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Possibly Incorrect Regressors. 

David F. Findley, Bureau of the Census 

C. Z. Wei, University of Maryland 

1. INTRODUCTION AND OVERVIEW. 

Applied work involving statistical modeling frequently leads to situations where 
. 

models must be compared which are not related to one another by parameter 

resttitions. In such a situation, log-likelihood ratios of pairs of estimated models do 

not have a &i-square limiting distribution, and statisticians making model selection 

decisions frequently resort to rather complicated and subjective comparisons of 

residuals or other model artifacts to accomplish the selection. In this paper, we give 

some theoretical background for the use of the usual log-likelihood ratios for 

non-nested comparisons. The practical importance of this capability is magnified by 

the fact that maximized likelihood values are usually available from the software used 

for estimation. Thus comparisons can often be made quickly. This encourages 

inventiveness and experimentation by the modeler. 

In fact, the model selection procedures we examine are the minimum AIC 

procedure of Akaike (1973) and related procedures like the minimum BIC procedure 

of Akaike (1977) and Schwarz (1978) and the criteria of Hannan and Quinn (1979) 

and Rissanen (1986). The contributions of the paper stem from its rather 

comprehensive analysis of situations where the models are non-nested and not 

necessarily correct, and from the mathematical completeness of the results presented 

for Gaussian situations with fixed regressors or with vector autoregressions and their 
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subregressions. We aho provide a revision of the princinle of parsimonv away from 

its oversimplified emphasis on counts of parameters. 

Our analysis is restricted to linear regression models estimated via least squares, 

because more intelligible and complete results can be obtained for these models. The 

regressors can be stochastic. The associated parameter estimates maximize a 

Gaussian likelihood function. (The true likelihood function could be non-Gaussian.) 

Some comments about generalizations to other models are given in section 11. 

After introducing some terminology in section 2, we illustrate, in section 3, the 

. use of the minimum AIC procedure with a regressor selection problem which arose in 

the design of a ship autopilot and which involves both nested and nonnested 

coml?arisons . Section 4 provides our basic theoretical assumptions and the measure of 

the coefficient estimation variability, CVAR(X), associated with a regressor process x t.’ 

which is central to much of the subsequent discussion. In section 5, formulas for 

CVAR(X) are given which show that this quantity is equal to the number of 

coefficients estimated when xt is comnlete in the sense that it contains the correct 

regressor as a subvector. Subsection 5.3 shows that CVAR(X) approximates this 

number when xt is “almost complete.” Subsection 5.1 contain the initial analysis of 

an ‘important example of two asvmDtoticaUv eauivalent Jo.& incomnlete autoregressions 

with the property that the value of CVAR(X) is larger for the model with fewer 

estimated coefficients, contradicting the principle of parsimony. Here, asymptotically 

equivalent means that the difference between the estimated regression functions tends 

to zero in probability as the sample size increases. 

In section 6 some easy results are presented describing situations in which a I 

variety of log-likelihood-ratio based model selection criteria prefer one regressor over 

another with asymptotic probability 1. Some criteria, like BIC, are seen to 

consistently prefer a model with fewer estimated coefficients whenever the 
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log-likelihood ratio is bounded in probability, a preference which is sometimes 

undesirable as the Example 5.1 shows. 

The next several sections analyze the asymptotic behavior of the log-likelihood 

ratio LA1,2) in the only simply defined situation in which the sequence LN - ( lt2), N > 

No is bounded in probability, the situation of asymptotically equivalent regressors. 

Section 7 investigates the limiting distribution of the log-likelihood ratio and its 

connection with CVAR(X) 1 va ues and with the MAIC criterion and a modification 

thereof. In subsection 7.1 we comment on the use and limitations of the 

. complete-regressor form of the limiting distribution for hypothesis testing with 

non-nested regressors. 

*Section 8 shows that the difference of Kullback-Leibler (“entropy” or 

“information”) numbers of the estimated models overcomes some of the deficiencies of 

the log-likelihood ratio and motivates the definition of an “ideal” minimum AIC 

criterion. The generalization (8.11) of a result of Akaike and Shimizu connecting 

K-L numbers and log-likelihood ratios plays an important role here. 

In section 9, we show that under fairly general circumstances, when two 

regressors are asymptotically equivalent, one can expect the difference of their 

CVAR(X) values to be the limit of the differences of a normalized measure of the 

mean square prediction errors arising when the estimated regression coefficients are 

used to predict an independent replicate of the observations. Thus, there is a 

predictive interpretation of the results of sections 5, 7 and 8. Section 10 completes 

this discussion by presenting a strategy for showing that finite sample means of the 

log-likelihood ratios, of AIC differences, of K-L number differences, and of differences 

of mean square prediction errors, converge as expected. A new lemma on the rate of 

decrease of the inverse moments of the Wishart distribution makes it possible to 

verify the assumptions of section 10 for regressors which are fixed or are subvectors 
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of not necessarily stationary autoregressions with Gaussian noise processes. For these 

situations, we thereby achieve the first complete demonstration of the bias correction 

property used by Akaike (1973) to motivate the definition of AIC. 

Section 11 contains comments and literature references concerning generalizations 

of the results of this paper to models different from linear regression models. The 

Appendices I and II contain proofs omitted from the initial discussion. 

2. LINEAR LEAST SQUARES AND MAIC. 

. 

Let yt be a q-dimensional regressand and xt an r-dimensional candidate 

regressor process for yt satisfying 

(2.1) 

with probability one (w.p.1). The coordinate entries of xt can be fixed or random. 

Although yl,..., y N need not be Gaussian, the least squares coefficient and error 

variance estimates for the regression of yt on xt, 

“6”’ E ( ii y xt)( ll t=l t t t=;txi)-l 

and 

“15x’ z N--l i 
t=1 

(yt - AN~t)(Yt - ANXty , 

(2.2) 

(2.3) 

are the maximizers of a Gaussian log-(quasi)likelihood function 

L$x)[&A] z 



whose maximum value is 

ik’ 3 Ll$x)[$x), A6”‘1 = - ~1ogan&&x) 1 + q). (2.4 

(We use tr to denote trace and z to indicate the definition of a symbol.) When two 

6) competing regressor processes xt , i= 1,2 are being considered, we will replace the 

superscript (4 by the superscript 6) in the preceding notation to indicate quantities 

associated with xf). Our investigation focuses on the log-likelihood ratio, 

(2.5) 

and several modifications thereof for regressor comparison purposes, the best known of 

which is due to Akaike (1973, 1974), 

AICA112) E (-2)ei1j2) + ‘Jq(r(‘) - r(2)), (2.6) 

with r(i) 2 dim xti], i = 1,2. 

We will write xi’) E xi”) to indicate that xi’) = Bxi2) for some matrix B. 

(1) In this case, we will say that xt is nested in xi”). When this happens, if xt Cl) is 

correct in a strong sense and has certain stability properties (see Lai and Wei (1982) 

and sections 4 and 5 below), then (-2)iN(1’2) will have an asymptotic x2(q(r(2) - 

r(l))) distribution. However, in this paper, we are interested in the situation in 

which the regressors may be non-nested and only approximately correct. 

The quantity (2.6) is the difference of the two AIC statistics, 

AI+) E -2tgl + 2qr(i) (i=1,2) . P-7) 
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Akaike’s minimum AIC criterion (MAIC) asserts that the regressor associated with 

the smaller AIC value should be preferred: thus, xt (l) is preferred if AIC&‘72) < 0. 

The next section presents an application of MAIC in which this criterion exhibits 

consistent performance across a range of nested and nonnested comparisons. 

3. SHIP AUTOPILOT MODELING WITH MAIC: AMERIKA MARU DATA 

In Kitagawa and Ohtsu (1976) and Ohtsu et al. (1979) and the papers 

. referenced there, the design and testing of a stochastic-regression-model- 

based ship autopilot is described. The success of this experiment influenced the 

desig% of a new ship (Shoji Maru III) incorporating such an autopilot (K. Ohtsu, 

personal communication, January 1987). The principal variable to be controlled is 

yaw (Y), the angular deviation of the ship’s forward movement from the intended 

direction, measured at the bridge. Other less important but useful variables to 

control include roll (R) and pitch (P). The rudder angle (RU) is the main controller 

input variable, but measured values of the lateral acceleration (LACC) and vertical 

acceleration (VACC) of the forepeak may also provide useful information for the 

controller/autopilot. 

Our analysis will seek to determine the situations in which VACC is a useful 

controller input variable for a specific ship: we consider the problem of choosing 

(4 between the regressors xt and ‘i”), these being defined by 

LACCt-m)’ 

and 
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5ii”) z (xc”)‘, VACC 
t t-17 *** 7 v+-&, 

for l<m,M<lO. If M < m, these regressors are non-nested. The modeling will be 

done with N=894 observations made at 1 second intervals on the container ship 

Amerika Maru under manual control. These data are discussed in the papers cited 

above. If m and M denote the lags associated with minimum AIC values for the 

regressors xim), l<m<lO and Zi”), l<M<lO, respectively, then the use of VACC in 

the autopilot model seems worth considering seriously when 

DAICgg4 E AI& - AICi$h 

is negative. Results obtained from the program MULCON of Akaike et al. (1985) 

for seven choices of the regressand yt are included in Table 3.1 below. The choices 

for yt =e: Yt7 Rt7 Pt7 (Yt7 R,)‘, (Y,, PJ’, (Rt7 PJ and & Rt7 PJ’- In the 
table, LAG denotes M or m, as appropriate, and 

AdimA E q(6M - 5m), 

with q = dimyt. The results are consistent: the use of VACC is favored only when 

P is one of the controlled variables. This conclusion has engineering plausibilitv: 

VACC is closely related to P but not to the other controlled variables. Thus, 

MAIC has functioned quite satisfactorily. Note also that in the two cases, y+, = Yt 

and Yt = Pt, the comparison is between non-nested regressors, since M < m. 

( 172) Hypothesis testing based on an asymptotic distribution for LN leads to the same 

conclusions, but this approach has some significant limitations, see subsection 7.1. 
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Table 3.1. DAIC Values for Various Choices of y 

With VACC Without VACC Difference 

Y LAG dimA AICgg4 LAG dimA AICSg4 AdimA DAICgg4 

VW 8 108 18683. 6 90 18693. 18 -10. 
Y,R 6 72 12244. 60 12236. 12 8. 
w x 84 12468. 

s 
70 12483. 14 -15. 

W’ 96 13033. 13036. -3. 
Y 4 24 6027. 

i ii 
6025. 

Y 
2. 

R 5 P 7 ii 6574. 6393. ii 25 6569. 5 40 6491. 2 -1:: 

. An additional analysis with MAIC to determine which components, error 

processes are uncorrelated is discussed in Findley (1988). 
* 

4. BASIC ASSUMPTIONS 

The fundamental issues we wish to discuss can be described in the context of 

6) * selecting between two competing regressor processes xt , 1=1,2. Our minimal 

- 6) assumption beyond (2.1) is that the estimated error variance matrices XN converge 

in probability to positive definite limits, EN *(i) %p !Z(i) > 0, so that the 

log-likelihood ratio satisfies 

N-li, ( b2) 
N 

3 p - (1/2)log(lC(l)I/IX(2)I). (4.1) 

(9 In what follows, xt usually designates either of the regressors xt , i=1,2. We 

will assume that a matrix A (4 exists such that Ag) %p A(X) holds. Defining 

et) z yt - A(x)xt, we will call the equation 

Yt = A(x)xt + ep) 
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the model associated with the regressor process xt. We note that 

“A”) - ACX) = t ei”)x,( i x x,)-1 , 
t=1 t t=1 t t (4.2) 

and that “6”) differs from Eg) 5 N-lE~=le~x)e~x)’ by the quantity 

xAx) _ “6”’ = &(A($ _ AcX)) ; 
t=lXtXt(AN 

cx) _ AtX))/ . 
(4.3) 

. 

We will now introduce a measure of model uncertainty (or variability) due to 

parameter estimation which is invariant under l%x.lell transformations yt -+ Byt, 

xt --) Cxt with nonsingular B and C . In the situation of interest in sections 5-7, 

where the regressors are asymptotically equivalent, the effects of estimating BN A ( x, are 

the same for both regressors and cancel in the log-likelihood ratio LN A ( ‘t2), see 

Proposition 6.3. Our measure will therefore focus on the coefficient estimates. We 

define 

QeJ E tr(J$x))-l(i cx> - A(X))( 
N 

i 
t,lXtx;)(AN 

A cx) _ A(x))‘m 
(4.4) 

For purposes of interpretation, we note that this reduces to the total squared 

estimation error of the coefficients, tr(h, @) _ A@))(a 
N 

@> _ A(‘))‘, if the yt and 

xt are transformed in such a way that X (4 N = Iq and Et =I%tZ; = Ir. Using (4.3), 

we could &O write QN (x)= Ntr(E(x))-‘(~~) - X1$“)) and observe that, since 

“p x+ p E(x), the variate Qk) is asymptotically equivalent to the final term of 

the decomposition LN -(x> = - ~lOg2sl2AX)I + tr(fp))-lXN} + tr(86x))-l(x, - 
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t&x)) obtained from (2.4) via the substitution q = tr(XN ) XN . A(x>-lA(x> We shall 

assume that 

(Al) Qk) Ldist. Q(x), and EQ(X) < 00. 

Our measure of (asymptotic) model uncertainty due to coefficient estimation is 

defined to be 

CVAR(X) : EQ(X) . f (4.5) 

?Explicit formulas for CVAR(X) will be given in the next section. Its 

connection with the MAIC procedure will be revealed in sections 5, 8 and 11. In 

section 9 an alternative measure is described which provides a connection between 

model uncertainty and prediction error. 

Our usual method of verifying (Al) will involve establishing that there is a 

vector variate tf) satisfying 

Q&d = t tx”tA”’ 
N 7 (4.6) 

which has a limiting distribution with finite mean and variance. To define this 

variate, we need some notation. Given a positive definite matrix ?3, we will use X1/2 

to denote any matrix S with the property that X = SS’, providing it is formed 

continuously, meaning that s 3 I: implies !!$I2 3 X112. The Cholesky 

factorization is an example. For a matrix explicitly of the form CIXJ, the square 

root of choice will be CX’/2. We will denote the inverse of X ‘I2 by !3-l12, this 

being different from (IT1)l12 = {(P/2)t}-1 in general. We define 
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$1 E vet (Jjx))-1/2 i etx) 

[ t=1 t 
xi{ t=Jycp)1’2]7 P-7) ( i 

where vec[.] denotes the column vector obtained by stacking the columns of the 

matrix [.I. This satisfies (4.6). It is easy to check that the variates defined by 

(4.7) are invariant under nonsingular linear transformations of xt or yt. 

It follows from (Al) that QN is bounded in probability (Op(l)). Thus the 

term on the right in (4.3) converges to 0 in probability, with the result that 

*We will occasionally need to assume 

(A2) N1j2(@ - X(x)) is bounded in probability. 

This condition is satisfied when N 1/2($$ _ x(“)) h as a limiting distribution. Two 

further simplifying assumptions sometimes called upon are 

(A3) Eef)x; = 0, 

(A4) &(x)e(x) = xtx> 
t t 

. 

Note that, for m-stochastic regressors, (A3) is equivalent to Eyt = A(x)xt, 

meaning that xt has been chosen well enough to capture the mean behavior of yt. 

Shibata (1981) presents results for fixed regressors when (A3) fails, for the case in 

which yt - Eyt is i.i.d. and Gaussian. We discuss his results briefly in section 11. 
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To obtain formulas for CVAR(X), we also require 

Here Ir denotes the identify matrix of order rzdim xt. (A5) is satisfied, for example, 

if xt is nonstochastic, or if xt is stationary and N-1Xy=l xtx; 5 dx) E Extx;. 

(4 
P 

It implies that the difference between tN 

. 

and 

Zp) : vet m(Jjxl)-1/2( i etx) 
t=1 

x+~,4’ii1y2] 

tends to zero in probability, a situation we denote by 

t6x) NP zp. 

(4.8) 

(4-g) 

Hence, under (A5), also, ZN ( x”26”’ >tist.Q(X) 7 the limiting distribution in (Al). 

5. FORMULAS FOR CVAR(X) WHEN THE LIMITING DISTRIBUTION IS 

GAUSSIAN. 

We will present formulas in subsection 5.1 for the situation in which the 

(4 * limiting distribution of tN m (4.7) is Gaussian with mean zero, and the regressor 

process xt is not complete, meaning that neither xt nor any subvector is a correct 

regressor in the sense of subsection 5.2. These results require the joint stationarity 
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of xt and yt (or et), but stationarity is not needed for the familiar formula, 

CVAR(X) = qr (=dim A (4 ), obtained in subsection 5.2 for complete regressors. We 

will assume throughout this section that (A3) - (A5) hold and will refer to theorems 

in the literature verifying (Al). 

5.1. Stationary Case. 

Making joint stationarity assumptions for xt, yt, we define I’ (4 2 Extx; and 

note that, since Eejx)x; = 0, the random vector 

. 

* 
Zk) = N-1/2vec (5.1) 

is N112 times the sample mean of the mean zero stationary vector process 

’ MIX) = vet 
[I 

(x(x))-1/2e{x) 
I{ 

(r(x))-1/2x 
II t * (5.2) 

Therefore, a variety of Central Limit Theorem results apply to (5.1), see Theorem 

5.2 of Brillinger (1969), Hannan (1970, pp. 220-228), CoroRary (3.9) of McLeish 

(1975), Dahlhaus (1985) and Eberlein (1986). Under diverse assumptions, these 

results yield 

zp ~d,,,.w(w 7 (5.3) 

with 

CVAR(X) = trV = limNhoo EZp)‘Zp) 
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e~X)“$(X)wle~~ x{+~~(~)-‘x~ , (5.4)7 

or an equivalent expression involving integrals of cumulant spectral densities, see 

Brillinger (1969) and (5.6) below. 

The fourth cumulants associated with the fourth moment quantities in (5.4) 

vanish when et and xt are jointly Gaussian and also in the not necessarily Gaussian 

univariate autogression situation, where yt is scalar with mean zero and x 
t = 

[Y&m e-e 
1 

Yt-m 
r 
1’ for positive integers ml<m2<...< mr, see Remark 3.2 of Hosoya 

. 
and Taniguchi (1982, p. 138). In these cases, Isserlis’ formula (Brillinger, 1975, 

p. 21,) and (A3) can be used to show that (5.4) reduces to 

CVARP) = ? tr{~(x)-lI’(e)(k)}tr{I,(x)-lP(x)(k)} 
k=m 

+ k?Ar{?x(k)Fex(-k)’ ), 
= 

where P(x)(k) : Extxi+k , P(e)(k) 2 Ee{x)ei$, and 

Fex(k) E E[((~(x))-1/2e~x)}{(ro)-1/2xt+k}’] . 

A convenient spectral density form of (5.5) follows via Parseval’s formula: 

CVARLx) = 

(5.5) 
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. 

+ 2rjK tr{ E(x)%ex(~)r(x)-lfxe(-~)}d~, 
-lr 

(5.6) 

where fee(X) and fxx(X) are the spectral density matrices of et and xt, respectively, 

fex(X) = (2a)-‘XT=+ pex(k)eBik’, and fxe(x) = (2”)-1Xr=-oo Fex(-k)/emikX. 

For scalar processes yt, set pk = Eytyt+k/Eyf. If 

pm = Pm 
1 

= Pm 
2 

= Pm _ m = ‘7 
1 2 

(5.7) 

(1) for distinct lags m, ml, m2, two autoregressions, with xt E ytBm and 

xi2’ ’ [Yt-ml Yt-m 1’7 will turn out to be of special interest. 
2 

The condition (5.7) 

implies that A (l) .= 0 anh AC21 = 0, so that et”) = e$“) = yt. It follows from 

(5.5) that if vn : Y 
k=m 

{pi + Pk+n pkBn}, then 

CVAR(l) = Vm, 

and 

CVAR(2) = Vml + V 
m2’ 

(5.8) 

(5.9) 

Examme 5.1. Suppose y+, is a stationary autoregressive process of order 6 with 

variance 1 whose first six partial autocorrelations are 0.0, 0.0, 0.0, .80, -.41, -.64. 

The Levinson-Durbin algorithm (Box and Jenkins (1976, p. 83) can be used to 
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calculate the autoregressive coefficients and the autocorrelations pk. The vanishing of 

the first three partial autocorrelations is equivalent to 

Pl = P2 =p3=o. (5.10) 

With xi’) = ytB2 and xi2) = [ytMl yts3]‘, the formulas (5.8) and (5.9) yield 

CVAR(‘) = 26.3 

and 
f CVAR(2) = 2.9 + 2.4 = 5.3 . 

(5.11) 

(1) * Thus, although the regressors xt and xi”) are asvmntoticallv eauivalent in the 

sense that ei’) = ei”), (1) the more parsimonious regressor xt has greater coefficient 

estimation variabilitv as measured by CVAR. In fact, for 577 out of 1000 models 

obtained under (5.7) by choosing the partial autocorrelations at lags 4-6 uniformly 

and independently, it happened that the regression on one of ytBl, yto2, ytw3 had a 

larger value of CVAR than the regression on the remaining a of lagged y-variates. 

Some implications of this will be discussed in sections 7-9. This phenomenon does 

not occur when both regressors are complete in the sense we will now describe. 

5.2. Complete Regressors. 

Let It denote an information set (c-algebra) containing the information 

generated by the “past history up to t” of all regressors under consideration, It 1 

cr(,(l) xw; x(2) (2). 
t ,“‘, 1 t ,-*,x1 I Yt-p-,Y();-- ). It would be natural to say that a 

regressor xt which is determined by It (that is, is $-measurable) for each t = 1, 

2 (4 ,..., is correct if for some matrix A , all of whose columns are non-zero, we have 

E(yt I It) = Acx)xt, or, equivalently, with et tx) = yt - AtX)xt, if 
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E(e(X)II ) = 0 t t (5.12) 

holds. However, the case when some columns of A (4 are 0 needs to be considered 

and additional conditions, such as suptE{et (x)‘ep))l+c < 00 for some c > 0, need 

(4 to be imposed to obtain the expected limiting distribution for tN . We shall say 

that xt is a comnlete regressor (process) for yt if, in addition to (5.12) and 

E(e(x)ea)’ 11 ) - I;te) 
t t- ’ (5.13) 

. 

two other conditions hold, 

* 

-l/2 
xt zp 0 , (5.14) 

and (A5). It follows then, from a multivariate generalization of Theorem 3 of Lai 

and Wei (1982), that 

tp, zp 3 
dist.qo7 Iqr) * 

Hence, for complete regressors, 

(5.15) 

CVAR(X) = qr . (5.16) 

Any two complete regressors are asymptotically equivalent, since 

A(l)xil) = E(yt I It) = A(2)x{2). Thus, if we regard CVAR(X) as a cost function, 

then (5.16) embodies the princide d parsimony (“the fewer coefficients estimated the 
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better”) for complete regressors. The example of subsection 5.1 shows that when 

asymptotically equivalent but incomplete regressors are considered, the principle of 

parsimony is m longer valid: the more parsimonious regressor can have greater cost. 

For the stationary case, (5.16) follows from (5.4), (5.12) and (5.13): using the 

formula E(s) = E{E(. I It)}, one sees immediately from (5.12) that the terms in (5.4) 

with k#O are 0, and, from (5.13) one then obtains 

CVARCX) = tr X(xF1&~x)e{x)’ = qr . 

. 

In the next subsection, we shall describe some continuitv properties of 

CVAa(x). Th ese imply that (5.16) holds approximately if xt is “almost complete.” 

We will also give a simple example to show that, although it can be weakened as in 

Lai and Wei (1982), a condition like (5.13) cannot be completely dispensed with. 

5.3. Continuity of CVAR(X) near Complete Regressors for Stationary Regressions. 

Let us consider CVARP) first. If xt is complete, then, by (5.12) and (5.13), 

fe( A) = f3Fe( A) E (27r)-1qi+ Fex(-k) #eikX and (X(“))-‘fee( A) = (2#Iq. 

Clearly, CVARP) will be close to qr if fxe(A) - ee(A) and fee(X) - (21r)%x) are 

close to zero in any of a variety of senses. For example, if the entries of the 

spectral density matrices in (5.6) are square integrable over 27r, one can obtain such 

a result from the fact that the left-hand side of 

J 
2?r 

Ig(o+)w 5 { J’” o wi2d~} 
l/2 2r 

o { J 
0 

IW)I~~~J”~ 

will be small if the integral of I g(A) I 2 is small enough. 
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We will now indicate how, if fourth moments exist, the Cauchy-Schwarz 

inequality for expectations can be applied to obtain an analogous result for CVAR(X) 

via (5.4). For a random h-vector w = [wl.“wh]‘, we will use 1 1 w 1 I 2 to denote 

2 l/2 
maxl<j<h IEwj) ’ 

With Mix) (4 as in (5.2) and c2 G I I Mt I 12, we will first show, following an 

approach suggested by Madga Peligrad, that, for all N, 

I EZ ( x)‘Z&x) 
N 

- EMiX)‘MtX) 1 5 2clc2 (5.17) 

f 

(4 where cl is a measure of the t-dependencies among the entries mt of Mt , 

t =*1,2,..., which is described below. Observe that if (5.12) holds, then for each 

entry mt, the quantity 

AN = N-lE((Xy=l mt)2 - $ = 1 mt} 

is zero, as is also the expected value of S,(p) = !$rz:+l mt conditional on In+l 

One verifies as in Eberlein (1986) that 

“Pn pl I E(Sn(p) I In+l> I I2 S c1 7 (5.18) 

(4 where cl is the maximum over the components of Mt of the sum of the mixingale 

coefficients as defined in McLeish (1975). Since AN = P/W~=,E~m,s,(N -41, 

and since IE{mtE(St(N-t)JIt+l)}I < c1c2 by Cauchy-Schwarz, (5.17) follows. 

The left hand side of (5.17) will be small if cl is small enough. We will 

complete our examination of CVAR(X) - qr by showing that 6 z EMjX)‘Mjx) - qr 

is neglible if I I E(eix)‘E(X)-lep) I It) - ql I 2 is small enough. Noting that 
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&~)‘x(“)-‘e~) = q a& Extr(xklxt = r, this assertion follows from the identity 

6 = E[x$X)-lxt{E(e~X)‘E(x)-le{x) ] It) q}] via the Cauchy-Schwarz inequality. 

This last argument is clearly related to (5.13). We close this section with an 

elementary stationary example for which (Al)-(A5), (5.3), (5.12) and (5.14) hold, but 

not (5.13), and for which (5.16) does not hold, because the asymptotic variance 

matrix of t ls 
x1 and ZAx) is different from the identity matrix indicated in (5.15). 

The basic construction is due to Andrew Siegel (personal communication, March 

1987). Let F be the distribution on the eight number pairs &(m,m, &($3Jz, 

. -47% wv& 47% *Mm -m97 hl h w ‘c assigns -probability l/8 to each pair. 

Let (xt,, et), t = O,l,... be an i.i.d. sequence with distribution F. If yt = axt + et 

for gome a, we have a regression with q=r=l and et cx) = et . Also, Eet = Exf = 

1, and Ext = Eet = Eetxt = 0. If It = a(xl,..., xt,yo ,..., yt-1), then E(et ]It) = Eet 

= 0, but E(et Ix: = 3/2) = l/2 7 whereas E(e2 lx2 t t = l/2) = 3/2, so (5.13) fails. 

Finally, (5.3) holds, with V = Eetxf = 3/4, so that CVAR(X) = 3/4. Thus 

CVAR(X)#qr( =l) in contrast to (5.16). 

6. SOME REGRESSOR SELECTION CRITERIA AND THEIR CONSISTENCY 

PROPERTIES. 

To obtain a broader perspective on MAIC and the role of CVAR, we now 

consider additional adjusted log-likelihood ratios, 

Di1,2)[ci1,2)] = 4A172) + cA1t2) , (6.1) 

(1) and their allied criteria, according to which the regressor process xt is preferred if 

D1$1,2)[$,2)] < 0. For fixed regressors, all such criteria are admissible in the 
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decision-theoretic sense, ( 172) see Takada (1982). Some examples of cN and the 

names of their associated criteria are given in (6.2): 

#a = 

2q(r(‘) -r(2)) * AIC(1,2) (Akaike(1973)) 7 N 

2(CVAR(l) - CVAR(2)) ; Ideal-AIC&1,2) (Section 8) 

q( r ( ’ ) - r(2 ) ) 1 ogN* B I C ( ’ 72) 7 N 
( Akai ke( 1977) Schwarz(l978) 

Ri s s anen( 1986) ) 
7 

,2q( r ( ‘) - r(2) ) 1oglogN. Hannan and Quinn(1979) I 

(6.2) . 

Thetinimum Ideal-AIC criterion is not implementable because the quantities 

CVAR(i), i = 1,2 are unknown. The following proposition, an immediate 

(1) consequence of (4.1)) shows that all the criteria of (6.2) consistently prefer xt if it 

provides a better fit asymptotically, in the sense that IX(l)1 < lX(2)j. 

Pronosition 6.1. u lX(‘)l~lC(~)l and if 3 -- cA~,~)/N 0 ,- then 

P(D&1,2)[c61,2)] < 0) % 1. 

(1) For example, if xt is a complete regressor process, as defined in section 5, 

and xt2) is n& complete, then A Wx{l) - A(2)xj2) # 0, but Ee{‘)(A(‘)x{‘) - 

A(2)x{2)) t = 0, by (5.12). Hence (A4) and the decomposition et t2) = e{l) + 

{A(‘)x{‘) - A(2)x{2)} yield X(l) 5 2(2) and X(l) # C(2), from which it follows that 

IX(‘)1 < lE(2)l. Proposition 6.1 shows, therefore, in particular, that the criteria 

defined h (6.1) and (6.2) consistentlv prefer a complete regressor over an incomdete 

The Cox tests discussed briefly in subsection 7.1 are intended to provide a regressor. 

more traditional model selection approach for this situation. 
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Another immediate result applies to the BIC and Hannan and Quinn criteria 

and also to the criteria of Rissanen (1986). We will call a criterion of the form 

(6.1) stronglv parsimonious if c&1,2) 3 -oo whenever r(l) < r(2). 

Pronosition 6.2. g r(l) < r(2) and if Dh1,2)[c&172)] is stronglv 7W- - then parsimonious ,- 

P(D&1,2)[c&1,2)] < 0) % 1 whenever the log-likelihood ratio LN ( 1J) & bounded b 

probabilitv. 

. The next result shows that Proposition 6.2 applies to asymptotically equivalent 

regressors. Its proof is given in Appendix I. 

Pronosition 6.3. Under assumntion (A2), if the regressor nrocesses xi’) & xi”) 

m asvmptoticallv eauivalent & the sense that their error processes coincide, et 0) = 

et2) (w. p. l), then 

(-4’92) “p Q&!) - Q&l). (6.3) 

Therefore, g (Al) holds fof both regressors, as well as (A2), then $1,2) &j bounded 

h probability. 

These last two propositions show that when asymptotically equivalent regressors 

are being compared (and (Al) and (A2) hold), then the minimum BIC and 

Hannan-Quinn criteria, among others, consistently prefer the regressor with smaller 

dimension (fewer estimated coefficients). Example 5.1 reveals that this preference can 

be undesirable. The deep results of Shibata(1980,1981) also show that the strongly 

parsimonious criteria can perform poorly relative to MAIC when the regressors are 
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. 

not complete. Our Example 5.1 is simpler and more accessible than Shibata’s 

results. It too has implications for prediction, see section 9. 

The discussion after Proposition 7.3 below shows that, in typical situations 

involving asymptotically equivalent regressors, each regressor has a non-zero 

probability of selection by MAIC, so this criterion does not have a consistency 

property. 

A theoretical prototype for AICl&172) and Ideal-AICA1,2) which has a more 

focused consistency property than the strongly parsimonions criteria is investigated in 

section 8. 

Except in Corollary 7.3, we will not establish any further theoretical properties 

of t8e strongly parsimonious criteria. These criteria are as easily calculated as AIC% 

and, for certain applications, might be preferable on the basis of experiments and 

subject-matter considerations, see Franke et al(1985). If the model selection need 

not be done automatically, most users will want to examine several criteria. 

7. LIMITING DISTRIBUTIONS OF i&172) AND AIC&172) FOR 

ASYMPTOTICALLY EQUIVALENT REGRESSORS. 

We would like to conclude from (6.3) that the asymptotic mean of (-2)Li172) 

is CVAR(2) - CVAR(l). I n section 10, we will obtain this quantity as the limit of 

the finite-sample means E(-2Lk172)}. H ere we ignore the finite-sample means and 

invoke less restrictive assumptions than those of section 10. Our goal is to obtain 

the existance of a random variable Q (172) such that (7.1) holds, 

(-2)j&172) %ast.Q(1,2), y&l~ EQ(172) = CVAR(2)- CVA&). (7.1) 
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This property will follow from the additive property of means if we can show that 

Qp and Qg) (or t(l) (2) 
N and tN ) have a joint asymptotic distribution, which we 

will do for a rather broad class of regressors in Proposition 7.1. 

The mean formula in (7.1) reveals that, with asymptotically equivalent 

a ( 1’2) regressors) LN (1) will have an asymptotic tendency to be positive if xt is the less 

desirable regressor (that is, if CVAR (l) > CVAR(2)). This is the opposite of what 

happens if I!G(1)(#lS(2)( when, according to Proposition 6.1, a positive tendency of 

i ( 1’2) 
N means that I Z(l),1 < I X(2)l, so that x(l) t is the better regressor. It is this 

- dichotomous behavior for which a log-likelihood-ratio-based regressor selection 

procedure must compensate. 

*We pointed out in section 4 that the tN-variates are invariant under 

non-singular transformations of the regressor processes. We will make frequent use 

of this property now. Throughout this section, the coinciding regression error 

processes et’) and ei2) will be denoted by et. 

The simplest path to (7.1) uses the familiar device of isolating the effect of the 

factor (Cy,lxt xt ) (i) (i) -’ in t&) i by suitably normalizing x(~) We assume that there t * 
(0 exist nonsingular matrices CN , 6 1 N ,> No such that the transformed variates xt N = 

. 

Cf)-lxii) satisfy 

; x(i I,@ 1 ‘+pv(i) > 0, 
t=l t,N t,N (7.2) 

with V(i) a a-stochatistic, positive definite matrix, for i = 1, 2, and such that an 

appropriate joint limiting distribution exists for the fundamental sums, 

x{“J’] 
, 1 bdist U, with EU’U < 00. . (7.3) 
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(In the most familiar cases, C#) = N1j21r(i)). Using the property vec[BC’] = 

(C@I)vecB, it follows from (7.2) and (7.3) that the joint distribution of ti’) and 

tk2) is obtained by left multiplying U by the block diagonal matrix 

(v(l))-‘/2@1 (1) 
r 0 

0 (v(2))+2,1 (2) * r 

. Now, from Proposition (6.3)) we obtain 

ProDIosition 7.1. Under assumntion (A2) of section 4, g (7.2) & (7.3) u, SO does 

(7.1). 

The approach taken above to (7.1) obscures the role of components common to 

and xi”): if A(‘)xi’) = A(2)xi2) is non+zero, the distribution of U in (7.3) will 

be singular (have a singular variance matrix, etc.). It also does not make clear the 

form of the asymptotic distribution of -2i6 172); this can have a rather simple form 

that does not depend on the nature of common components, as we shall demonstrate 

in Proposition 7.3. To motivate this result, we consider the simplifications which 

occur when xi’) and xi’) are jointly stationary. The following propostion is proved 

in Appendix I. 

(1) Proposition 7.2. !hDDose that xt and xf2) - u non-nested, jointlv covariance 

stationarv regressor processes for yt, with mean 0 and nonsingular variance matrices, 

and with the pronertv that the variance matrix of the joint nrocess [xt (l)’ xj2)‘] is 

singular. Sunnose also that the sample variance matrices NW19 (i) (j)’ conveie 
t =lXt xt 
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. 

& probabilitv & Exe Ci) W, i j = x0 
' 

1 2 
' * 

B(l) ~IHJ B(2) such that -- 

B(i)x[i) = 

26 

Then there exist non-singular matrices 

xr I 1 z$i) 7 i = 1’2 

and such that the combined process xt = [xt zt ” (l)‘zi2)‘]J satisfies 

N-l I: xx WC 0 
,“, t t -p 0 WZ’ [ 1 

(7.4 

J& WC(r Exfxt’) anJ Wz both nositive definite. Conseauentlv, & regression 

model eauations can be put in the form 

yt = Ax; + A(‘)Z(‘) + eCi), i = 1 
t t 

2 ’ * 

The regressor nrocesses xi’) and xf2) m asvmntoticallv 

A(‘)z{‘) = A(2)z{2) = 0 (w.p.1). In th’ 

eauivalent g and onlv g 

is case, the combined process xt is also 

(1) asvmntoticallv eauivalent &Q xt a xi2’. 

Without assuming the regressors are jointly stationary, we will, for the 

remainder of this section, suppose that matrices B 0) and B(2) exist such that (7.4) 

holds and such that there is a sequence of invertible, block-diagonal “weighting” 

matrices, 
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-D; 0 o- 

DN = 0 Dil) 0 ,(NzNo) 

0 0 Di2) 

with the property that 

(7.5) 

. 

holds for the process xt z [xt zt C’ w,y] I) where Wz is a positive definite 

non@ochastic matrix and WC is positive definite w.p.1. 

In the stationary case, DN = N1/2 times the identity matrix of appropriate 

order. For other types of regressors, including sinusoids and polynomials, see 

Theorems 10.2.6-7 and pages 581-584 of Anderson (1971) and the discussion of 

Grenander’s conditions in Hannan (1970). For complete, unstable autoregressors of 

the form (yt-19-+p ) ‘ (no lags missing, dimyt = 1)) see Chan and Wei (1988). 

Theorem 10.2.11 of Anderson (1971) and Theorem VII.10 of Hannan (1970) 

( 1) describe somewhat different conditions under which tN and tA2) have (nonsingular) 

Gaussian limiting distributions. In Chan and Wei (1988), the common component xt 

is nonstationary (and WC is random), but their results show that 

tC = vec[t~letx~{( X ’ -1 l/2 
n t~l+: 1 I 1 N OpP) (74 

and, with zt = [zt (‘)‘zi2)‘], that 
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ti 3 vet C”-1/2t~letzt((t~lztz~)-1~1~2 
[ 1 -~st+v’ w. (7.7) 

For simplicity, we shall assume that fi > 0, so var(etzt) must be non-singular. 

These conditions suffice to establish the results we are after. In fact, setting 

’ it follows from (7.5)) and the fact that 

the tN - statistics are bounded in probability, that tN (i)‘t (4 N 

Therefore, 

Qi2) _ Q(l) N 

N 
t(2)‘i(2) _ i(‘)‘t(l) 

PN N N N’ U-8) 

*NOW set d(i) E q(r(i) - r’), where rc z dimxi. Since fi is positive definite, 

the matrix 

fi1/2 1d(2) ’ I 1 ’ --‘d(‘) 
will have d(2) positive eigenvalues x4)...) X2(2) and d(l) negative eigenvalues d 

-pT ,..., -,~i(l) see Noble(1969, p. 419). 
7 

A standard argument applied to the right 

hand side of (7.8) leads to 

Proposition 7.3 If (7.4) - (7.7) hold, then 

(4 ( 1’2) 
N 

x@ d(2)2 2 

dist. j’l 'jXj(l) - 
d(1)2 2 

k$ hx{d(2)+ k}(l), (7.9) = 
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j=l,..., where ~$1)) d(l) + dt2) 8re indenendent chi-sauare variates with one d.f. h 

particular, if both regressor nrocesses itre complete (in the sense of subsection 5.2), 

then 

(49 b2) xdist. x2(d(2)) - x2(d(‘)) 
N ’ (7.10) 

a difference of indenendent chi-sauare variates with d.f.‘s d (2) and d(l) - resnectivelv. 

w Davies(1980) describes an algorithm suitable for calculating values of the 

distributions in (7.9) and (7.10). The variance of the distribution in (7.10) is 2{d(2) 

+ &l)}. This is greater than the variance 2ld t2)- d(l) 1 of x2( 1 d(2)- d(l)] ), which 

is the limiting distribution of (-2)il&1,2) for the comparison of complete, nested 

regressors when the parameter excess of the larger regressor is I d t2)- d(l) I. In this 

sense, non-nested comparisons are more problematic than nested comparisons. The 

instability of (-2)il&1,2) is further increased when the non-nested regressors are 

weakly equivalent but not strongly equivalent, see the discussions below (8.7) and 

(8.12). 

Remark When the DN in (7.5) are multiples of the identity matrix, say DN = 

N1j21, as in the case of bounded regressors which do not decrease too rapidly, then 

the block diagonal form in (7.5) can be achieved starting from the weaker 

requirement 

i - P 
[z; “‘f” wc;] (WC > 0 w.p.l), 
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(i) i through replacement of zt by zt ) - WC’i( +)-lx;. 

Examnle 5.1 continued. For this example, the distribution in (7.9) is 

5.41) + 0.03&l) - 26.0x;(l). (7.11) 

If the variate on the right in (7.9) is denoted by 6(X, ~1)) then the limiting 

distribution of AICl&1’2) is that of a(& ,u) + 2q(r(‘) - r(2)). If, say, r(l) < r(2), it 

follows that limNhco P(AICl&1’2) < 0) is always non-zero. The same is true also 

- Of limN+oo P(AIC&1’2) > 0). That is, each regressor has a positive asymptotic 

probability of being chosen by MAIC. Some tables related to (7.10) and further 

discu’ssion of Example 5.1 are given in subsection 8.3. 

If xi’) c x{“) we can arrange (7.2) so that xi = xt . (1) Then zt’) and all 

terms related to it should be removed from the formulas and discussion above. In 

this case, (7.10) reduces to the familiar assertion of a limiting x2(q(r t2) _ r(l))) 

distribution for (-2)Ll&1’2). 

These results yield corresponding results for AICN ( 1’2) and Ideal-AIC~“2) by 

the addition of an appropriate constant. We note the following corollaries. 

Corollarv 7.2. If the assumptions of Proposition 7.3 hold, then the mean of the 

asvmntotic distribution of Ideal-AIC61’2) k CVAR(l) - CVAR(2). 

Corollarv 7.3. If the Assumntions of Proposition 7.2 are satisfied, and if the 

regressors x$‘) and xi2) are complete and have the same dimension, r Cl) = rt2) 

then all of the statistics Dl&172)[cl&172)] defined in (6.2) coincide with (-2)Ll&‘72; a -_-- - 

have a svmmetric limiting distribution. Thus, in this situation these criteria g& 

eaual preference to both regressors, asvmptoticallv. 
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7.1. Use of (7.10) for Hypothesis Testing. 

To complete this section, we remark that if the dimension rc of the common 

component xi in (7.4) is known or can be estimated reliably, and if it is assumed 

(1) that at least one of the regressors xt and xi2) is complete (and that other 

appropriate assumptions described above hold), then (7.10) can be used to test the 

null hypothesis that both regressors are complete, and therefore the regressor x: 

should be preferred, against the alternative that one regressor, presumably the one 

A (i> with smaller maximized likelihood value (larger IE;N I), is not complete, see the 

discussion after Proposition 6.1. This is a generalization of the familiar test of the 

nested model against the nesting model. Consider the autopilot design problem of 

sect&r 3, for example. With x(l) E ,(‘) and xc21 5 xi’) 
t t t ’ dues of (-2)iN(1,2) 

can be calculated from Table 3.1 as DAIC8g4 - 2AdimA. Thus, the asymptotic 

p-value associated with the observed value of (-2)$$172) under (7.10) for the 

regression with yt = Pt, where rc = 7.5 = 35, d(l) = 7 and d(2) = 5, is 

pP = P(x2(5) - x2(7) 5 -18.) = 0.003 . (7.12) 

The asymptotic p-value for the regression with yt = Yt, where rc = 4.5 = 20, d(l) 

= 4 and d(2) = 10, is 

PY = P(x2(10) - x2(4) > 14.) = 0.07. (7.13) 

The value of pp would cause the null hypothesis to be rejected in favor of a 

preference for the regressor including VACC values at the significance levels usually 

used. The value of py would lead to acceptance of the null hypothesis at some 

popular significance levels. The decision to reject the null hypothesis coincides in 
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these examples with the decision reached via MAIC. However, in the case of (7.13)) 

acceptance of the null hypothesis, favoring the “intersection” regressor xi containing 

just the variables which both regressors share, would also exclude VACC. Thus 

(7.10) does not nrovide a wily of testing for the inclusion of a snecific variable unless - -- 

this variable onlv occurs in the repressor process having greater dimension. - 

There are other modified-log-likelihood-ratio procedures for doing regressor 

selection via hypothesis-testing with non-nested models deriving from Cox (1961, 

1962). These have been extensively developed in the theoretical econometrics 

literature, but not widely used, it appears. Their adjustments to the log-likelihood . 

ratio are more difficult to calculate than those we have discussed because they 

requke an approximation to the expected value of the log-likelihood ratio under the 

null hypothesis. The test statistic requires a consistent estimate of the corresponding 

asymptotic variance as well. It seems to happen rather frequently in applications of 

Cox tests that each model of the pair under consideration is rejected in favor of the 

other. For a survey of the econometrics literature concerned with these procedures 

see Judge et al(1984, pp. 883-888) and White (1989), and their references. In some 

limited simulation experiments by Tsurumi and Wago (1987), MAIC did a more 

satisfactory job of regressor selection than the Cox-test procedure they investigated. 

Hypothesis testing would seem to be an appropriate tool for vindicating one 

theory over another when the theories specify competing regression models. It is a 

less natural procedure for trying to decide which of two possibly incomplete regressors 

has greater predictive power. 
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8. AN IDEAL CRITERION: MAXIMIZING THE KULLBACK-LEIBLER 

NUMBER 

We will now investigate some properties relevant for regressor selection which 

are possessed by the expected log-likelihood function, 

@[x, A] = E{ L@, A]), 

. a quantity we will call the Kullback-Leibler (K-L) number, or cross-entropy, 

associated with A and C and the regressor xt. We will assume that (A3) & (A4) 

of s&tion 2 hold for the regressor nrocesses under consideration. Then, from the 

decomposition, 

tA) q y 
et t 

- Ax = ecx) + (A(X) - A)x 
t t t 

we obtain 

X(x) + (A - A(x))Extx;(A - A(X)) J , 

which leads via the definition of LN[X, A] to the basic formula for EN [ , (xh A], 

&k)[X, A] = - s (log2Ir] 81 + trS’X(“)) 

- !j t&A - A(X)){ EtFptxt}(A - A(x))f . (84 
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If N 2 No as in (2.1)) then EZN t =lxtxC, is positive definite and the quadratic 

expression in A - A (4 * in (8.1) takes on its maximum value, 0, only when A = 

A(X). An elementary analysis of the eigenvalues (see the proof of Lemma 3.1 of 

Hosoya and Taniguchi (1982)) shows that the other term in (8.1) is uniquely 

maximized at E = Z(x). Thus, E&x)[X, A] is uniquely maximized at 

2 = E(x), A = AcX): 

dx), AcX) : Eg)[X, A] + max! (N 2 No). (8.2) 

. 

From (8.1) we obtain that, for all N=1,2 ,..., 

* 

&F)[z(x), A(X)] = - ; {log2r]X(X)] + q} . (8.3) 

6) Given regressor processes xt , i=l 2 we &fine iAil E Eii)[$g), i\f)] &‘Ci ) = , , 

@[‘#, Ati)], and ei 1,2) z k&l) - iA2). Note, from (8.3) that 

’ N,m - 

&&‘A > Ei”$, if and o& g ]X(‘)]C]C(~)] . -- 7 7 

From (8.1) we also obtain 

$p = - $&oglr] S&i, ] +tr($i))-lI$i)} 

(8.4) 

_ $r[(gg))-‘(A#) _ Ati)){E i .(i),(i)‘}(~6i)-A(i))‘]. 
t-1 t t 

(8-5) 
- 
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The regression analogue of the entropy maximization nrincinle of Akaike (1977) 

(4 asserts that the regressor xt * (9 with larger EN is to be preferred: 

(EMP) Prefer xi’) g t&1,2) > 0 . 

In this section, we shall show that this principle favors the desired regressor 

both when ] C(l) ] # ] X(2) ] and when x(l) and x(~) are asymptotically equivalent. t t In 

other words, ii172) does not exhibit the dichotomous behavior of $&1,2) discussed in 

~ section 5. We will give separate analyses for the situations 

* (c(l)( < (d2)( 

and 

The situation 1 d2) ] < ] I;(l) ] is covered by interchanging indices, (1’2) ++ (2,1), in 

pl = p(2)l . 

(8.6) 

(8.7) 

the’ discussion of (8.6). 

In the nested case, xi’) = Bxi2), it follows from the uniqueness of the 

maximizer of &Ir2)p A] that (8 7) is equivalent to A(2) = A(l)B, which is equivalent 

to et’) = et2). ’ ’ In the non-nested case, however, the condition (8.7), defining what 

we shall call weak eauivalence of regressors, is weaker than et (l) = et”). For 

instance, let yt be a mean zero stationary process for which non-zero autocorrelations 

at two different lags coincide, pk( 1) = pk(2) = p (k(l) # k(2); 0 < ] pJ < 1); an 

example would be a stationary third+xder autoregressive process with p1 = p3 = 0.2 
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and P2 = 0.5. Then, for xv) E yt k(i), the 

0) = - 

error processes et Ci)= yt _ pf) (i = 

1’2) are distinct, but Z d2) = (Eyt)(l - P2). 

8.1 A Consistency Result for EMP when I X(l) I < I 212) I. 

If the trace term on the right in (8.5) is bounded in probability, or even just 

op(N), for i=l,2, then it fOuOWS from EN -(i) %p Z(i) and (4.1) that, under (8.6)) 

limN+coP(tA1’2) > 0) = 1 , (8.8) 

. 

(4 showing that xt is preferred by EMP with asymptotic probability one. For 

exariiple, if (Al) and (A5) hold, then 

Rg) E tr($g))-‘(Ag) - A(i))(Et~lx~i)x~i)‘)(A6i) - Ati))’ (8.9) 

is easily seen to satisfy RN (i) ~~ Q#), so RAi) is bounded in probability . Hence the 

same is true of the trace term in (8.5) and (8.8) applies. 

8.2 Results for the Cases I X(l) I = I 2(2) I and e(l) = ei2). t 
(1) When (8.7) holds, then &N o. = 

’ 
&i2L and we have 

7 

(8.10) 

a decomposition in which the bracketed terms are nonnegative, by (8.2). In 

Appendix I, we will demonstrate that, under (Al) - (A5), the likelihoods and K-L 

numbers deviate from their maximum values in the same way, 



(8.11) 

a phenomenon first examined by Akaike and Shimizu in the case of 

overparameterized autoregressions, see Shimizu (1978). When (8.11) holds, then 

(8.10) yields 

E(l'2) N 
N (8.12) 

. It follows from (8.12) and the analysis of the expressions (1.5)-(1.7) in Appendix I 

- ( 1’2) that, when Assumptions (Al)-(A5) are satisfied, then &N is bounded in 

- ( 1’2) probability if (and only if) (8.7) holds, a cleaner result than is possible for LN . 

In fact, 

L&l&} - (Lk2) - Lk2i} + {L& - LA2&}, 
’ 

(8.13) 
’ 7 ’ 

and, under (8.7), 

which has mean zero but magnitude Op(N 112 ) when N -l/2 
times the right hand sum 

has a nondegenerate limiting distribution, as in the example discussed after (8.7). 

Since L 5 
1) ,oo = Lk2A when et(l) = ei2), we obtain the following fundamental 

’ 
result, from which regressor comparison properties of EMP follow. 
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(1) Pronosition 8.1. If the regressor nrocesses xt and xi2) - for yt are asvmptoticallg 

eauivalent and satisfv assumntions (Al)-(A5) of section 4 then EN * ( 1’2) - P -’ plcJ ip21 

behave onpositelv for large N, in the precise sense of (8.14): 

i( 172) 
N 

Np-q2) . (8.14) 

Note that if xi’) C xi”) and -2i&1,2)->d.st “;( f)‘(‘)AiXf(l) as in (7.9)) = 

then (8.14) implies 

. 

limN+oo P(il&1,2) > 0) = 1 . 

Thus, among nested, asvmntoticallv eauivalent regressors satisfvinq (7.9) and (8.14), 

EMP consistentlv prefers the regressor yv& smallest dimension. This consistency 

property is more limited in scope than that of the strongly parsimonious criteria, see 

Proposition 6.2. In light of Example 5.1, this more limited scope may be desirable. 

What are the large sample properties of ii1,2) for this example ? The result (8.12) 

and some results of section 7 combine to provide the basis for an answer to this 

question. 

Proposition 8.2. a (Al)<A4) and the other assumptions of Pronosition 7 1 or I- 

(1) Pronosition 7.3 are satisfied by the asvmntoticallv eauivalent regressors xt and xi”), - 

then 2g&1,2) has an asvmptotic distribution whose mean is -- CVAR c2) - CVA&). 

Thus, asymptotically, (EMP) has a tendency to favor the regressor with smaller 

CVAR. 
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ExamDle 5.1 continued. For this example, CVAR(2) < CVAR(l). The asymptotic 

probability that xt (2) is selected by EMP can be obtained from (7.11): 

limN+wP(i&172) < 0) = 0.73. 

Similarly, the asymptotic probabilities that AICl$1,2) and Ideal-AICl&1,2) lead to the 

selection of xi2) are 

w limNdoo P(AICi1,2) > 0) = 0.17 

and 

* limN+, P(Ideal-AICl&1,2) > 0) = 0.81, 

respectively. See (6.2) for the definition of Ideal-AICl$1,2). 

It can be shown that if xi’) and xi2) are only weakly equivalent and X(l) # 

2(2), then the asymptotic distribution of 2t&1,2) (which exists rather generally) has 

a mean which can involve additional terms related to the variances of the estimates 

of X(l) and X(2), see (10.16) below. Arguments like those of subsection 5.3 can be 

used to show that the additional terms will be negligible if the regressors are nearly 

complete, see Findley (1985). 

8.3 Ideal-Arc ( N1,2) and AIC&172). 

The attractive properties of EMP described in subsection 8.2 provide the 

motivation for our definition in section 6 of 



40 

Ideal-AICl$1,2) = (-2)$$‘72) + 2{CvAR(l) - CVAR(~)), 

This was defined in such a way that it has the same asymptotic mean as EN A ( w, se 

Proposition 8.2 and Corollary 7.2. Similarly, AICl&1,2) is motivated by the special 

case in which the regressors are complete in the sense of subsection 5.2. In these 

contexts, our results show that Ideal-AICl&‘,2) and AICl&1,2) are asymptotically 

unbiased estimators of $$1,2), the property emphasized by Akaike (1973, 1977)) who 

discusses AIC;) as a bias+orrected estimate of EN ). It is clear from (8.14) that -(i 

T these estimators are a consistent. 

One of us (D.F.F.) will report elsewhere on simulation experiments concerning 

the e’stimation of CVAR(X) f or scalar autoregressions, in order to directly estimate 

Ideal-AICl&‘,2). Lacking such estimates, it is properties of AIC&172) which are of 

practical interest. 

To get some sense of the asymptotic behavior of MAIC for non-nested models, 

we will now look at the case of comnlete regressors, where (7.10) holds. We assume 

that d E q(r t2) - r(l)) > 0. Let m E q(r(l) - r’), where rc is the dimension of the 

shared regressor xi in (7.4). Then the variate on the right in (7.10) becomes 

6(m,d) = x2(m+d) - x2(m) . (8.15) 

In Table 8.1 below, three sets of G(m,d)-probabilities are given for a range of values 

of m and d. These are asymptotic probabilities of selection of the more parsimonious 

regressor xi l), which has the smaller CVAR value, see (5.16): 

limN,ooP(AICi1,2) < 0) = P(b(m,d) < 2d); 
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limN+wP(ii1y2) > 0) = Wb,d) > 0); 
and 

limN+coP(AIC&1,2) < 0, k&1,2) > 0) = P(0 < 6(m,d) < 2d) , 

the last being the asymptotic probability that MAIC and EMP agree on the choice 

of xi’) . For this situation, the low probabilities which arise when m is larger than 

d are a consequence of (8.14). 

. 

Table 8.1 Asymptotic Probabilities of Parsimonious Choice Between Complete, 

Non-Nested Regressors, by AIC, EMP and Both Simultaneously. dEdimA(2)dmA(1); 

m is* the number of estimated coefficients for variables in x (1) 

t 

which are not linear 

combinations of those in x{“); 6(m,d) is defined in (8.15). 

m/d 1 2 

0 .84 .87 
1 .74 .81 
Fi .68 .59 .67 .77 

:i .56 .55 .62 .59 
00 .50 .50 

P( 6(m,d) <2d) 

6 12 18 ocl 

.94 .98 .99 1.00 

.92 .98 .99 1.00 

.90 .97 .99 1.00 

.85 .95 .98 1.00 

.79 .92 .97 1.00 

.75 .89 .95 1.00 

.50 .50 .50 

J?(m,d) > 0) 

m/d 1 2 6 12 18 00 

0 1.00 1.00 1.00 1.00 1.00 1.00 

i .71 .65 .82 .75 .97 .94 1.00 .99 1.00 1.00 1.00 1.00 
6 .58 .65 .86 .97 .99 1.00 

12 .56 .61 .79 .93 .98 1.00 
18 .55 .59 .75 .90 .96 1.00 
00 .50 .50 .50 .50 .50 
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P(0 < J(m,d) < 2d) 

m/d 1 2 6 12 18 00 

0 .84 .87 .94 .98 .99 1.00 

; .45 .33 .63 .52 .89 .84 .98 .96 .99 .99 1.00 1.00 
6 .17 .32 .71 .92 .97 1.00 

12 .12 .23 .58 .85 .95 1.00 
18 .lO .lO .50 .79 .91 1.00 
00 0.00 0.00 0.00 0.00 0.00 

9. A SECOND COST FUNCTION: NORMALIZED MEAN SQUARE 
PREDICTION ERROR WITH INDEPENDENT REPLICATES. 

. 

One would expect that, between asymptotically equivalent regressors, one 

imp&ant consequence of greater coefficient estimation variability would be 

diminished predictive performance. In this section, we establish a connection, 

between CVAR(2) - CVAR(l) and th e corresponding difference of a measure of mean 

square prediction error in two situations: predicting independent replicates of the data 

used to estimate the regression coefficients; and predicting the observation set used 

for estimation. 

Let Ap) denote the least squares coefficient estimate of A(X) in the model 

Yt = A(x)xt + eix) , 

from data yt, xt, t=l,..., N. We assume that (Al)-(A5) hold. As before, 

Eef)eix)‘is denoted by X(x). Let yt, Et, t=l,... ,N denote an independent replicate 

- (4 of the data which were used to determine AN and let E denote the expectation 

operator for this replicate. Consider the normalized mean square prediction error 

measure defined by 
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MSPEkX) z EE[ ii 
t=1 

(7, - ~~)j+~(x)-l(~t - j$&J]. (9-l) 

From the decomposition yt - “ph$ = et”’ + (A(X) - A&x))xt and (A3) - (A4), 

we obtain 

MSPEF) = Nq + trE[(X(x))-l(Ag) - A(‘))[E i x P ](Ap) 
t=1 t t 

- A(X))f]. 

- Hence, for RN (i) defined in (8.9)) we have 

* MSPEP) - MSPE&‘) = E{RA2) - R&l)} . 

Since R$) wP Q&i) ’ under our assumptions, we would expect to have 

bmN+m{MSPEA2) - MSPEA’)} = limN+oo E{QA2) - Qil)} 

= CVAR(2) - CVAR(l) . (g-2) 

It follows from taking expectations in (4.3) that E{Q&l) - QN (1) } corresponds to the 

difference of the normalized mean square prediction error obtained if, instead of the 

* (i) independent replicate in (9.1), the data used to estimate the AN are predicted. 

The equalities in (9.2) establish a connection between estimation variability and 

prediction error. In section 10, we shall describe how (9.2) can be verified for some 

important classes of models. 

The results of Kunitomo and Yamamoto (1985) show that the analogne of (9.2) 

for the same-realization forecast error quantities N 1’2bN+1 - &~xN)(~(x)-l)l/2 
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contains additional terms. The examples in their Table 3 can be resealed by 

(#4)-l as in (9.1) to show that MSPEP) and CVAR(X) can be smaller for an 

incorrect regressor than for the correct repressor. Thus these quantities by 

themselves (when they can be adequately estimated) do not provide completely 

satisfactory regressor selection criteria. In theory, they can be used to discriminate 

between weaklv eauivalent regressors, as defined in the preceding section, a different 

situation from that of Table 3 of the above reference. 

10. CONVERGENCE OF FINITE-SAMPLE MEANS TO THE ASYMPTOTIC . 

MEANS. 

To increase our confidence in the relevence to the moderate sample size 

situation of the asymptotic results given in sections 5, 7 and 8, we would like to 

know that convergence in distribution or probability leads to convergence of the 

means, for example, 

limN_>WE{-2L&172)} = CVAR(2) - CVAR(l) (10.1) 

This is the same issue that arose with (9.2). This chapter shows how such results 

can be obtained, including complete verifications for two important Gaussian cases: 

non-stochastic regressors; and subregressions of full-rank autoregressive processes. 

The Gaussian version of the Example 5.1 will be encompassed by our discussion. 

Let Q denote a matrix with stochastic entries and let 1.1 denote a convenient 

P matrix norm, see Noble (1969). For any p11, define the bmean (or L -) norm of 

Q by lQlg = {EIQlp~l’p~ This will be finite if and only if all the entries Qij of 

Q satisfy El Qijl p < 00. Our basic strategy can be summarized in two lemmas. 
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Lemma 10.1. (Billingsley (1985, p. 348)) Ir QN sdist. Q, and also, for some No 

sup and some c>O, the condition, N)NOIQNll+e < 00 b satisfied, then E&N s EQ. 

Using the matrix norm inequality llQlQ2 . . . Qrni 5 IlQlH~Q211 . . . l/Q, and 

Hijlder’s inequality, it is easy to verify 

Lemma 10.2. Given t>O an~J flj 2 1, j=l,..., m such that 41 + .a. + ,$ml = 1, 

1 m 
e 

* 
We are investigating equivalent regressors, with et (1) = ej2) = et. All of the 

quantities we wish to examine, LN - ( 1’2), Q 6) 
N ’ etc. are unchanged by the 

transformation et ---) (X(i))-1/2et, SO we will assume for the remainder of our 

discussion that 

(10.2) 

Then the eigenvtiues Xj’N -(l) of EN ) converge to 1 in probability. -(i We will only 

consider the mean of LN t > 1’2 ; the arguments for the other quantities are similar. 

Using a first degree Taylor expansion of 1ogX about X = 1, we show in Appendix I 

that 
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Set EN z &EN t &e(l . Now, 

1 Ntr$A2) - $$‘))I 5 i Ntr(XN - kg)) , 
i=l 

and 

- ‘N) + (‘N - IQ) - 

(10.4) 

(10.5) 

W Using (4.3), we can rewrite EN - as a product of analyzable factors, 

* 

'N - 
eg) = N-l{ i e x(')C '-' 

t=l t t N }{cN(tEIXt Xt 
' N Ci> (i)')-lc 

N * 

(10.6) 

By substituting (10.4) - (10.6) into the right-hand side of (10.3), one obtains an 

upper bound for I (-2)Li1,2) I which is a sum of products involving up to eight 

factors. Since 1 (-2)Lk1,2)1 1+1/8 will be less than the sum of the (1+1/8)-norms of 

each of the products, we can establish 

SUPN>N I (-2)Q”2)// 
- 0 

1+1/8 < O” 

by verifying the moment conditions (AMl) - (AM4) below and applying Lemma 10.2. 

Then, if Cil) and Ck2) are matrices such that (7.2) and (7.3) hold, or if (7.4) - 

(7.7) hold, and 
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-D& 0 
Bb), 

we can use Propositions 7.1 or 7.3 and Lemma 10.1 to obtain (10.1). 

The remaining subsections are devoted to describing the situations in which we 

have been able to verify the following ninth moment conditions: 

(AW 
. 

w@) 

VW 

(AM41 

suPN>NO 1 tFletX;Ci-l 19 < 00 , 

SUPN>N 1 N1’2(XN -- I,)19 < 00 , 
- 0 

suPN>N l(ek))-llg < 00 , 
- 0 

suPN>N ,!(&(t~lXtXi)-lcN~g < 00 , 
- 0 

for .some sufficiently large No. 

Substantially greater generality can be achieved for (AMl) and (AM2). We 

start with these. 

10.1. Regressions Satisfying (AMl) and (AM2). 

The easiest results deal with the case in which et is independent of xt and es, 

s < t, and, in addition, the moment conditions 

SUPtIetlk < O” (10.7) 
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and 

-1; xx/c’-1 
suPN_>NolCN t=l t t N [k/2 < O” (10.8) 

hold for some k 2 9. Indeed, if Bt and zt (= it(N)) denote entries of et and 

Cilxt, respectively, then it follows from Burkholder’s inequality, see Hall and Heyde 

(1980, p. 23)) that there is a constant K. such that 

1 ’ E z Ik i K()!(t&Et’t)lk/2 N 2 2 l/2 

t=1 t t 

N 
< Ko(tC,ls~~~lk/z) ‘I2 (triangle inequality) 

N 2 l/2 
5 KO(suPt~~tlk)(t~l~itlk/2) , 

since E I BtEit I 
k = EIStjkEJttlk. Thus the boundedness of Izy=l etx;CN-‘lk) N = 

1,2’..., which implies (AMl), follows from (10.7) and (10.8). The condition (10.8) is 

satisfied, for example, if xt is non-stochastic and if CNX~X~C~-’ is convergent, as 

we assumed in section 7, or if xt has stationary k-th order moments and CN = 

N1i21 r ’ 

A variety of results are available which lead to (AMl) and (AM2) without 

indenendence assumntions, using instead either a linear representation assumption, see 

Lemma 3.3 of Bhansali (1981)) or mixing assumptions, see Yokoyama (1980)) 

Theorem 5.1 of Brillinger (1969) and sections 3 and 4 of Chapter 1 of Zhurbenko 

(1986). Yokoyama%, Bhansali’s and Brillinger’s results require that et be stationary 
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with mean 0 or, for (AMl), that et and xt be jointly stationary with mean o and 

Eetxi, = 0 (our (A4)), and they cover the stationary Gaussian subregressions 

considered in the next subsection. Zhurbenko’s results do not require stationarity 

and could be used when xt is a bounded, non-stochastic regressor sequence. 

Rrillinger% and Zhurbenko’s results establish the boundedness of cumulants. Since a 

moment of order k can be obtained from sums of products of cumulants of orders k 

and less, see McCullagh(l987), the boundedness of k-th moments follows. The 

interested reader may consult these references for further details. 

. For (AM3) and (AM4), we utilize Gaussian assumptions. 

10.2 * Regressions Satisfying (AM3) and (AM4). 

If et is a sequence of independent K(O,X) random h-vectors with X > 0 (positive 

definite), then WN = 
,“, t i 

I: c c has the Wishart distribution Wh(X,N). If Amin 

denotes the minimum eigenvalue of WN, then X,i,(WN) is the maximum eigenvalue 

of WNl, which is a convenient matrix norm for WF1. The following lemma 

concerning the Wishart distribution is fundamental to our investigation of (AM3) and 

(AM4). It appears to be new. We will use N .for “is distributed as.” 

Lemma 10.3 a WN N Wh(x) N), N=1,2 . . . . then for everv k 2 1, -- 

(10.9) 

The proof of this lemma, and of the Propositions 10.1 and 10.2 below, are 

given in Appendix II. 
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Remark. Comnlete, Non-Stochastic Regressors m Gaussian Errors. We use the 

notation N.I.D.(OJ) to indicate an i.i.d. K(O,C) process. Observe that if the 

regressors xt 

Wr(S( ) 

are non-stochastic and the errors et are N.I.D.(O,X(X)), then NeF) N 

x ,N-qr), and (AM3) follows from this lemma. The condition (AM4) holds if 

the sequence CN -lZN 
t =lxtxicli- ’ has a nonsingular limit, as in the examples in 

Hannan( 1970) and Anderson(l971) referred to after (7.5). Then (10.8) also holds, as 

well as (10.7), and (10.1) follows. 

. For the case of stochastic regressors, we will obtain our most general 

verification of (AM3) in the Corollary of the following result. 
* 

Proposition 10.1. Supnose that jlt & a ?-d.imensiona& n&t necessarilv stationary, 

autoregressive process of order p, which satisfies 

5 = Apt-1 + . ..+A ? p t-p + “t 7 (10.10) 

a where t N N.I.D.(OJ) (c > 0) & indenendent of f,, -p+l<s<t. Let the initializing -- 

2 values -p+l’“’ ,io have a joint densitv function, f(? ii -p+l’“” () ). Then, a A, )..., A 
P 

denote the least sauares estimates of Al,...,Ap from the data f -p+p.“x “N’ error the 

variance matrix estimate defined b 

A 
EN = N-l ; (2 -A - 

t=l t lXt-1 -...-~p’t-p)(‘t-~l~t~l-...-~p~t-p)’ (10.11) 

& the propertv that for every k=1,2,... , the k-th moments of %$ are ultimately 

bounded: that is, there & m N(k) such that 
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sUpN>N(k)E{X$n(e,)) < 00 ’ (10.12) 

Now we introduce the concept of a subregression and show how (10.12) can be 

applied to subregressions of (10.10). Suppose that Zt in (10.10) has the form j$ = 

[y; vi]‘. Then the residual variance matrix 8N of the regression of yt on 4 = 

[ii;~p~;~pl J is a submatrix of 8,) and therefore &in($N) <_ Xmin(SN). If the 

regressor xt of interest for yt is a subvector of jit, we wiR further have 8N < $6”)) 

which leads to A min(eN) <, Xmin(fi~)) and, therefore, finally to X~~J$&x)) <_ 

- AzFn($.JN) for k=1,2 ,... . We will summarize the regressor situation just described 

by saying that the regression of yt on xt is a subregression of (10.10)) or 

(1) altefiatively, is a subautoregression. For example, the regressors xt and xi”) of 

Example 5.1 are subregressions of the correct AR(6) autoregression for yt. In 

general, ditit and p could be unknown and quite large relative to dimyt and dimx+,. 

Then the regression seeks to approximate the dynamics of a small subsystem yt of 

the complex process Zt. 

The following result is apparent. 

Corollarv 10.1. I[f the regression of yt on xt & a subrezression of (10.10)) &r~ 

(AM3) b satisfied. 

Our main result establishing (AM4) generalizes a result of Fuller and Hasza 

(1981) which concerned the more restricted situation of (stationary) nnivariate 

autoregressions. We now suppose that jit is an i-vector process satisfying 

3 
= Axtwl + et, (10.13) 
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with et N N.I.D.(O,z), where, although g may be singular, 

; Ajg(A$ & nonsingular. 
j=O 

(10.14) 

Full-rank autoregressions of order greater than one, such as (10.10)) can be rewritten 

in the form (10.13) in such a way that (10.14) is satisfied. In Appendix II, we will 

prove the following result. 

. 

Pronosition 10.2. Jf xt h a process satisfying the conditions above, then for every 

k=l,&... there is an N(k) such that ,--- 

SUPN>N(k) E{&-~n(N-lt$t‘;)} < 00 . (10.15) 

From an argument used to establish Corollary 10.1, we obtain our result for (AM4). 

Corollarv 10.2. g xt is an r-dimensional subvector of a process satisfving (10.13) - 

(10.14)’ then (AM4) holds with CN = N1/21r. -- 

In summary, since the matrices CN must be the same in (AMl) and (AM4), 

the only stationary stochastic regressors for which we have completely verified (AMl) 

- (AM4) and (10.1) are the Gaussian subautoregressions. For non-stochastic 

regressors, see the Remark above. 

Results analogous to (10.6) hold for K-L number differences and for 2{&eA - 

“k)} and 2{$&x) - LkA} 
7 

under the same assumptions The latter variates have 

the same asymptotic mean, CVAR(X) + XVAR(X), where E;VAR(X) is the trace of 
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the variance of the asymptotic distribution of (N/2)1/2(vec$x) - Iq), with ek) = 

~(x)-l/2~~x)(~(x)-1/2 ) ’ . This follows from applying the Taylor expansion (1.2) to 

the bracketed term on the right in (1.6) of Appendix I. As a consequence, for 

weaklv eauivalent regressors ( I I;(l) I = I X(2) I ) one obtains from (8.13) and from ’ 

E{Li2A - Li2A] = 0 that 
’ ’ 

limN-,ooE{-2Ll&1,2)} = limN-,ooE(2il&1,2)} = 

{CVAR(2) + CVAR(2)} - {CVAR(l) + WAR(l)}. (10.16) 

* Finally, we note that the conditions (AM3) and (AM4) are easily verified for 

some special non-Gaussian situations, such as the example at the end of section 5, 

where the processes et and xt are bounded away from zero. 

11. GENERALIZATIONS 

In this section, we will briefly describe some elements of a natural conceptual 

framework for generalizations of the main results of the previous sections to model 

comparison problems different from regressor selection. For additional details, see 

Findley( 1985) for time series models and Findley(1989) for models for independent 

observations. For an interesting application, see Ogata (1988). Suppose LN[fl 

denotes a log-likelihood function for N observations with parameter vector fl, having 
. 

the property that N-‘LN[q and also its first and second partial Herivatives 

converge in probability as N-W uniformly on compact subsets of the convex 

parameter space. The limit function E[q = limN+wE{N-lLN[fl} iS a type Of 

Kullback-Leibler number for the model defined by 8. &[q is assumed to have a 
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unique maximum in the interior of the parameter space at a point Boo where the 

matrix of second partial derivatives, E”[8], is non-singular. Then, under rather 

general circumstances, see Pollard( 1985) or White( 1989)) maximum likelihood 

estimates 3N satisfying aL,[aN]/ae = 0 will converge to ew in such a way that 

N112( tiN - ew) has a Gaussian limiting distribution. In this situation, the Taylor 

expansions 

* A . 
2{LN[ewl - LN[eNl) = ceN - ew)‘L;[aNl( eN - 8,, 

and 

* 

2{$[Q - EN[eml) = taN - em)‘E;[8Nl(hN - 8,) , 

with i?N and 8N on the line segment between tiN and ew, motivate a generalization 

of the QN-statistic (4.4)) namely 

QN E (3N - A ew,'L~[ewl(e, - 8,) 7 

and lead to a generalization of the Akaike-Shimizu relation (8.11), 

. 1 
LN[eNl - LN[ewl NP N{E[ewl - E[eNl) - 

Two competing families of log-likelihoods LN [ (i) e(‘)] with these properties, with 

m.l.e.+3 al&i) dp w 0 ( ‘), i=1,2, are said to be asymptotically equivalent if Ll$l)[Oil)] 

= Ll&2)[&2)] (w. p. 1) for N 1 No. Distributional results like those of section 7 

can be obtained if twice differentiable, nonsingular parameter transformations g 6) 
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exist such that g(i)(&i)) = [#‘$‘)‘I I, i=1,2, and if the model defined by the 

log-likelihood LN[q] with 7 = [vc’ q(l)’ J2)‘]’ is asymptotically equivalent to those 

defined by the LN [ ti) (Ji)], i=l,2 . To establish results like 

limNdw2E{ Lf )[ $$‘)I - L#)[ $$)I} - CVAR(i) - (11.1) 

(as before, CVAR 6) * = EQ(‘), where QN (i) %dist.Q(i)) following the strategy of 

section 10, it is necessary to have explicit formulas for the m.l.e.,s ON . - b) Also, 

. conditional expectations must sometimes be used. In Findley (1989), the formula 

(11.1) is established for some models related to the multinomial distribution 

(histbgrams , contingency tables) . For this analysis, the expectation operator E, when 

applied to LN[q, was taken to be the conditional expectation conditioned on cells 

with non-zero probability *having at least one observation, in order to have ENtaN] > 

-oo. We mention this to illustrate that there are a variety of ways, depending on 

the models under consideration, of filling in the theoretical structure outlined in this 

section. For the case of density models estimated from i.i.d. data, a formula for 

CVAR(i) can be obtained from Takeuchi (1976), see also Hirdle (1987) and Findley 

(1989). 

Shibata (1981) considers the case of fixed regressors, with dimyt = 1 and with 

Yt 
- Eyt being i.i.d. and Gaussian. He takes a very interesting and different 

approach from ours. He assumes that the correct regressor xt has infinite dimension, 

6) but the not necessarily nested regressors xt under consideration are finite 

dimensional subvectors of xt whose dimension increases with N (the range of i can 

increase also). For a modified version of the mean square prediction error criterion 

of section 9, he shows that MAIC is optimally efficient and that the strongly 

parsimonious criteria we discussed in section 6 are not. Hkdle (1987) has considered 
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the extension to the case of i.i.d. non-Gaussian yt - Eyt, allowing the error density 

to be misspecified. The extension of Shibata$ and Hirdle’s results to the case of 

stochastic regressors appears to be very difficult, see Shibata (1980)) where 

increasing-order autoregressions are considered. 

Finally, it should be mentioned that various cross-validation procedures for 

model selection are asymptotically equivalent to MAIC or simple variants thereof, see 

Stoica et al. (1986) and the references given there. 

12. CONCLUDING REMARKS 

* Our goal in this paper has been to provide a coherent theory supporting the 

use of the ordinary log-likelihood ratio for making non-nested regressor comparisons. 

We were motivated to do this by the importance for applications of the non-nested 

comparison problem and by a desire to understand the substantial industrial successes 

of Akaike’s MAIC procedure (which, for linear regressions, is asymptotically 

equivalent to the minimum FPEC criterion of Akaike(1971)). Some of these successes 

are described in Akaike and Nakagawa(1988)) Nakamura et al.(1986), Otomo et 

aL(1972) and Ohtsu et aJ.(1979). (There are many industrial applications which are 

not publicly documented for company confidentiality reasons: Mr. K. Toki of System 

Sougou Kaihatsu in Tokyo kindly told one of the authors in 1987, in response to a 

query, that his company has implemented more than sixty statistical model-based 

controllers using the regressor selection procedures described here and in these 

references.) Akaike developed AIC as an asymptotically unbiased approximation to 

the Kullback-Leibler number, see m Week% Citation Classic (1981) and Akaike 

(1985). The results of sections 8 and 10 reveal attractive properties of K-L numbers 

for model comparison and clarify the nature of the connection with MAIC . 
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We hope that the results presented here will stimulate further research on 

non-nested model comparisons and the role of the likelihood ratio therein. It would 

be attractive to have generalizations of our results, or a reasonably comprehensive 

alternative theory, for the situation in which the number of variables in each 

6) regressor, dimxt , is permitted to increase as the sample size increases: there are 

circumstances in which the number of estimated variables must increase if the 

* ( 172) sequence of log-likelihood ratios, LN , N 2 No, is to be bounded in probability. 

(This is the relevent situation because, in practice, statisticians are only concerned 

- about the interpretation of small-tc+moderate values of LN * ( 172)). Such results should 

shed light on finite-sample properties. 

*The authors wish to gratefully acknowledge the excellent computing support 

they received from E. Arahata and M. Pugh for the calculations presented in this 

paper. Some of the results presented here were obtained by the first-named author 

while he was a Visiting Professor at the Institute of Statistical Mathematics in 

Tokyo. He wishes to express his gratitude for the support and hospitality he 

received during this visit, especially from professor G. Kitagawa, who provided the 
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REFERENCES 

Akaike, H. (1971). “Autoregressive Model Fitting for Control,” Annals of the 
Institute QJ Statistical Mathematics, 23, 163-180. 

Akaike, H. (1973). “Information Theory and an Extension of the Likelihood 
Principle,” in 2nd International Svmnosium on Information Theory, Eds. B. N. 
Petrov and F. Czaki pp. 267-287, Budapest: Akademia Kiado. 

Akaike, H. (1977). “On Entropy Maximisation Principle,” in ADdiCatiOnS d 
Statistics (ed. P.R. Krishnaiah), Amsterdam: North Holland, 27-41. 



58 

Akaike, H., T. Ozaki, M. Ishiguro, Y. Ogata, G. Kitagawa, Y.-H. Tamura, E. 
Arahata, K. Katsura, and Y. Tamura (1985)) TIMSAC 84, Part 2, Computer 
Science Monographs No. 23, Tokyo: Institute of Statistical Mathematics. 

Akaike, H. (1985). “Prediction and Entropy,” in A Celebration of Statistics 
(eds. A. C. Atkinson and S. E. Fienberg), New York: Springer Verlag, l-24. 

Akaike, H. and T. Nakagawa (1988). Statistical Analvsis and Control of Dvnamic 
Svstems, Dordrecht: Kluver. 

Anderson, T. W. (1971). The Statistical Analvsis of Time Series, New York: 
Wiley. 

Anderson, T. W. (1984). & Introduction $Q Multivariate Statistical Analvsis, 
2nd. EJ., New York: Wiley. 

Bhansali, R. J. (1981). “Effects of Not Knowing the Order of an 
. Autoregressive Process I.” Journal of the American Statistical Association 76, 

588-597. 

Billingsley, P. (1985). Probabilitv and Measure, 2nd Ed., New York: Wiley. 

Brillinger, D. R. 1969 . 
i ) 

“Asymptotic Properties of Spectral Estimates of 
Second Order,’ Biometrika 56, 375-390. 

Chart, N. H. and C. Z. Wei (1988). “Limiting Distributions of Least Squares 
Estimators of Unstable Autoregressive Processes,” Annals of Statistics 16, 367401. 

“Tests of Separate Families of Hypotheses.” Proceedings of the 
mnosium, 1, 105-123. 

Cox, D. R. (1962). “Further Results on Tests of Separate Families of 
Hypotheses.” Journal of the Roval Statistical Societv, Series B 24 406-424. - - -, 

Dahlhaus, R. (1985). “A Functional Central Limit Theorem for Tapered Empirical 
Spectral Functions,” Stochastic Processes and Their ADDbcations 19, 135-149. 

Davies, R. B. (1980). “AS155. The distribution of a linear combination of 
&i-squared random variables,” Annlied Statistics, 323-333. 

Eberlein, E. (1986). “On Stron 
Assumptions,” Annals of % 

Invariance Principles under Dependence 
14, 260-270. Pro ability, 

Findley, D. F. (1985). “On the Unbiasedness Property of AIC for Exact or 
Approximating Linear Stochastic Time Series Models,” Journal of Time Series 
Analvsis, 6, 229-252. 

Findley, D. F. (1988). “An Analysis of AIC for Linear Stochastic Regression 
and Control, ’ 1988 American Control Conference, Piscataway: IEEE, 1281-1288. 



. 

Findley, D. F. (1989) 
Comparing Models 
in preparation. 

“Beyond U&Square: Likelihood Ratio Procedures for 
for Independent Observations, Including Conditional Models,” 

Franke, J., Th Gasser and H. Steinberg, (1985). 
to EEG Time Series: An Empirical 

“Fitting Autoregressive Processes 
Comparison of Estimates of Order,” IEEE 

Transactions on Acoustics, Sneech, and Signal Processing, ASSP-33, 143-150. 

59 

Fuller, W. A. and D. P. Hasza (1981). 
Autoregressive Time Series,” 

“Properties of Predictors for 

155-161. 
Journal of the American Statistical Association 75, 

Hall, P. and C. C. Heyde (1980). Martingale Limit Theorv and Its ADDlication, 
New York: Academic Press. 

Hannan, E. J. (1970). MuRime Time Series New York: Wiley. --7 

Hannan, E. J. and B. Quinn (1979). “The Determination of the Order of an 
Autoregression,” Journal of the Roval Statistical Societv. Series B 41, 190-195. 

HkcUe, W. (1987). “An Effective Selection of Regression Variables When the Error 
Distribution is Incorrectly Specified,11 Annals of the Institute of Statistical 
Mathematics, 39, 533-548. 

Hosoya, Y. and M. Taniguchi (1982). “A Central Limit Theorem for Stationary 
Processes and the Parameter Estimation of Linear Processes,” Annals of Statistics 
10, 132-153. 

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Liitkepohl and T.-C. Lee (1984). 
Wiley. Theorv & Practice of Econometrics, 2nd E&l., New York: 

Kitagawa, G. (1987), “Rejoinder,” 
1060-1063. 

Journal of the American Statistical Association 82, 

Kitagawa, G. and K. Ohtsu (1976). 
Keeping Motion,” 

“The Statistical Control of Ship’s Course 
Proceedines of the Institute of Statistical Mathematics, 

23,105-128. (in Japanese) 

Kunitomo, N. and T. Yamamoto (1985). “Properties of Predictors in 
Misspecified Autoregressive Time Series Models,” Journal of the American 
Statistical Association 80, 941-950. 

Lai, T. L. and C. Z. Wei (1982). “Least Squares Estimates in Stochastic 
Regression Models with Applications to Identification and Control of Dynamic 
Systems,” Annals of Statistics, 10, 154-166. 

Lai, T. L. and C. Z. Wei (1985). “Asymptotic Properties of Multivariate 
Weighted Sums with Applications to Stochastic Regression in Linear Dynamic 
Systems,” in Multivariate Analvsis a. ed. P. R. Krishnaiah, Amsterdam: North 
Holland, pp. 375 - 393. 

McCullagh, P. (1987). Tensor Methods b Statistics, London: Chapman and Hall. 



60 

McLeish, D. L. (1975). “Invariance Principles for Dependent Variables,” 
Zeitschrift fiir Wahrscheinlichkeitstheorie, 32, 165-178. 

Nakamura, H., M. Uchida, Y. Toyota and M. Kushihashi (1986). “Optimal Control 
of Thermal Power Plants,” ASME Winter Annual Meetings Proceedings, 
864A/DSC-14. 

Noble, B. (1969). ADDlied Linear Algebra, Englewood Cliffs: Prentice-Hall. 

Ogata, Y. (1988). “Statistical Models for Earthquake Occurrances and Residual 
Analysis for Point Processes,” Journal d the American Statistical Association 83, 
9-27. 

Ohtsu, K., M. Horigome and G. Kitagawa (1979). “A New Ship’s Autopilot Design 
Through a Stochastic Model,” Automatica, 15, 255-268. 

Otomo, T., T. Nakagawa and H. Akaike (1972’). “Statistical Approach to 
Computer Control of Cement Rotary Kilns, ’ Automatica, 8, 3548. 

Pollard, D. (1985). “New Ways to Prove Central Limit Theorems,” Econometric 
Theorv 1, 295313. 

Riss&en, J. (1986). “Stochastic Complexity and Modeling,” Annals of Statistics 14, 
1080-1100. 

Schy6y26f. (1978). “Estimating the Dimension of a Model,” Annals of Statistics 6, 

Shibata, R. (1980). “Asymptotically Efficient Selection of the Order of the Model for 
Estimating Parameters of a Linear Process,” Annals of Statistics 8, 147-164. 

Shibata, R. 
6 

1981). “An Optimal Selection of Regression Variables,” Biometrika 68, 
45-54 an Biometrika 69, 494 (correction). 

Shimizu, R. (1978). “Entropy Maximization Principle and Selection of the 
Order of an Autoregressive Gaussian Process,” Annals of & Institute of 
Statistical Mathematics 30, 263-270. 

Stoica, P. and P. Eykhoff, P. Janssen. T. Sijderstrijm (1986). “Model Structure 
by Cross-Validation, ” International Journal of Control, 43, 1841-1878. 

Takada, Y. (1982). “Admissibility of Some Variable Selection Rules in the 
Linear Regression Model,” Journal of the Japan Statistical Society 12, 4549. 

Takeuchi,K. (1976). “The Information Statistic of a Distribution and Criteria 

for Model Pitting,” 
Japanese) 

Mathematical Sciences (Suri-Kaeraku), 14, 14-18. (In 

This Week’s Citation Classic (1981). Current Contents 51, 22. 



61 

Tsurumi, H. 
Selecting 

and Wago, H. (1987). “Mean Square Errors of Forecast for 
Non-Nested Linear Models and Comparison with Other Criteria,” 

Journal -of Econometrics, to appear. 

White, H. (1989). Estimation, Inference and Snecification Analvsis. 
New York: Cambridge University Press. 

Yokoyama, R. (1980). “Moment Bounds for Stationary Mixing Sequences,” 

Zeitschrift fii Wahrscheinlichkeitstheorie und verwandte Gebiete 52, 4547. 

Zhurbenko, I. G. (1986). The Spectral Analvsis of Time Series, Amsterdam: 
North Holland. 

APPENDIX I: PROOFS FOR SECTIONS 6 - 10.1. 
. 

,We begin with the arguments leading to Propositions 6.3 and the results (10.3) 

and (8.11)) which concern LN a ( ‘p2), i6”) - LAxi a& fki _ ig). These 

quantities are unchanged by the transformation et ’ Cx) ---* (~(‘))-1/2e~x~, so we shall 

assume that X(x) = Iq (= X(l), Td2) etc.). Then the assumption (A2) implies that 

-(xl -b> the eigenvdues AN l)“‘,AN ,q of “6”’ converge in probability to 1 at the rate 

N-l/2, 
’ 

N1/2(;\f{ - 1) N Op(l), (l<j<q). 
7 (I-1) 

In general, if I: is a positive definite matrix of order q with eigenvalues 

% 7”‘7 Aq, then it follows from Taylor’s formula that there exists an a! = a($,...,X,) 

between 0 and 1 such that, with xj = 1 + ~~j - 1) , l<j<q, we have 

9 logxj = i 
j=l j=l 

(xj-l) - f jel~j-2(~j-l)2 . (I-2) 

From (1.1) and (1.2), we obtain 
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NlogII6p)I ~~ Ntr(i(X) - I 
N q 

) - (N/2)tr@(“) - I N )2 
9 * (1.3) 

Set et E ei’) = ei2) Proof of Proposition 6.3: and EN E N-lxN t =letei. Observe 

via the identity (4.3) that Ntr(zN - 8;)) = Q&‘), so that 

Nt@62) - EA’)) = Qil) - QA2) . 
u-4 

- It follows from assumption (Al) that Ntr(EA2) - e&l)) is bounded in probability. 

Consequently, 

* 

Ntr($&‘) - Iq)2 - Ntr(fiA2)- I )2 = 
Q 

Ntr[($&‘) - 8&2)){($1) - Iq) + @i2) - I,)}] 

converges to zero in probability, and Proposition 6.3 follows immediately from (1.3) 

and (1.4). 

Proof of (10.3). If 0 < a! < 1 and A 2 0, then (1 + dX-1))-2 < Am2 + 1. Hence, 

. (i) the remainder term in the expansion (1.2) of log ] EN ] has the upper bound 

jil { [i#1” + 1}{“6t{ - 1} 

= tr{86’)” + Iq}{$&i) -Iq}2. (1.5) 
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The inequality (10.3) follows easily from (1.5) and the expansion (1.2) of logi g&2) I 

and log I$) 1 . 

Proof of (8.11). Using (4.3) and I;(x) = Iq, one sees that 

- tr[e(x) - Id} - Q(x) 
N (16) N’ ’ 

and, from (8.1)) that 

. 
(-2){&PL - “6”’ - tr&“)-’ - Id} - Rg), (1.7) 7 

* 

with Qp) defined by (4.4) and RR) defined as in (8.9). Since Qp) ~~ RR) , 

see section 8, it remains to show the asymptotic coincidence of the terms in curly 

brackets in (1.6) and (1.7). From the expansions (1.2) for “8”) and $p)-‘, we 

deduce that the bracketed terms differ by 

Ni! 
j=l 

[{1 - (A&Jr{;1}2(J#)2 - {l - $r~}2($r~)-2] 
7 7 7 7 

= i N(l - “6:B2{(~6:$$$2 
j=l 

- (ip$-2}, , W) 

where “l&zj and &z{ are between xp{ and 1, for j=l,..,q. Since the factors in 
7 7 7 

curly brackets on the right hand side of (1.8) tend to zero in probability while their 

multipliers N( l-ik{)2 are bounded, by (1.1)) both sides of (1.8) tend to 0, and 
’ 

(8.11) follows. 

Now we turn to the proof required for section 7. 
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Proof of Pronosition 7.2: Let V+, ) denote the vector space of linear combinations of 6 

the r(i) entries of xii), i = 1’2. If Vt = Vi’)” Vi2) has dimension rc, 

Ci> j - Ci> _ 

let XF j, 
’ 

j = l,..., rc denote a basis for Vt and let z ., 

(i) t,J 

- l,..., r rc denote a basis for 

the orthogonal complement of Vt in Vt , orthogonal in the sense of the inner 

product defined by covariance. By stationarity, the coefficients of the linear 

6) combinations of the entries of xt used to produce these bases can be chosen 

independently of t. If we do this, and define xf = [xi l,...,xF rc]/ and zt (i> = 

. [,(i) ,(i> * 
t,l,“‘, t,r (i)-rc]‘, then the assertions of Proposition 7.; follow easily. 

* 
APPENDIX II: PROOFS FOR SUBSECTION 10.2 

The proof involves a sequence of reductions to simpler cases. Proof of Lemma 10.3: 

Reduction & the w N=mn, n=1,2,..., for any fixed m. Given m, we choose n so 

that (m-l)n<N<mn. N With WN=Xt =l t t c c’ as in the subsection, we have 

holds. This reveals that (10.9) will follow provided we can show that the sequence 

nkEXifn(Wmn), n = 1, 2,..., is bounded whenever m 2 h + 2k. 

Reduction to the case n = 1. First, we observe that if Ml,...,M,, are positive 

definite matrices of order h, then from the arithmetic-geometric mean inequality, for 

any h-vector x, 
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n-‘x8(jilMj)x 2 j;;l(x~Mjx)l/n, 
- - 

which implies that 

nAii,( E Me) 5 k ~-~/“(Mj). 
j=l J j=l mln 

(11.1) 

Now set Mj=qim(j-l)+l~t~i, SO that Mj N Wh(X,m) and Wmn=q=lMj. Then 

- from (11.1)) 

nkEAiFn(Wmn) 5 E i 
j=l 

~~~!n(Mj) 

I .;; ~EX~~n(Mj)}l’n (Hiilder’s inequality) 
J=l 

(identical distribution). 

Reduction to the case !kIh. Let !!?I2 denote a symmetric square root of X Then 

N Wh(Ih,m), and We will show that 

&(W,) 5 Xmtn(“1/2Wm~1/2)Xm~n(~) . 

In fact, for any h-vector x, 

(11.2) 

x’ w,x = (X112x) j 61/2wm81/2(x1/2x) 
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I A~n(d2wms1~2’)x4x ) 

so that X min(Wm) 2 ~~n(~1/2Wm-1/2)Xmin(E), from which (II.2) follows. Our 

proof of (10.9) will therefore be complete if we verify (11.3): 

IfWm N wh(Ih,m) a Ill 2 h+2k, then EX ;Fn(Wm) < 00 . (11.3) 

In fact, the density function of the joint distribution of the eigenvabres xl~x2>...~xh 

- (see formula (11) of Anderson (1984, p. 534)) is bounded above by 

ch m ii &(m+h-2i-1),,(-&/2) 
7 i=l ’ 

for some constant Ch,m. Hence, for some constant ch m, 
7 

EX+,(W,) <, ch mlrXh(m-h-1”k)‘2exp(-Ah/2)dXh . 
7 

The exponent of Ah in this integral is greater than -1 when mZh+2k, so the integral 

is finite, and (11.3) follows. This shows that (10.9) holds. 

Proof of Pronosition 10.1: Set SN E NgN. Then Xmin(SN) = NXmin(~). Our 

proof of (10.12) is based mainly on an elaboration of an argument sketched in 

Appendix I of Fuller and Hasza (1981). Let the sample residual variance matrix of 

the least squares regression of ji: 
m(p+l) on fm(p+l)*l’.“,‘m(p+l)*p’ m=L...,n, be 

denoted by n-lSn(p+l). Then 
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s 
n(p+l)< m~l(‘m(p+l)41im[p+l)-l~~~~d$m(p+l)-p)~ 

* 
(~m(p+l)-Al’m(p+l)-l-..-A * p’m( p+ 1)-p 

)I 5 s 
n(p+l)’ 

Thus, to establish (10.12)) it is sufficient to prove that for any k>l, there is an n(k) 

such that 

supnzn(k) 
k 

n EXmin -k (S n(p+l) ) < 00. (11.4) 

We shall establish the existence of coefficient matrices Cj, j=fl,...fp, such that,, 
* 

conditional on ~m(p+l)fl,...,jim(p+l)fp, m=l,...,n, the random variables ZI, defined 

by 

‘rn ’ ‘m(p+l) - 
E c3 

ljl=l J m(P+l)-J 
(II.5) 

are N.I.D.(O$) for some e>O which does not depend on the values of the 

conditioning variables. This result, which follows from Lemma II.1 below, implies 

that for n>2pf, the conditional distribution of S n(p+l) given ‘m = 

(plh(p+l)-p ,-.7~,(p+l)J7 m=L n+l, is W&&n-2pi), by Theorem 8.22 of 

Anderson (1984). Therefore, from (10.9)) there are constants C and n(k) such that 

the conditional (-k)-th moments of X in(‘n( p+ 1)) satisfY 

supnL,( k) nkE{AiFn(sn(p+l)) I U17”‘7Un+l) I ca (11.6) 

Since 
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E{Amin 
-k (S 

n(p+l))) = EU1’...,Un+I(E{X~~nSn(p+l)) IU1”“‘Un+l)), 

property (11.4) follows from (11.6). 

We return to the discussion of (11.5) to complete the proof. Let g(a) denote the 

density of a N yO,C). The result needed is the following lemma. 

- Lemma II.1. The conditional distribution of zm = ji: 
m(p+l)’ 

l<m<n, given 

Ul’“‘7Un+l’ - - - has the form 
* 

f(Zl,... 7znl Up..‘un+l) = ’ (h(Zm>Um>Um+l)// 
m=l 

- h(zmy~m,um+l)dzm}, 
UC 

(11.7) 

where h(zm,um,um+l ) is the p-fold Droduct function defined b 

h(Z m’um’um+l = 1 

Proof: Let f(flBp,...,Zo) denote the joint density of ji l-p’...q Then the joint 

density of il+...,i 
(n+l)(p+l)-1 is 

P 

j$Aj’(n+l)(p+l)-l-j)’ 

So, with the function K. defined by 



the Joint density of zl,..., zn,ul ,..., un+l is given by 

f(zl,..., zn,ul ,... un+l) 5 Kg. 
(n+l) ( p+l)-1 

II d%, - E A.2 
t=p+1 

.). 
j=l 3 t-J 

(11.9) 

* Integrating over zl,...zn, we obtain the Joint density of ul,...,un+l, 

* 
f(up..‘un+l ) = Kg- ;f {/ h(zm,um,um+l)dzm}, 

m=l Rf 

and the assertation of (11.7) follows from dividing (11.9) by this expression. 

By adding the exponents of the N(O,C) density g-functions in (11.8), one sees 

from (11.7) that, conditioned on ul,...un+l, the random variables zm are 

P 
independently normally distributed with means of the form X 

1 j 1 =lCj’m(p++j and 

P 
nonsingular variance matrix 2 = {E-l + I: A.61A;}-1. 

j=l J 
Hence, the 9,) l<m<n of 

(11.5) are N.I.D.(O,e), which is the result needed to complete the verification of 

(10.12). 

Proof of Pronosition 10.2: We shall obtain (10.15) from the special case (10.9). Let 

det(A-XIp)=Xi+alXP-l+...+al and ft=xt+ xf J=laj't-j' Then 

at=~t+(A+a,Ii)F?,_l+...+(A’-l +alATiV2+...+af lI,)gt ~+l , see Lai and Wei 

(1985), equation (3.17). Clearly i$ N N(O,X), with 
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c = ‘+(A+allT)T1(A+al$)t +---+( A’-‘+...+a,_lI,)x( Ai- +...+ai-lIi), . 

It follows from (10.14) that C is nonsingular, see Lai and Wei (1985, p. 381). Let 

ao=l. Then, by (3.20) of the same reference, 

. 

Consider the time series et obtained by observing every i-th value of It: 

et ait, kl, 2 ,... . Then et is N.I.D.(O,C) and 

(II. 10) 

(11.11) 

Now (10.15) follows immediately from (11.10)) (11.11)) and (10.9) via a reduction 

argument of the sort used at the start of the proof of Lemma 10.3 in Appendix I. 


