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ALTERNATIVE APPROACHES TO THE ANALYSIS 

OF TIME SERIES COMPONENTS 

W. R. Bell and M. G. Pugh 

ABSTRACT 

In the time series literature of recent years one finds different approaches to the analysis of 

time series postulated to follow some type of component structure. There are alternatives 

to the now familiar ARIMA (autoregressive-integrated-moving average) modeling 

w approach, perhaps the most popular being the “structural modeling” approach of Harvey 

and others, which uses an explicit components structure. Despite the considerable research 

on t$ese models, remarkably little work has appeared comparing results from the 

alternative,approaches. Questions arise regarding the comparative fit of alternative 

models, and the effect of model choice on applications such as model-based seasonal 

adjustment and use of time series methods in repeated survey estimation. As these are 

empirical questions, we attempt to address them here through comparing results from 

applying such alternative models to some Census Bureau time series. 

KEY WORDS: ARIMA Model; Components Model; AIC; Seasonal Adjustment; Repeated 
Survey Estimation. 

The authors would like to thank Larry Bobbitt, Brian Monsell, and Mark Otto of the Time 
Series Staff of the Statistical Research Division for assistance with the computations, 
pro ramming, and graphs. This paper was presented at the Statistics Canada Symposium 
on x nalysis of Data in Time in October 1989, held in Ottawa, Ontario. A condensed 
version of this paper is to appear in the proceedings of the symposium. 



1. INTRODUCTION 

The analysis of the components of time series has a long history (discussed in - 

Nerlove, Grether, and Carvalho 1979), going back to work in astronomy, meteorology, and 

economics in the 17th through 19th centuries, and to early seasonal analysis by 

Buys-Ballot (1847). Empirical methods of seasonal adjustment were developed in the early 

part of this century leading utlimately to the development of the well-known X-11 method 

in 1967. As discussed in Bell and Hillmer (1984), these methods were developed in advance 

of adequate seasonal time series models, which have only become widely available and 

computationally feasible in the last 20 ye US or so. 

This well+stablished interest in time series components has had important influences 

on t,jme series modeling; in particular, it has led to two rather different approaches to 

modeling and model-based seasonal adjustment. For the 

autoregressive-integrated-moving average (ARIMA) models (Box and Jenkins 1976), 

several approaches to seasonal adjustment have been developed. The most successful of 

these, in our view, is the “canonical” approach of Burman (1980) and Hillmer and Tiao 

(1982). In contrast, a “component modeling” approach has developed that uses simple 

ARIMA models for seasonal, trend, irregular, etc. components. This approach is 

exemplified in the work of Akaike (1980), Gersch and Kitagawa (1983) and Kitagawa and 

Gersch (1984), and Harvey and Todd (1983) and Harvey (1985). Nerlove, Grether, and 

Carvalho (1979) suggested a somewhat different approach that appears not to have caught 

on, possibly because their ARIMA component models are too flexible to even assure that 

the model structure is identified (Hotta 1989), and because their treatment of 

nonstationarity (by polynomial detrending) is now viewed as inadequate. 

While there has been considerable developmental work on both modeling 

appproaches, there is surprisingly little literature comparing results for the two different 

approaches. Harvey and Todd (1983) compared the forecast performance of their “basic 
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structural model” (BSM) with that of ARIMA models fitted by Prothero and Wallis (1976) 

to six quarterly macroe_conomic time series. Their results were rather inconclusive, also 

some of the ARIMA models used were of unusual form, featuring long lags in the seasonal 

operators. (In fairness, Prothero and Wallis’ (1976) work was in the early stages of 

development of seasonal ARIMA modeling, before such refinements as exact maximum 

likelihood and outlier treatment were readily available.) Expanding the BSM, Harvey 

(1985) developed components models to explain cyclical behavior (with nonseasonal series) 

and gave some discussion of their relation to ARIMA models. Maravall(1985) observed 

that the BSM could yield an overall model close to Box and Jenkins (1976) popular 

ARIMA (0,1,1)x(0,1,1),, “airline model,” by showing that autocorrelations for the 

differenced series could be similar for the two models (depending on parameter values). 

This raised the important possibility that the BSM and certain ARIMA models could be 

about the same for some series. Carlin and Dempster (1989), in a detailed analysis of two 

series, found only small differences between canonical ARIMA seasonal adjustments and 

those from a fractionally-integrated-moving average (FRIMA) components model, and 

more major differences when comparing the FRIMA adjustment with the X-11 adjustment 

used in practice for another series. 

The literature seems to leave two important questions unanswered, namely: (1) do 

ARIMA or components models provide a better fit to actual data or can available data 

even discriminate between them, and (2) how different are the results from ARIMA and 

components models in practical applications. 7 The former question is one of statistical 

significance, the latter one of practical significance. Both questions are largely empirical, 

and an empirical investigation into them shall be the focus of this paper. In section 2 we 

describe the specific models we shall consider in detail, and use the AIC criterion of Akaike 

(1973) to compare the fit of ARIMA models and the BSM for a set of 45 seasonal time 

series. In general, AIC expresses a strong preference for ARIMA models. 
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Section 3 considers seasonal adjustment. Bell and Hillmer (1984) noted that 

component modelers have ignored the inherent uncertainty about seasonal-nonseasonal - 

decompositions consistent with any given fitted model. To address this we consider the 

range of admissible decompositions consistent with a given components model, and obtain 

a “canonical decomposition” for component models in the same way this was done for 

ARIMA models by Burman (1980) and Hillmer and Tiao (1982). The canonical 

decomposition turns out to be trivially simple to obtain and very easy to use in signal 

extraction for seasonal adjustment. However, it also turns out to be very close to the 

original fitted components model for the series considered here, suggesting that seasonal 

adjustments for the original and canonical components models may typically be virtually 

identical. We then compare ARIMA model and BSM seasonal adjustments for two series 

and find negligible differences in signal extraction point estimates and proportionally large 

differencesin signal extraction variances, though the signal extraction variances all seem 

small in an absolute sense. 

In section 4 we investigate the effects of using ARIMA versus component models in 

applying time series signal extraction techniques to estimation for repeated surveys. This 

idea was originally suggested by Scott and Smith (1974) and Scott, Smith, and Jones 

(1977), but has seen intensive investigation more recently following theoretical and 

computational developments in estimation and signal extraction for nonstationary time 

series models. For the two series we consider the signal extraction point estimates using 

ARIMA models and the BSM are quite close, but for one series the signal extraction 

variances are quite different. Finally, in section 5 we draw some tentative conclusions. 

2. ARIMA AND COMPONENTS MODELS 

Let Yt for t=l,..., n be observations on a time series, which will often be the 

logarithm of some original time series. We write 



(2.1) 

where Xi/l is a linear regression mean function with Xt the vector of regression variables at 

time t and B the vector of regression parameters, and Zt is the (zero mean) stochastic part 

of Yt. The regression variables used here will be to account for trend constants, calendar 

variation, fixed seasonal effects, and outlier effects (Findley, et. al. 1988). We will be 

interested in decompositions of Zt such as 

Zt = St + Nt = St + Tt + It (2.2) 

whew St is a (stochastic) seasonal component, and Nt a (stochastic) nonseasonal 

component that can be further decomposed into a trend component Tt and an irregular 

component It. If Yt is the logarithm of the time series of interest, note (2.1) and (2.2) 

imply multiplicative decompositions for the original time series. 

One approach to analyzing time series components involves modeling Zt directly, 

then making assumptions that lead from this model to definitions of and models for the 

components. The other approach is to directly specify models for the components, which 

then implies a model for Zt that can be fitted to data. We shall consider ARIMA models 

as a basis for both approaches. While other models have certainly received attention in 

recent years (long memory, ARCH, and nonlinear models come to mind), ARIMA and 

ARIMA component models seem to have been the most popular, and so focusing attention 

on these two seems an appropriate starting point. 

The ARIMA models we shall use for Zt can be written in the form (c.f. Box and 

Jenkins 1976): 

4(B)(1-B)d( 1-B12)Zt = 8(B)( 1-812B12)at (2.3) 
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where B is the backshift operator (BZt = Ztvl), d 2 0 (if d=O, (l-B)d = l), +4(B) = 

1-#lB-... +jpBp and 8(B) = - 1-@lB-... -$Bq are AR and MA operators of low order 

(usually p, q 3 3), and at is white noise (iid N(O,c$.) This model is for monthly seasonal 

data; the modifications for data with other seasonal periods (e.g. quarterly) are obvious, 

and the 1-B12 and l-B12B12 are removed for nonseasonal data. We could have included a 

seasonal autoregressive operator in (2.3), though we rarely use these. If 012 = 1 we can 

“cancel” the 1-B12 factor on both sides of (2.3) and add seasonal mean variables to X, 

(Abraham and Box 1978, BeII 1987). Identification, estimation, and diagnostic checking of 

these models proceeds with by now well- established procedures - see Box and Jenkins 

(1976) for pure ARIMA models, BeII and Hillmer (1983) and FindIey et al. (1988) for 

moc&ls with regression terms. Estimation is by maximum likelihood where the likelihood 

function is defined as the joint density of the differenced data (1-B)d(l-B12)Yt for 

t=d+l3,...-,n. 

Component models specify simple ARIMA models for the components in (2.2). 

Harvey and Todd’s (1983) basic structural model (BSM) can be written 

Zt = St + Tt + It 

U(B) St = c1t elt - iid N(O,c$ 

(2.4) 

(~-B)~T, = (1-7jB)~~~ e2t - iid N(O,g$ 

It - iid N(O,c$ 

where U(B) = 1 + B . . . + B1’ sums a series over 12 consecutive months. They actually 

begin with Tt following a random walk with stochastic drift, where the drift also follows a 
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random walk; this leads to the (0,2,1) model for Tt in (2.4) with the constraint 77 2 0. 

While we shall not enforce this constraint, it turns out to be easily satisfied for all our 

example series here. If the “stochastic” drift has zero innovation variance (i.e. it is 

actually a constant) then 17 = 1 and the model for Tt reduces to ( l-B)Tt = PO + qt, and 

we can account for Do by adding the time trend variable t to St. If CT = 0 then St 

becomes fixed and can be handled with appropriate variables in Xt analogous to what was 

noted when e12 = 1 in the ARIMA model (2.3). 

Gersch and Kitagawa (1983) (see also Kitagawa and Gersch 1984) consider models 

similar to (2.4), but with Tt following the model 
* 

I (1-B)6Tt = c2t 6= 1,2, or 3. (2.5) 

We whall rkfer to (2.4) but with Tt following (2.5) as the GK model. Notice that the GK 

model with 6 = 2 becomes the BSM with 7 = 0, while the BSM with q=l is the GK with 

S=l and a trend constant. Akaike (1980) suggested similar models, but with St following a 

model that now seems unattractive. 

Gersch and KitagaTziq extend their model with the addition of a stationary 

autoregressive component. - itis can be written as 

Zt = St + Tt + It + Vt 

(2.6) 
(1-alB - . . . - opBP)Vt = e4t c4t - iid N(O,C$) 

with St and It as in (2.4), and Tt as in (2.5). Harvey (1985) also considers such an 

extension to his models, with the autoregressive parameters constrained so that Vt tends to 

exhibit cyclical behavior. He also considers an ARMA(2,l) formulation for Vt. I 
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Modeling procedures for these component models are more automatic than for 

ARIMA models and are discussed in the references cited. Estimation is again by maximum 

likelihood, with the likelihood evaluated using the Kalman filter. Since the models are 

nonstationary this presents problems for initialization of the Kalman filter that have been 

recently addressed by Kohn and Ansley (1986) and Bell and Hillmer (1990). These 

approaches produce a likelihood function that is again the joint density of the differenced 

data, which is now determined by the components models. 

The ARIMA models for the components imply an ARIMA model for the aggregate 

Zt, as has been observed by G. C. Tiao (reported in Findley 1983) and Maravall (1985). 

Taking (2.4) for illustration, applying (1-B)2U(B) = (l-B)(l-B12) to Zt gives (1-B)2c1t 

+ U’fB)( l-qB)czt + (l-B)( 1-E+2)e3t, which follows a moving average model of order 13 

2 2 2 whose parameters are determined by gl, 2, 3, (T u and q. While (2.4) is thus equivalent to I 

an ARIMA(0,1,13)~(0,1,0)~~ model for Zt, the high regular MA order and the constraints 

on the parameters make it unlikely that direct ARIMA modeling of Zt would yield such a 

model exactly. Thus, there is potential for difference between the ARIMA and component 

model approaches, though Maravall(1985) notes that certain parameter values for (2.4) 

can yield a model close to the popular ARIMA(0,1,1)x(0,1,1)12 “airline model” of Box and 

Jenkins (1976). For nonseasonal series or series whose seasonality is modeled as fixed 

through the regression function Xi@, the ARIMA model implied by (2.4) for Zt = Tt + It 

depends on (1-qB)~~~ + ( 1-B)21t, which follows an MA(2) model whose 3 parameters are 

determined by a2 2 2, a3, and 7. We could easily get exactly the same model by direct 

modeling of Zt as ARIMA (0,2,2). Similar results obtain for other nonseasonal components 

models. While the potential for difference between nonseasonal ARIMA and components 

models is difficult to judge, the potential for ARIMA and components models to be 

effectively the same seems greater in the nonseasonal than in the seasonal case. 
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This discussion raises questions about how much ARIMA and components models 

will differ in practice, and which will fit better when they do differ? We will make a 

preliminary investigation into this by comparing the fit of ARIMA and components models 

on a set of time series. As the models we wish to compare are generally nonnested (one is 

not obtained by simple constraints on the parameters of the other) traditional hypothesis 

tests or confidence intervals would be difficult to apply. We shall use the AIC criterion of 

Akaike (1973), which is defined as 

AIC = -2L + 2m 
. 

whelle L is the maximized log-likelihood and m is the number of parameters estimated. 

The model with the smaller AIC is to be preferred. To compare two models, 1 and 2 say, 

we present the difference in their AIC’s, DAIC = AICl-AIC2. A positive value of DAIC 

favors model 2, a negative value model 1. Judging when there is a “significant” difference 

between models as measured by DAIC is not necessarily straightforward (see Findley 

1988), but users of AIC often view differences of 1 or 2 as significant. We shall use 2 as a 

rough significance boundary. As a crude justification, notice that if we add a parameter to 

a model L cannot decrease, so if the parameter yields no improvement in fit, L remains the 

same and AIC increases by 2. 

We shall use AIC to compare the fit of ARIMA and components models on a set of 

Census Bureau seasonal time series analyzed by Burman and Otto (1988) using ARIMA 

models. (Many were analyzed previously in Hillmer, Bell, and Tiao (1983), though with 

fewer years of data available. We also include one series, labelled ENM20, from the U.S. 

Bureau of Labor Statistics, analyzed in Bell and Hillmer 1984.) These series have the 

advantage of having readily available ARIMA models with careful treatment of regression 

’ terms for calendar variation, fixed seasonal effects (occasionally), and outliers. We exclude 
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a few series Burman and Otto (1988) analyzed that are not published, as well as the foreign 

trade series they analyzed since these have undergone significant revisions in recent years 

to correct some major data problems. This leaves 45 series for analysis which are listed in 

Table 1. The series are broadly representative of the series seasonally adjusted by the 

Census Bureau, but are not a random sample, so the analysis here might be best viewed as 

a pilot study. 

For a given series we shall use the same regression terms with both ARIMA and 

components models, and also will restrict comparisons to models with the same order of 

differencing. Comparing models with different orders of differencing poses some problems 

since the likelihood functions for the two models are then based on different (differenced) 

dab. This restriction means that we will compare ARIMA models (2.3) with d=l to the 

BSM as in (2.4). ARIMA models with d=O will be compared to a model as in (2.4), but 

with Tt following (2.5) with 6=1. Models with a fixed seasonal and d=l in the ARIMA 

structure will be compared to a components model with a fixed seasonal (no stochastic St), 

and with Tt again following (2.5) with 6=1. The latter two cases correspond to particular 

cases of both the BSM and GK models. When the ARIMA model has d=l and a stochastic 

seasonal, we shall not make comparisons with the GK model that would use (2.5) with 

6=2. As a special case of (2.4) with ~0, at best this GK model would avoid one 

extraneous parameter and have an AIC 2 less than that of (2.4). At worst, it can have a 

substantially higher AIC than (2.4) if the maximum likelihood estimator 6 is not near 0 

(though if fi x 1 we can think of (2.4) as overdifferencing the GK model with 6=1.) 

The ARIMA models used and their AICs, the fitted BSMs and their AICs, and the 

AIC differences are given in Table 2. The table below provides a summary. The results 

are obvious: AIC exhibits a strong preference for ARIMA models overall, with large AIC 

differences (> 8) for about one half of the series. DAIC’s for the two series for which the 

BSM was preferred were only -2.1 and -2.7. 
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BSM versus ARIMA: Number of Series by Intervals of DAIC 
- 

DAIC range 

c-2 
-2 to 2 

2 to 8 
8 to 20 

20 to 40 

> 40 

0 
Order of Differencing 

0 0 

0 
i 1 ; 
9 2 3 

10 3 2 
5 0 1 

4 4 36 6 + 

Three series appear twice in the table since they were refit with fixed seasonals after first 
LI 

* getting e12 fi( 1. 

Jn looking for possible explanations for the poor fit of the BSM we examined DAICs 

and corresponding al2 %, i)s, etc., but found no obvious patterns. Selection bias was 

considered-as a possible explanation, even though the ARIMA models were selected with 

the usual identification approach based on autocorrelations and partial autocorrelations, 

and not by searching a set of models for the model with minimum AIC. To check for 

selection bias, the BSM AICs were compared with those for the ARIMA(0,1,1)~(0,1,1),~ 

“airline model”, which seems ‘: reasonable choice if one were to use a single X,IIMA model. 

The results are given in Table 3. Although the BSM fit much better than the airline model 

for two series (DAICs of -11.7 and -25.6), aside from this the results changed little from 

those in Table 1. This is perhaps not surprising since 15 of the selected ARIMA models 

were airline models, and others were not very different from the airline model. The airline 

model performed much better in comparison to the selected ARIMA models than the BSM, 

though seven series favored the selected ARIMA model over the airline model by an AIC 

greater than 8, suggesting that use of any single model for all series will occasionally lead 

to poor fits. 
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This report would not be complete without some comments on our experience fitting 

components models. The results presented here were obtained using a computer program - - 

for fitting time series models with ARIMA components and regression terms recently 

developed by ourselves, other members of the Time Series Staff of the Statistical Research 

Division at Census, and Steven Hillmer of the University of Kansas. We found the 

components models much more difficult to fit than regular ARIMA models. For example, 

getting good starting values for nonlinear iteration over the component model parameters 

(something not addressed in the literature, to our knowledge) seems important, whereas we 

find getting good starting values for ARIMA model parameters not at all important. We 

have not presented results for models with a fourth component as in (2.6) because we were 

unaile to successfully fit such models. For every series adding a fourth component caused 

the nonlinear search to go outside the stationarity region for Vt, causing the program to 

crash. While there are means of programming around this problem, and while inclusion of 

a fourth component might improve the fits, we found these difficulties discouraging. 

Though we did not make a formal study of the numerical problems we experienced with 

components models, they seemed due to the likelihood being rather flat in certain 

directions in the parameter space. Given this, we find the oft-claimed advantages of 

“simplicity” and “interpretability” for components models difficult to accept. 

The computational difficulties we experienced suggest a final possible explanation for 

our results - that there is something wrong with our software and it is not actually 

maximizing the likelihood. While we have checked our program thoroughly, and do not 

believe this to be the case, we cannot rule this out with certainty. We will gladly provide 

our data to anyone interested in checking our results. We would be even more interested 

in seeing a study done with other series to see if similar results are obtained . 
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3. SEASONAL ADJUSTMENT 

While section 2 suggests that ARIMA models may fit a time series substantially 

better than components models, there is still the question of what difference choice of a, 

model makes in practice. ? Here we consider the effect of model choice on seasonal 

adjustment. For a given components model, seasonal adjustment can be done by applying 

a Kalman smoother to the series (see, e.g., Gersch and Kitagawa 1983). With ARIMA 

models one must first make sufficient assumptions leading from simple ARIMA models for 

observed series to unique component models. This is addressed by Burman (1980) and 

Hillmer and Tiao (1982), who consider a range of possible decompositions and suggest a 
w 

choice leading to a unique decomposition into component models. (The two approaches 

diffeizome for certain models that do not seem to occur often.) The underlying 

assumptions are set out and discussed further by Bell and Hillmer (1984). As will be seen 

shortly, we-can also consider a range of decompositions for any given components model. 

For Yt following (2.1) and (2.3), Burman (1980) and Hillmer and Tiao (1982) achieve 

a decomposition of form (2.2) by making a partial fractions decomposition of the 

covariance generating function (CGF), ~z(B), of Zt, yielding CGF’s ys(B), rT(B), and 

rI(B), and corresponding ARIMA models for the components. This yields a range of 

admissible decompositions corresponding to rZ(B) = [US - rl] + [rT(B) - r,] + 

[yI(B) + rl + r,], for any rl and r2 such that each bracketed term is 2 0 for all B = eix. 

The range reflects inherent uncertainty about the decomposition; specifying 71 and r2 

yields a particular decomposition that can be used for seasonal adjustment. Burman (1980) 

and Hillmer and Tiao (1982) suggest picking the maximum possible 7I and r2 

(71 = rnin ys(ei’) and T2 = mi n rT(e”)), leading to what is called the canonical x 

decomposition, which has several attractive properties. Focusing in particular on the 

seasonal-nonseasonal decomposition now, the components corresponding to any admissible 

?I can be written as St = St + vt and Nt = N, - vt, where St and Nt are the canonical 
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seasonal and nonseasonal, and ut is white noise with variance 7l - rl . Thus, the canonical 

decomposition can be viewed as removing as much white noise as possible from the seasonal 

component and putting it in the nonseasonal through the irregular. Since there is no 

apparent reason to include additional white noise in the seasonal, this is a good argument 

for using the canonical decomposition. (Watson (1987) gives an approach that avoids 

assuming a particular decomposition.) 

(As an aside, we note that it is also necessary to decompose the deterministic 

regression effects, JC;p, into seasonal and nonseasonal parts. This is discussed in Bell 

(1984), but since there is no reason to d.o this differently for ARIMA and components 

models we need not go into it here.) 

I Bell and Hillmer (1984) criticize component modelers for simply taking the 

component models for adjustment as those obtained in modeling the observed series, and 

thus ignoring the uncertainty inherent in the basic decomposition into components. We 

can address this decomposition uncertainty for component models by defining a “canonical 

decomposition” in an analogous way to that defined for ARIMA models - subtracting as 

much white noise as possible from St and adding it to Nt through It. (A canonical trend 

for components models is also discussed in Appendix A.2.) We show in Appendix A.1 that 

the resulting canonical components model decomposition, Zt = St + Nt = St + [Tt + I,], 

has a canonical irregular T, with variance 3: = CT: + ~rt/144, and a canonical seasonal St I 

that follows the model 

wwt = tiw1t 71t - iid N(O,i$ (34 

where #J(B), of order 11, is given in Table 5., and af = .8081 C.7; . This is in fact the same 

form as the canonical seasonal model of Burman (1980) and Hillmer and Tiao (1982), 

though their seasonal model will generally have a different $(B) and Crf (that depend on 
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the AHIMA model). As with ARIMA models, using any other admissible decomposition 

(corresponding to any valid decomposition of the covariance generating function), including 
- 

that defined by the original fitted components model, can be viewed as adding white noise 

to the canonical seasonal 5,. Notice that, given a components model, the model for St in 

(3.1) is trivial to obtain. Also, signal extraction for canonical seasonal adjustment may be 

performed in the usual way with a Kalman smoother using the model (3.1) for St and 

increasing the irregular variance to z?:. 

Notice that the amount of variance removed from the components model seasonal, 

gT/144, will be small unless gf is large relative to 0: and cri. A quick glance at Table 2 

reveals the opposite to be true for the series considered here: crf is generally quite small 

relative to tri + gi. This has two implications: (1) the estimated component model 

typically implies a very nearly fixed seasonal, and (2) the original component model 

decomposition will often be very close to the canonical component model decomposition. 

In fact, for the examples we have tried, seasonal adjustments from the original and 

canonical component model decompositions have been virtually identical. Since this aspect 

of decomposition choice appears to make little difference we shall not consider it further 

here. This is not to say choosing some other decomposition than the canonical cannot have 

important effects, though we shall not consider that here either. 

To examine potential differences in seasonal adjustments arising from model choice 

we examine seasonal adjustments for two series: IHAPVS (value of U.S. household 

appliances shipped from l/62-12/81), and ENMSO (thousands of employed males 20 and 

older in nonagricultural industries from l/65 - 8/79), a series analyzed by Bell and Hillmer 

(1984). IHAPVS was one of the series which the BSM fit best (DAIC = -.7), while the 

BSM fit for ENM20 was rather poor (DAIC = 13.7), though far from the worst. ENM20 

was the one series for which logarithms were not taken so an additive decomposition is used 

here. 
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Figure 1.a. shows the estimated ARIMA and BSM seasonal components for IHAPVS. 

Close inspection is required to detect any difference. As this is also true of the seasonal 

adjustments we do not present these. Figure 1.b. shows the signal extraction standard 

deviations for IHAPVS expressed as coefficients of variation. Here substantial differences 

appear with the ARIMA CV’s being 20 percent or more higher near the end of the series. 

(This does not mean that the results for the ARIMA model are necessarily bad.) However, 

the CV% might all be considered small: none exceed about 1.6 percent. 

Figure 2.a shows the ARIMA and BSM seasonals for ENMZO. Here we can see a 

difference: the ARIMA seasonal evolves steadily over time while the BSM seasonal 

remains relatively fixed. (Notice from Table 2 for the BSM that for ENMZO 2; = 27 while 

3; 5: 16,500.) Figure 2.b portrays seasonal adjustment results for the last 5 years of the 

data. While differences can be seen they may not be important since the month-to-month 

changes themselves are not large, seldom exceeding .5 percent. Figure 2.~. shows even 

larger differences for signal extraction standard deviations than we saw for IHAPVS. The 

BSM standard deviations rise very little at the end of the series because an essentially fixed 

seasonal is being estimated. Still, the most noteworthy aspect of Figure 2.~. may be how 

small the standard deviations are relative to series values of 40,000 to 50,000. 

We conjecture that Var(St -St) --+ 0 as e12 -+ 1 in the ARIMA model and as 

0; + 0 in the BSM, which probably explains the small signal extraction standard 

deviations observed in the two examples. However, if we decide o12 = 1 or g; = 0 and use 

a model with fixed seasonal regression effects instead, the signal extraction variances will 

not be 0 since we will have error in estimating the seasonal regression parameters. A 

curious aspect of these results is the apparent discontinuity between results for 8I < 1 (or 

UT > 0) and e12 = 1 (or 0: = 0). 
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4. REPEATED SURVEY ESTIMATION 

Scott and Smith (1974) and Scott, Smith and Jones (1977) suggested using time - 

series signal extraction techniques for estimation in periodic surveys. If st denotes the true 

population quantity (the signal) and et the sampling error at time t, then we use signal 

extraction to estimate s t in 

yt 
= st + et , (4.1) 

If-Y, is the logarithm of the original series, then exp(st) and exp(et) are the true 

* population quantity and multiplicative sampling error in the original series. Any of the 

mod$s discussed in section 2 can be used for st; Binder and Dick (1989) and Bell and 

Hillmer (1989) use ARIMA models, while Pfefferman (1989) uses a BSM. Generally, any 

regression terms in the model are also part of st. 

Model building for the survey estimation problem is discussed in the references cited 

above. A primary distinction between this application and what we have considered 

before, is that the model for et can be estimated, in some fashion, using survey microdata. 

The sampling error model is then held fixed when estimating the parameters of the st 

model using the time series data on Yt . Questions arise about the sensitivity of the survey 

estimation results to any of the aspects of the modeling. Here we shall examine the 

sensitivity of results to the choice between an AFLIMA model and a BSM for st. 

We consider two time series. For the first, U.S. teenage unemployment (in 1000’s) 

from l/72 to 12/83, Bell and HiIImer (1987) develop the following model for Yt = st + et: 

(1-B)( 1-B12)st = (1 - .27B)(l- .68B12)at gi = 4294 

et = htGt (1 - .6B)gt = (1-.3B)ct CT: = .8767 ht = - .0000153 Yf + 1.971 Yt 



17 

The model for st has been reestimated, yielding slightly different parameter values than 

those reported in Bell and Hillmer (1987). With 0: = .8767, Var(Et) = - 1, so ht is the 

(estimated) sampling error standard deviation, which is time-varying. Tht: modeling of the 

second series we consider here, U.S. 5 or more unit housing starts, is very similar to that 

for U.S. single family housing starts, also considered in Bell and Hillmer (1987). The 

sampling errors for 5 or more unit housing starts appear approximately uncorrelated over 

time with relative variance .00729, which is the approximate variance of the logged 

multiplicative sampling errors. The estimated ARIMA model for the signal in the logged 

time series is 

I 
(1-B)( l-B12)st = (1 - .47B)(l- .89B12)at 0: = .0215. 

We used the above models in signal extraction estimation of st, and then did the 

same with a BSM fitted for st with the same et models given above. The BSM model 

fitted relatively well for both these series, with DAIC = AIC(BSM) - AIC(ARIMA) = 

- 3.1 for teenage unemployment and DAIC = 1.8 for housing starts. (The appropriateness 

of these AIC comparisons is in some question since the et models are not fitted with the 

time series data.) Figure 3.a. shows the signal extraction point estimates for teenage 

unemployment using both models; (1-B12)it is shown to avoid the obscuring effects of 

seasonality. The BSM estimates less variance in the signal than the ARIMA model, and 

thus yields slightly smoother estimates. Figure 3.b. shows substantial differences in the 

signal extraction variances for the two models. The two signal extraction estimates for 

the housing starts series were virtually identical, and so are not shown. Figure 4 shows 

lo6 times the signal extraction variances for the logged series, for the last half of 

the housing starts series - those for the first half would be a mirror image. 
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While there are some interesting differences in pattern, the magnitude of the differences is 

small. - 

5. CONCLUSIONS 

Even the conclusions drawn in section 2 must be somewhat tentative; it would be 

interesting to see similar studies with other sets of time series. Because of the limited 

examples considered in sections 3 and 4, the conclusions there can only be suggestive. To 

summarize: 

1. Data can frequently discriminate between ARIMA and components models. 
. 

For the 45 series analyzed, AIC showed a strong general preference for ARIMA 

I models over the BSM. To the extent that model fit is important, merely 

assuming the BSM provides an adequate fit could be dangerous. 

2. -We found fitting components models more difficult than fitting ARIMA 

models. While we would have liked to see if the addition of a stationary AR 

component or other cycle term could improve the component model fits, we 

were unable to fit such models due to numerical problems. 

3. Signs xtraction point estimates for seasonal adjustment and survey 

estimation using ARIMA models and using the BSM differed little for the 

examples considered. Signal extraction variances showed much larger 

differences, though for the seasonal adjustment examples the variances using 

both models might be regarded as quite small. This last point is worth more 

investigation, to see if model-based seasonal adjustment variances with 

canonical, or approximately canonical, decompositions are typically very small. 
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APPENDIX 

A.1 Canonical Seasonal for Components Models 

We obtain a “canonical” decomposition Zt = St + Tt + r,, starting from Zt = St + 

Tt + It with U(B)St = fit - iid N(O,cf) and It - *’ nd N(O,k$ as in (2.4). Here we only 

work with the model for S 
tl’ 

so there are actually no restrictions on the model for Tt or on 

the white noise It (the possibility It = 0 (0: = 0) is allowed). Following Burman (1980) 

and Hillmer and Tiao (1982), the canonical decomposition is obtained by subtracting as 

much white noise as possible from St (to get St) and adding this to It (to get !J. In terms 

of covariance generating functions (CGF’s), we consider 

2 
*1 utB)u(F) 1 - 71 + ?TtB) + b; + 71) 

for any 71 such that this is a valid decomposition (all 3 terms 2 0 for all B = eix). The 

minimum 71 is -0: (though if mi ny 
. 

x T 
(e”) > 0 we can combine Tt + It and pick a smaller 

71) and the maximum (canonical) 71 is 

3, = min( of/ 1 U(eiX) 1 2, = 0f/(m;x 1 U(e”) 1 2). 

Since I U(eix) I2 = (elli’ + emllix) + 2(eloiA + e-loix) + . . . + ll(e” + eix) + 12 = 

2cos(llq + 4cos(lOA) + . . . + 22 cos( A) + 12 is maximized at X = 0 with I U(1) I 2 = 144, 

we have 71 = gf/144. (This has previously been observed by Maravall 1985, p. 354.) The 

CGF for St is then 
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2 
7 .;[l - w-wJP)U(F)1 

U(B)U(F) -%= 
U(B)U(F) - 

The numerator is the CGF of an MA(ll) model, thus the model for St is 

U(B)$ = $(B)71, ?lt - iid N(O,&$ (A4 

with $(B) = 1- $lB - . . . -$llBll and ZrT determined by az $(B)@(F) = 

~$1 - (1/144)U(B)U(F)]. Letting 3; = ~;a, we can determine q+(B) and a! to satisfy 

(144+50)$(F) = 144 - U(B)U(F) 
* 

= 132 - ll(B+F) - 10(B2+F2) - . . . - (B1l+F1$ . 

Notice that a! and $(B) will not depend on any of the model parameters. This gives us the 

important result that the canonical seasonal St corresponding to any components model 

(2.4) follows (A.l) with the same $J(B) and with 5; = g;a. Thus, given a and $(B), which 

we determine next, the model for the canonical seasonal is trivial to obtain. 

To find cy and $(B) we first compute the zeros of the polynomial p(x) = x22 + 2x21 

+ . . . + 11x12 - 132~~~ + 11x1’ + . . . + 2x + 1 = -(144a)$(x)[$~(x-‘)x~~]. There is a 

repeated real root of 1 since rS(B) - 71 = 9 for B= 1, and 5 sets of complex roots <h = 

ah f bki and their reciprocab?. We want the rOOtS on or outside the unit circle ( I <h] 2 > 1) 

for l’+(B) - these are given in Table 4. These were computed using the POLYROOT 

command of the GAUSS programming language (Edlefsen and Jones 1986). We then 

computed pl(X) = (X-l) ki?l(x-ek)(x-tk) = (x-l) kkl(x2-2akx + ] ck12) using the 
= = 

POLYMULT command of GAUSS, getting the coefficients of 
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+tB) = kB) k+t~lB)(l-t;lB) = -P1(B)/(k!l 1 tk 1 2, = - 

These are given in Table 5. To find a! we equate coefficients of B” in (144a)$(B)$(F) = 

-F”p(B) = 132- ll(B+F) - . . . - (B1l+F1l), giving 

cy = 132/[144(1+$; + . . . + &)I = .808118 . 

(To check the results we used POLYMULT to compute -(144cr)$~(x)[$~(x~~)x~~] = 

-(144o)$(x)[xll- $1x10 - . . . - $lOX - $111 and got back p(x) as desired, exact to the 

eight digits printed.) Using $J(B) from Table 5. and ??T = .808118~; completes the 

spehfication of model (A.l). 

A.2 Canonical Trend for Comoonents Models 

A “canonical” trend, ‘I’,, corresponding to Zt = St + Tt + It, can also be defined. 

MaravaU (1985, p. 353) has considered this for the case where Tt follows the BSM model 

(2.4). Here we consider the GK model (2.5) for 6 = 1 or 2. In general, yT(e”) = 

g$( ] l-ei’ I 2)d = g$[2(l-cos(A))ld is minimized at X = r with value 7bd) = ~;/4~; thus, 

$1 = g2/4 and $“) 2 = ~$16. Since rT(B) - Tid) = 

[&g$4d)(l-B)d(l-F)d]/( l-B)d(l-F)d, the model for T, is ( l-B)dTt = W(B)Z2t with 

w(B) = 1-wlB - . . . -wdBd and 72t - iid N(O&. Since yT(e”) - T2 (4 = 0 for x = T, 

w(B) has a root of e’z = -1, implying a factor (l+B). So for d=l, w(B) = l+B, and for 

d=2, w(B) = (l-wB)(l+B). Also, 6; w(B)w(F) = gi[l@d(l-B)d(l-F)d] gives 
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(d=l): $( l+B)(l+F) = ~;[l-(l-B)( l-F)/41 = (~$4)(l+B)( l+F) 

- 

(d=2): i+(l+B)(l+F)(l-wB)(l-wF) = ~+-(l-B)~(l-F)~/16] 

For d=l wesee 5: = ~$4, and for d=2 one can verify that w = 3-2fi x .1716 and 3; = 

&16w) w .36428 c$. Thus, the canonical trend models are as follows: 

(d=l) (l-B)Tt = (1+B)72t -2 a2 = ..r;/4 

(d=2) (1-B)2Tt = (1-.1716B)(1+B)72t 8; = .36428 CT; . 

I 
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Series Model “12 AIC 

bapprs 
bautrs 
belgws 
bf rnws 
bgasrs 
bgrcrs 
bgrcws 
bhdwws 
blqrrs 
bshors 

w bvarrs 
bwaprs 
clftbp 
c24tabp 
cliptbp 
ww 
cnetbp 
cwsths 
enm20 
iapevs 
ibevt i 
ibevvs 
icmet i 
icmevs 
ifatti 
if atvs 
ifmet i 
if rtvs 
iglcvs 
ihapt i 
ihapvs 
inewuo 
irrevs 
itobvs 
itvrt i 
itvrvs 

.68 1942.3 

.69 1912.9 

.81 1868.7 

.67 1784.1 

.79 1540.8 

.97* 1406.8 

.96* 1729.1 

.72 1867.3 

.75 1722.7 

.70 1972.6 

.75 1822.8 

.65 1858.7 

.99* 2581.2 

.89 2823.2 

.80 2903.2 

.89 2643.5 

.82 2897.1 

.85 2907.4 

.77 2073.6 

.80 2081.2 

.65 1843.1 

.78 2300.9 

.76 1535.8 

.74 1856.5 

.64 2553.4 

.82 2409.4 

.77 1907.6 

.31 2752.4 

.84 2510.1 

.82 1991 .o 

.82 2398.0 

.60 2402.6 

.83 2671.2 

.71 2117.7 

.82 2226.7 

.69 2683.7 
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Table 2.: AIC Comparisons of BSH and ARIHA Models 

ARIM Jfodel t BSI 
-2 - ^2 ^2 
“1 II ‘2 “3 

23.0 1.00 630 192 

34.1 1.00 1720 9.9 .99# 568 6i.i 
16.2 1.00 647 90:3 

1.2 .90 226 .002 
.23 .43 2.42 64.0 
.30 .99 141 147 

14.0 1.00 525 67.8 
3.52 1.00 140 120 
29.4 l.OO# 688 218 
13.5 .99 120 266 
27.4 1.00 326 163 
.016 .95 4329 3.25 
.816 l.OO# 8654 1426 
143 .99# 11075 2886 

.014 1.00 7318 ,105 
37.3 l.OO# 8310 4162 
68.8 l.OO# 10714 3480 
27.8 .89 16488 .024 

101 .98 1885 1443 
1.79 1.00 177.5 0.0 
8.46 .99 529 390 
1.63 .63 95.2 12.4 
24.8 l.OO# 568 410 
23.1 l.OO# 4017 .49 
26.0 .99# 1477 99.0 
.009 .73 225 .004 
1024 l.OO# 4279 7.81 
7.43 1.00 1305 1134 
.291 1.00 356 .281 
17.4 l.OO# 1012 379 
32.0 .98 1960 .115 
79.8 .95 2287 1918 
50.9 .96# 90.1 1030 
.003 .87 958 .lOl 
282 1.00 2807 1496 

1948.6 
1927.1 
1871.1 
1799.3 
1544.0 
1406.2 
1734.4 
1865.2 
1726.7 
1972.8 
1823.9 
1871.8 
2605.7 
2826.4 
2911.2 
2710.5 
2905.3 
2909.9 
2087.3 
2079.9 
1890.0 
2320.0 
1542.3 
1865.6 
2599.5 
2406.7 
1934.8 
2774.4 
2538.4 
2028.3 
2397.3 
2447.6 
2671 .O 
2132.9 
2244.9 
2699.7 

DAIC# 

6.3 
14.2 
2.4 

15.2 
3.2 
- .6 
5.3 

-2.1 
4.0 

.2 
1.1 

13.1 
24.5 

E 
67:0 
8.2 
2.5 

13.7 
-1.3 
46.9 
19.1 
6.5 

496:: 
-2.7 
27.2 
22.0 
28.3 
37.3 
- .7 

45.0 
- .2 

15.2 
18.2 
16.0 

.53 1723.8 29.8 -- 104 68.3 1729.6 5.8 

.66 1698.3 15.7 -- 316 59.1 1698.4 0.1 

.57 1959.0 40.1 -- 644 199 1976.3 17.3 

.79 2872.9 18.0 -- 13870 15.9 2889.3 16.4 

.81 3008.7 24.6 -- 13784 6862 3019.8 11.1 

.88 3088.5 44.3 -- 6125 21141 3092.9 4.4 
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2940.7 -- -- 5126 3953 2947.0 6.3 
2718.3 -- -- 4049 269 2730.2 11.9 
2211.1 -- -- 542 .087 2217.7 6.6 

* 1473.1 -- -- 34.2 46.0 1485.1 12.0 
* 1809.8 -- -- 129 145 1813.5 3.7 
* 2688.0 -- -- 3999 .777 2710.0 22.0 

Notes: 
t The numbers in parentheses give the nonseasonal and seasonal parts of the 

ARIHA model, with (000) used to denote a fixed seasonal modeled with 
regression terms. Other regression terms in the models are given in 
Table 1. 

# DAIC = BSP(AIC) - ARIMA(AIC). If DAIC > 0 the ARIHA model is preferred. 

* (2 # 1, so model refit with fixed seasonal. 
- 
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Table 3.: Airline Model versus Selected AllIMA Yodel and BSY 

Series Model 

bapprs 
bautrs 

2:: 
bgasrs 
bgrcrs 
bgrcws 
bhdwws 
blqrrs 
bshors 
bvarrs 

* bwaprs 
clftbp 
c24tbp 

= csptbp 
caom 
cnetbp 
cwsths 
emu20 
iapevs 
ibevt i 
ibevvs 
icmet i 
icmevs 
ifatti 
if atvs 
ifmeti 
if rtvs 
iglcvs 
ihapt i 
ihapvs 
inewuo 
irrevs 
itobvs 
itvrt i 
itvrvs 

Selected AHMAt Airline Model BSM 

bdptrs 
bf rnrs 
bmncrs 
cnctbp 
cncths 
cneths 
csoths 
ifmevs 
iglct i 

1942.3 
1912.9 
1868.7 
1784.1 
1540.8 
1406.8 
1729.1 
1867.3 
1722.7 
1972.6 
1822.8 
1858.7 
2581.2 
2823.2 
2903.2 
2643.5 
2897.1 
2907.4 
2073.6 
2081.2 
1843.1 
2300.9 
1535.8 
1856.5 
2553.4 
2409.4 
1907.6 
2752.4 
2510.1 
1991 .o 
2398.0 
2402.6 
2671.2 
2117.7 
2226.7 
2683.7 

1941.7 
1911.6 

-- 

1417.9 
1732.4 

-- 
1721.5 

-- 
1823.4 
1863.2 

.18 .68 
- .19 .69 

.18 -- 

.24 -- 
- .13 -- 

.43 .99# 

.40 .96# 

.16 -- 

.42 .75 

.31 -- 

.57 .75 

.33 .61 
- .27 -- 

.12 -- 

.22 .80 
- .22 .90 

.32 -- 

.24 .86 
- .21 .77 

.39 -- 
- .ll .67 

.42 .77 
- .17 .87 

.39 .73 
- .27 .65 

.14 -- 
- .30 .79 

.27 -- 

.50 .96# 
- .28 .80 

.26 -- 
- .22 -- 

.36 -- 

.75 .72 
- .24 -- 

.39 .67 

-_ 
-- 

2908.6 
2689.8 

2907.7 
2074.3 

-- 
1843.8 
2315.1 
1567.9 
1861 .l 
2555.4 

1930.8 

2535.6 
2001.5 

-- 
-- 

2124.6 

2687.0 

-- .44 .54 
-- .23 .67 
-- .40 .59 
-- .02 .80 
-- .30 .81 
-- .59 .87 
-- .34 l.OO# 
-- .05 .84 
-- - .16 .95 

DAICl* AIC DAIC2# 

- .6 
-1.3 

0 
0 
0 

11.1 
3.3 

0 
-1.2 

.i 
4.5 

0 
0 

4::; 

.i 

.7 

.!: 
14.2 
32.1 
4.6 
2.0 

0 
23.2 

0 
25.5 
10.5 

ii 
0 

6.9 

3.: 

1720.6 -- 
1689.1 -- 
1952.7 -- 
2866.4 -- 
3000.6 -- 
3080.7 -- 
2826.1 -- 
2617.1 -- 
2127.6 -- 

1948.6 6.9 
1927.1 15.5 
1871.1 2.4 
1799.3 15.2 
1544.0 3.2 
1406.2 -11.7 
1734.4 2.0 
1865.2 -2.1 
1726.7 5.2 
1972.8 .2 
1823.9 .5 
1871.8 8.6 
2605.7 24.5 
2826.4 3.2 
2911.2 2.6 
2710.5 20.7 
2905.3 8.2 
2909.9 2.2 
2087.3 13.0 
2079.9 -1.3 
1890.0 56.2 
2320.0 4.9 
1542.3 -25.6 
1865.6 4.5 
2599.5 44.1 
2406.7 -2.7 
1934.8 4.0 
2774.4 22.0 
2538.4 2.8 
2028.3 26.8 
2397.3 - .7 
2447.6 45.0 
2671 .O - .2 
2132.9 8.3 
2244.9 18.2 
2699.7 12.7 

1723.9 3.3 
1691.1 2.0 
1968.3 15.6 
2878.5 12.1 
3009.2 8.6 
3083.1 2.4 
2831.8 5.7 
2619.6 2.5 
2135.7 8.1 
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t Selected ARIMA Models without a regular or without a seasonal 
difference cannot be compared to the Airline Model by AIC. For 
these series only the Airline Model and BSI as in (2.4) are compared. 

* DAN1 = Airline lode1 AIC - Selected ARIMA lode1 AIC 

# DAIC2 = BSI AIC - Airline Model AIC 

. 
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* 
6 

- Table 4: 9 = ak f bki = zeros of tl(B) 

-1.6448 .4511 1.7055 

-1.1702 1.2133 1.6856 

- .3744 1.6002 1.6434 

.4820 1.4965 1.5722 

1.1046 .9429 1.4523 

1 0 1 

Table 5: Coefficients 94 for flB) = l+l - . . . - $llB1l 

k 4c k 4 
1 .205555 7 .061661 

2 .175919 8 .045395 

3 .148557 9 .031188 

4 .123471 10 .018953 

5 .100648 11 .008593 

6 .080059 
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juauqsn!pjj leuoseas flsa = au!1 qsq 
~uau.qsn!p~ jeuoseas vfl~t~v le3!uoutz~ = a!!~ p!los 

6L6 1 8L6 1 LL.6 1 9L6 1 526 1 ,t7L6 1 EL6 1 IL6 1 CL6 1 
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Teenage Unemployment 

Signal Extraction Estimates 

I I I I I I 

20 40 60 80 100 120 140 

Signal Extraction Variances 
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Total US 5+ Housing Starts 

- ARIMA 
_______-_-- 

I 

100 120 140 160 

Signal Extraction Variances 


