i=1
] - ®
« 2 (a-0)Tp TR [Z K" D(a-b) ) (9)
1=1 n=1
o
Recall agaiz that = I k"lnln. Both expressions in brackets in (9)

n=1
are equal to §. Using the fact that D is symmetric, line (9) can be

revritten as:
o2 { o Pa + (c—b)Tﬂz(a—b) k2/(1-k2) + 2 cTDlD(a-b)
.2 (a-5)T040(a-8) K3/(1-¥%) )
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2 { 1) e + k(a1 - 28707 + BTIPD)
« 2(1-k%) & pg(a-b)
+ 262 [aTDg0(a-b) - bTDGD(a-b)] } / (1-KD)
o2 { 20 + K672 (b-20) + 2(a-K20)T0GD(a-B) } / (1-K7).

and the theorem is proved.

Proor oF Tucoxew2. If k=0, y, = nTzh and y, 4 = aTzh_l. From prior
results regarding the stationarity of the covariance,

Var(y,) = Var(y, ) = a2 0a = o%a Pa.

The estimator of "month- to-month" change is y, - ¥y, 4 = aTzh - aTzh_l.
Its variance is
“Var(y, - v;,) = 20°aFa- 2 T?or apa = 20%a"D(I-1)Da.
T -
IE0<k<l, p = 6325~ kb T4t ky,.4 = W, + ky,_ 1 (10)
where ¥, is defized as cTzh - kaxh 1
Var(¥,) 21124 + K612 - 2ka' 0% DR DD

o 0% + k6T 0%b - 2ka" DR JDD } (11)
It follows from (10) that '

Var(y,) = Var(¥,) ~+ kZVar(yh_l) + 2kCov(Vh,yh_1)
= Var(h) + KMar(y)) + 2kCov(Fy,y; 4), and thus

20ov(Fy,yy4) = (1/K) { (1-F)Var(yy) - Var(Fh)}
Now-we can write Vy - Vpy = Myt kyh 17 Ypq ° - (1K) _4-

Var(y, - ’Z-l) = VYar(F,) + (1-k) Var(yh 3) - 201 k)Cov( ’yh—l)

= Var(¥;) + (1-k) Var(yh)
- (=R /R { (-F)ar(yy) - Var(Fy) }

[+ (1-£)/K) Var(K) + [(1-B) - (1/K)(1-K) (1-K))] Var(yy)
(W) Var(Fy) + (/R)(-B)°[k - (144)] Var(y,)
Var()/k - (1-K)Var(y,) [k
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Substituting from {11) finishes the proof:
- o2 PP + K¥Tb - 2kaTDR DB} /K - (1- k) 2Var(y,) /k
PaooF OF TuroreM 3. To start, the variance of the general summation

E v Tzk . is easily derived.

1=0

@ T o T
Yar( ¥ v, ) = X e.Var(z, v, + 2 E 2 v, Cov(z .z, )Y
(i=0 ] ’i-z) =0 * ( h-t) 0<i < 1 h-1,%h-3 vy

o [ ] @®

) u;ra2ﬂzvi + 2 X pX vlTazﬂl JJ 'Dv

i=0 $=0 J i1 J- J
1]

[ 2]
= o { X v Py, + 2 E v, T s hr Iy

}
i=0 * ' i=0 b n=1 140

In the remainder of the proof, ve need only show that the sums and

®

differences specified in the theorem can be expressed as X "iTzh—i’ with
1=0

the sequence of v ’s as given in parts (i) through (iii).

(1) Sh 4 vas dei1ned as Yt Vpogt et t Vpoter for any t > 1. The

vectors s Uys Vg, --- CBM be determined by introducing y, 4 terms one

at a time.

T
Vp * Ypy = ‘T’h - kbzy g v kyh 1% Vhet

T T T
a ‘h - kbz, 4+ (1+k)(n Ty g - kb'z, o + ky, . 9)

f

"

oMz; + 24) + K(a-8)z, , - (kek?) 8z, o + (E+k*) s
Continuing,

’ yh + yh-l + yh 2 = aT(zh + zh 1) + k(a"b)Tzh 1 - (k+k2)szh_2
+ (1+k+k )(c Ty g - kbT zy_ 3 + kyy 3)
= 8 (zh LTI WV k(a- b) zh g (k+k )(a- b) )

T
L (ke R2eR) BNz, g v (kekPR0)y g
Including all ¢ terms,
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T T
Yt et Vpoger O (3 + - * zh-t+1) + k(a-b)"z, 4
+ (k+k2)(c-b)Tzh_2 +oee. (k+k2+ ces 4+ kt'l)(a-b)Tzh_t+1

(ke e ENBTz, e (kR e KDy (12)
But according to (8),

T TS Lt
yh—t = [ Zh_t + (G-b) .zlk‘zh_t—i
1=
The last two terms of (12) become

2 t T TS 8
(k+k + ... t k )[ (a'b) zh't + (a’b) iflkzzh_t_i ]

m

= (k+k2+ eee kt) (a-b)T >

- J=t
Finally ve can write (12) as

-1
k’ Zh-j

T T
Yt et Vpoger O (zj + oo * zh—t+1) + k(a-b) "z 4
+ (k+k) (a-b)T ke k2 k1) (a-)T
6-b)'z, o+ <00t (k+k%+ ...+ )(a-8)"z; ;.4

. 6k e s KN (a-B)T j%tkj'tzh_j (13)

Nov it is apparent that: v, =6; v =6 +* (k+k2+ R ki)(a-b), for

i=1,2, ..., t-1; and v, = (k+k2+ vee 4 kt)ki't(a-b), for ¢ = t, t+1,
The series of v, given in Theorem 3, part (i) are obtained by
summing powers of k.

(ii) The difference y, - ¥y, ; can be replaced by the appropriate
sumhations:

T TS .o T : TS o1
Y~ Ypy T G Tt {a-b) iflkzzh_i - [e'z;,_, + (a-b) iflk‘zh_t_i]

1-1 . ® .
T T 1 t 1
= oz, + (a-b) [ Bk'z, .+ k'zp 4+ T k'z, . ]
h i=1 h-t h-1 5 %1 h-1
T T W
LY (a-0)" X

Wtz
j:t+1 h-J
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t-1 .
= cT:h +{¢—b)T _Elk'zh_i + [kt(a—b) - a]Tzh_t
: i=
o . .
cfa-)t T OG- KNz (14)

t=t+1
From (14) the vectors v, can be determined.

(iii) To find the v s corresponding to 5, , - Sp_4 ¢» OE need only
’ ?
combine the appmpriate vectors from each separate sum, as written in
part (i). In ‘sfh,t the vectors are:
{a*uk-ﬁ”wuwnuJL i
Y. = -
R ORI e VIR O

0, 1, +.v, t-1,

1]

(15)

t, t+1, t+2, ...

® ®
Notice that ""%'k—t,t = 3oz = 2_) Vi t%h-5° The same expressions

=0
can be used for 5, , ;, except that the vector indices start at t rather
b
than 0, and are shifted: & = j-t. In §, , 4 the vectors are:
b

_{a+ﬂk-ﬂ*”wu*nu¢x j
W2k - kY /(-0 (a-b), 5 = 2ty 2041, 2042, o
Now the solutiwn for 5, , - Sp_y.¢ can be found by subtracting

9 ?
appropriate terms from each sum. For 1 =0, 1, ..., t-1, only the
expression fres (15) is necessary. Vhen 3 = ¢, t+1, ..., 21-1,

CRtk - kY - (k- ETEDI/0R) Heed) - e

= ekt k- KUK (eb) - a
Finally, for & = 21, 2¢+1, 2842, ...,

(- kP - EVRE - K))/(R) Yaod)
k2 - khyk(1 - KY)/(1-B)]) (e-b)
SR - k(8- K)](a-B)

t’ t+1’ L) 2t’1,

Y5

"

v,

‘Ui.
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4. ADDITIONAL COMMENTS

Several unrelated topics are discussed in this section. 0f primary
importance is how useful these results are in actual surveys. In SRD
Report No. 88-26, the examples mentioned include the Current Population
Survey and Statistics Canada’s Labour Force Survey. Each survey gathers
data on labor force characteristics, such as work force and employed
status. The correlations between rotation group estimates from one month
to the next tend to be moderately positive, and beneficial to the
implementation of composite estimation. 0f course, the developments in
the report apply to any survey employing a balanced one-level rotation
design.

The SIPP and NCS are the tvo examples mentioned most frequently in this
report. Many of the characteristics measured in the NCS involving
incidents of crimes may exhibit a negligible correlation in the panel
estimates from one month to the next. If so, it would appear
questionable whether the NCS could profit by using composite estimation
rather than simple linear estimation from the months involved. Ve offer
no argument here to the contrary. This point will be addressed in a
subsequent report dealing with rotationally balanced multi-level rotation
plans, which include the NCS design.

On the other hand, the SIPP seeks information on income level, sources of
income, program participation, and other items. For many of these, the
correlations of interest may be large enough to make our results useful
to the SIPP. As always, the theorems have been put in a form to be
applicable to general surveys.

A second matter to consider is the "steady-state" of affairs mentioned
before the statements of the theorems in Section 2. By this we mean the
limiting case where panels have been in sample long enough to eliminate
the affect of phasing in the sample. Our claim is that assuming a
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"steady- state" from the beginning of the survey usually will not change
the true variances by much.

Consider as an exasple a survey where each of four panels are interviewed
every fourth month through eight interviews. The SIPP uses such a
design. Data is accumulated from some or all of the panels for 35
months. Suppose k is assigned a value of 0.5, and a composite estimate
is desired for mmth 7. The first panel (note: the SIPP would call this
the first rotatisn group) contributes seven months of data up to this
point: Z4,40 2@33, 73,97 24,10 Ty 4 76,3’ and 27.9- The last three
estimates are net available until the interview in month 9. (See the
chart in the appendix.) Similarly, from the fourth panel, estimates
24,4: 25 30 5, p and 2,1 are obtained during an interview conducted in
month 8. '

The derivation im (8), applied to month 7, starts with

yy ¢T37 - kazﬁ + kyﬁ, and concludes with

T TS .1
y; = 6 2, + (8-D) iflk Ty i

Obviously there are no vectors z, . for 1 greater than 6. In fact, only
partial vectors are obtained for s = 4, 5, or 6. One remedy is to change
the weights @ and b, but only for zy, %9 and z,.

Let' z, = (e, 0,0, 21,4)T, zy = (0, 0, Zy.30 32’4)T, and 25 = (0,
Z3.2> 23,3 z§,4)T, the estimates available from months 1, 2, and 3. Ve
define special coefficient vectors: a; = (0, 0, 0, a14)T, b1 = (0, 0,
0, by, = (0, 0, gy 0y0)Ts By = (0,0, by, BTy ey = (0
8391 833) 434)T, b3 = (0, b32, 633, b34)T. In order to ensure that the
estimators im all months are unbiased (if we ignore time- in-sample bias),

4 4
ve require that Y4, = I b, =1, for i =1, 2, and 3. It follows
j=1 ¥ =1 Y
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immediately that 814 ° b14 = 1. Beyond the third month, @ and b are
selected as usual. Then

. 3 .
T T 4 T 5 T

The only adjustment necessary in the variance formulae is to amend
variances and covariances corresponding to Zy, Z3, and "nonexistent"
terms. In (9), the expression

cTVar(zh)a + (a~b)T_§1k2iVar(zh_i)(a—b)
gz

= 2 { aTﬂza + (a-b)Tﬂz(a'b) kz/(l'kz) }

is very close to the actual sum of variances components from (16):

"2 { oo + (k2 LN k6)(a-b)TD2(a—b) + k8(a3-b3)T02(a3-b3)

+ K00y by) 9% () b,) }

@

Two expressions in (9) contain the matrix §= I k"an", defined as if
, n=1

all z, ; vere sampled. It is not difficult to see that the actual sum of

covariance components will again be slightly different from that obtained
wvith an infinite sum approximation. However multiplication by the
correlation coefficients in 'n’ generally a bit smaller than one, will
reduce the relative difference even more.

Inlﬁll, the infinite sums used in the variance formula for Vp provide a
good approximation to the actual variance. If a smaller value of k is
used or a larger value of A is desired then this difference narrows even
further.

Another aspect to consider is the covariance structure laid out in (2).
Our experience has led us to expect that, as recall time increases, so
does response variability. This conclusion may be reasonable in
demographic surveys, where respondents often supply information from
memory.
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Nevertheless it has been pointed out to us that a somewhat opposite
effect may occur in some business surveys. It may be the case that, for
a vhile, response variability actually decreases with time. In some
circumstances survey data are derived from records which may not be
complete or sufficiently accurate for several months. MNinimum variance
in the responses might then be exhibited several months prior to the time
of the interview.

Vhether or not the variance of a panel estimator is a monotonic function
of the recall time, the results in Section 2 are valid under the model
presented. No assumptions are made about the constants dl’ d2, ceey dp,
except that they are positive. Obtaining good approximations for the

di’s.is the responsibility of the individual using these results.

A final point to raise is the difficulty of finding easily applied
general formulae for a rotationally balanced multi-level rotation plan.
Such a design is more symmetric than the longitudinal plan considered in
this report in some aspects, including time- in-sample. For any month,
estimates are eventually obtained from each panel, one panel recalling
one month, another recalling two months, etc. Each panel comprises a set
of rotation groups representing the entire range of times-in-sample.

This symmetry is offset, at least computationally, by the more intricate
pattern of correlations. For any month A and any ¢ such that 1 < 1 < p,
cofisider the panel which is interviewed in month A+i. There is an
estimate from the rotation group which is in sample for the first time
(disregard any groups used only for bounding purposes). This value is
correlated with estimates from the same group for the previous p-1
months, but with nothing else. A second group is interviewed for the
second time. Its estimate for month A is correlated with those for the
prior 2p-: months. This pattern continues.

Vhen the contributions and relationships of all the rotation groups in
this panel have been sorted, one must bring in those from the other
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panels. Because each panel is interviewed in a different month, the
corresponding covariances may be different. The entire process, although
balanced and well-structured, is more intricate. This fact is reflected
in the variance formulae for the generalized composite estimators of
level and change. Ve plan to address these in a forthcoming report.
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APPERDIX

Design Layout of Estimates For Several Months From p Panels, p =4

NONTE PANELS - 1 2 3 4
!
1 z1’4
2 Z5,3 22,4
8 23,2 23,3 Z3 .4
4 41 74,2 74,3 24,4
5 T5.4 T5 4 Z5 9 %53
6 ° Z6,3 76,4 Z6,1 Z6,2
7 27,2 27,3 27,4 Z7.1
8 Zg,1 78,2 78,3 Zg,4
o Zg,4 Z9.1 Zg,9 Z9,3
10 210,3 Z10,4 Z10,1 10,2
1 11,2 %11,3 Z11,4 11,1
12 12,1 Zi9,2 712,3 49,4
13 13,4 Z43,1 13,2 13,3
" Z14,3 T14,4 14,1 14,2
15 . 15,2 Z15,3 Z15,4 Z45,1
16 Zi6,1]  |%16,2 Z16,3 Z16,4
Note: 2,4 denotes the estimate of "monthly" level for month A from the

panel which is interviewed in month h+i. Solid horizontal lines separate
estimates which are obtained in different interviews.
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Vhen p = 4:




