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ASSESSING CONTEMPORANEOUS CORRELATION IN LONGITUDINAL DATA 

ABSTRACT 

Consider drawing a sample of ‘n’ experimental units where each unit is observed over 

‘T’ time periods. Are the draws independent ? Small and large (in ‘n’) sample properties of a 

distribution-free statistic, built to assess the degree of correlation, are provided. Further, the 

large sample distribution is also investigated in the case where the statistic is evaluated using 

residuals from a complex model. 



1. INTRODUCTION 

A strong case can be made for the statement that the regression model is the pre-eminent statistical 

model, at least in terms of the number of applications. Because arguments using regression models have become 

widely accepted in scientific communities, researchers are becoming more willing to collect regression data over 

time. If the data is identified at the level of the experimental unit then longitudinal, or sometimes called pooled 

time series cross-sectional, models are appropriate for fitting. At least in the social sciences, even though this 

data often consists of many experimental units, experimenters are often unwilling or unable to consider the data 

over long periods of time because basic conditions appear unstable. 

In the life sciences, often the parent population is sufficiently large and randomization techniques for 

observation selection are sufficiently sound so that experimental units may be modeled independently. In the 

social sciences, however, there may exist important correlations between experimental units especially in 

applications where economic entities are the experimental unit. I follow standard terminology in econometrics 

and call these “contemporaneous” correlations to distinguish them from autocorrelations, or correlations through 

time. If detected, there are several modeling techniques available. Generalized least squares techniques and, in 

particular, seemingly unrelated regression models of the variance structure, are prominent in applications. 

Further, contemporaneous correlations can be induced by omitted covariates that are possibly common to the 

experimental units. A subtler cause of contemporaneous correlation can arise from the random nature of one or 

several parameters in the model of the mean effect. The point here is that there are several type of models to 

handle contemporaneous correlation when detected. This article concerns “omnibus” methods for detecting 

contemporaneous correlations, particularly when the number of experimental units, n, is large compared to the 

number of observations per experimental unit, T. Hsiao (1986) provides a detailed discussion of the importance 

of considering the case of large n in addition to the usual approach in econometrics for considering large T. 

Specifically, initially consider the model 

Yi, = /Jj + Oi eit i=l n , . . . . t=l, . . . . T (1.1) 

where Yi,, t=l, . . . . T are observations from the ith experimental unit. Assume (ei,) are mean zero, unobservable 

random variables. Only the case of an equal number of observations per unit is explicitly discussed here as this 

is the rule when considering economic data (often violated, as with most rules). Many of the results presented in 

this article could be generalized to the unequal case with considerably more tedious algebra and at the expense of 

the interpretation of results. Both l-t and d may be considered to be either parameters to be estimated, covariate 

effects, or some combination. It is interesting to note that it turns out that l+ may be either a fixed or random 

effect. It is well-known that location and scale parameters do not affect correlations and this also turns out to be 
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the case here. Model extensions are considered in Section 4. 

Classical statistics for assessing the independence of experimental observations can be found in 

multivariate analysis. Perhaps the most well-known is Bartlett’s (1954) statistic, defined as 

C, = det ( B )Tn / r=t b!f (1.2) 

where B is a n x n matrix whose (i,j)‘h element is bij = (T-l)-* & (Yit -Yi) (Yjt - Yj). This statistic is the 

maximum likelihood statistic under normality. It is straightforward to check that rank (B) = minimum of (n, T- 

1) and thus de@) = 0 for large n. The diagnostic statistics used in this paper are versions of a Lagrange 

Multiplier test statistic due to Breusch and Pagan (1980), 

(1.3) 

where Cij = bij / (bii b&*’ is the Pearson correlation coefficient between the i* and jth flows. Breusch and 

Pagan (1980) showed that as T + 00 , the limiting distribution of (T-l) ( s ) CiVE, is x2 with n(n-1)/2 degrees of 

freedom. This suggests the modified version C,, = n ((T-l) Ci,, -l)r;! which has an asymptotic standard 

normal distribution (as T + 00 first, then as n + -). However, when n + Q) and T remains fixed, it turns out 

that the finite, and even the limiting, distribution of C,, is not distribution-free, For example, under the null 

hypothesis of i.i.d. errors in (l.l), note that E Ci,, = E ct2 depends on the distribution of errors. See Section 2 

for further discussion of this point. This dependence on the parent distribution suggests using a nonparametric 

version of Ci,,, 

(1.4) 

where rii is the Spearman rank correlation coefficient between the ith and jth flows. More specifically, define rij 

= Sij / (Sii Sjj)ln , where Sij = (T-l)“ Xi CRi,t - (T+1)/2) (Rj,~ - (T+1)/2) and (Ri,t, . . . . Ri,TJ are the ranks Of (Yi,, 

. ..) YiT). This statistic is distribution-free and the limiting distribution is established in Section 3. In 

applications where either positive or negative contemporaneous correlations prevail, one could also consider the 

statistic 

(1.5) 

The advantage of this statistic is that the limiting distribution is known, that is, (T-l) ((n-l) RAVE + 1) = FR + 
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xzcr-tj where FR is Friedman’s statistic, cf., Hettmansperger (1984, pp. 196, 210). For completeness, also define 

C AVE = ( ; 1-l &<j cij* (1.6) 

to be the version of RAVE using Pearson correlation coefficients. 

In Section 2, I discuss the finite sample properties of the statistics in (1.3)-( 1.6). In the case of CivE, 

this supplements the known asymptotic (for large T) properties. The technique is to relate these statistics to a 

class of nonparametric unbiased estimators called U-statistics and use the well-known properties of this class. 

Because of the desirable properties of Ri,,, in Section 3 the large (in n) sample distribution of this statistic are 

established using classical techniques. Since the statistics are primarily for model diagnostics, they are most 

likely to be useful when evaluated using residuals from a preliminary model fit. Thus, in Section 4, I extend the 

discussion to statistics based on residuals. Sufficient conditions are provided so that the limiting distribution 

remains unchanged when using residuals in lieu of i.i.d. random variables. Further, the form of the distribution 

is identified when these conditions are not satisfied. 

2. FINITE SAMPLE PROPERTIES 

In this section, assume both n and T are fixed. Finite sample properties of the statistics (1.3)-(1.6) are 

developed using U-statistic theory, cf., Serfling (1980) for an introduction to these results. 

Define Yi = (Yit, . . . . Ytt)’ and ei = (eit, . . . . et,)’ to be random vectors in RT, T-dimensional Euclidean 

space. Define four real-valued functions mapping R2T into R, called kernels, corresponding to the four statistics, 

as follows. Define ht(Y, Yj) = Cij, h,(Yi, Yj> = rii, h, = hf and h, = hs. For each kernel, the U-statistic is 

defined to be the average over all possible evaluations of the kernel, that is, 

U n,k = ( 5 I-’ Ci<j hk(Yiv Yj> k=l, . . . . 4. (2.1) 

Note that U, I = CAVE, U, 2 = RAVE, U, 3 = CivE and U, 4 = RivE. The simplicity of the results of this article 

rests in the fact that the CcmelatiOn statistics are lOCatiOn and SC&3 invariant SO that hk(Yi, Yj) = hk(ei, ei), that 

is, h, is a function of the i.i.d. random vectors (el). 



Throughout this paper, I assume 

Al The random variables (ei,) are Lid. -. 

This can be weakened at certain points to exchangeability and/or conditionally uncorrelated 

( E (h(e,, %) I e1) = 0 ), but for ease of interpretation I use the stronger assumption Al. It is straightforward to 

establish that E U,, = E h, for k=l, . . . . 4. One can also check that E RAVE = E CAVE = 0 under Al. The 

calculation of the variance is more complex. I summarize that calculation in the following 

THEOREM 1. Assume Al. Then 

vxu,k= ( ; >-’ var h,(e,, %) k=l, . . . . 4. 

Before proving this result, it is helpful to note some important special cases. 

COROLLARY 1. Assume Al and that the random variables (ei,) have a continuous distribution. Then 

E RivE = (T-l)-‘, Var RAVE = ( i )-’ (T-1)-l and 

Var RivE = ( I; )-’ ((T-2)(25T2 -7T-54) / (18 (T-1)2(T3-T))). 

COROLLARY 2. Assume Al and that the random variables (ei,) are normally distributed. Then 

E C;,, = T-l, Var CAVE = ( ; )“ T-’ and 

Var C;,, = ( ; )-’ 2 (T-l) / (T2 (T+2)). 

These corollaries provide explicit moments for values of n and T. The assumption of a continuous 

distribution is the usual one in rank statistics, made to prevent possible ties in the random variables. The statistic 

h:(Y1, Y2) = h,(Y,, Y2) is the squared correlation or coefficient of determination between Y, and Y,. This is 

well-known to be depend on the distribution of (Yi,), at least for finite T. In Corollary 2 is an example of the 

calculation in an important special case. 

To prove Theorem 1, first recall some terminology from U-statistics theory. In this article, I consider 

only kernels that are symmetric in their arguments and are square integrable, that is, h(yt,y2) = h(y2,yt) and 

E h2(Y,,Y2) < 00. Such a kernel is said to be degenerate if E (h(Yt,Y2> I Y,=yt) = E h(Y,,Y,) for all yl. The 
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main work in establishing Theorem 1 is in 

LEMMA 1. Assume Al. Then h, is degenerate, for each k=l, . . . . 4. 

Proof of Lemma 1: It is straightforward to check that each hk is symmetric and square integrable. I only 

establish that h, is degenerate as the cases h,, h, and h, are similar. For h,, replace Y by e in the definition of 

bij SO that bij = (T-l)-’ & (eir - ~ii> (ej, - ~j). ThUS 

E (h&, , +.I 1 e2 1 = E ( ((T-1)“ & q, (e2t - F2 )I21 (b,, b,,) 1 ez > 

= cT-ljm2 & & (?a - F2 >(e2, - F2 ) / b22 E (et, et, / b,,) 

= U-1Y2 E (ef, / b,,) C, (ert - F2 I2 / b,, 

+ E h e12 / W & (e2, - 7% )(e2u - 752 > / b2 

= U-11-l ( E (efl / b,,) - E tell q2 / b,,)J 

which is a constant. Since E E (h,(e,, eJ I et) = E h,(et, eJ, this constant must equal E h,. This is sufficient 

for the result. Q. E. D. 

The proof of Theorem 1 is an immediate consequence of Lemma 1 and the usual variance 

decomposition result for U-statistics (cf., Serfling, 1980, Lemma A, page 183). To establish Corollary 2, from 

standard linear model results, under normality we have ct2 = F / (F + T - l), where F has an F-distribution with 

1 and T-l degrees of freedom, respectively. Calculating the expected values of cT2 and ci2 is a pleasant exercise 

using moments of the x2 - distribution and is omitted. Calculating moments of e2 is also straightforward but, as 

some of these results are also used in Section 3, the details are sketched below. 

Proof of Corollary 1: Fist note that, under the assumption of no ties, we have sii is degenerate and equal to (T2 

+ T)/12 (cf., Hettmansperger, 1984, p. 20). Now, without loss of generality, the ranks of one vector may be 

arranged in ascending order to get h,(el. 0~) =D 144/(T3 -T)2 (C, (t-m)@r-m))2 where m=(T+1)/2 and R, is the 

rank of the tth element of the second vector. Basic calculations yield E (R1-m)2 = (T2-1)/12 and 

E (Rt-m)(R2-m) = -(T+1)/12. This is sufficient to check that E h,(er, Ed ) = l/(T-1). 
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To calculate E h:, the following quantities are useful: S, = (T3 - T)/12 and S, = (3T2 - 7)/20. Some 

basic equalities are E (RI-m)4 = S, S,, E (R1-m)3 (R2-m) = -S, S, / (T(T-l)), E (R1-m)2(R2-m)(R3-m) = S, (2S, 

- S1) / (T(T-l)(T-2)), E (R1-m)2(R2-m)2 = S, (S, - S,) / (T(T-1)) and E (RI-m) (R2-m) (R3-m) @7,-m) = 

3 S, (S1 - 2S2) / (T(T-l)(T-2)(T-3)). After checking these basic equalities, the next major step is to verify that 

E h$c,, cz ) = T (E (R1-m)4)2 + 4 T (T-l) (E (R1-m)3 (R2-m))2 + 6 T (T-l) (T-2) (E (R1-m)2(R2-m)(R3-m))2 + 

3 T (T-l) (E (R,-m)2(R2-m)2)2 + T (T-l) (T-2) (T-3) (E (RI-m) (R2-m) (R3-m) (R4-m))2. 

Putting the basic equalities into this equation, and some tedious algebra, are sufficient for the result. Q. E. D. 

3. LARGE S AMF’LE PROPERTIES 

I first provide a useful computational version of Riv, similar to one available for RAVE, cf., 

Hettmansperger (1984, p.210). Define Z,,t,, = 12 (Ri, - m)(Ri, - m)/(T3 - T) where m is the mean of Ri,, that is 

m = E R, = (T+1)/2. NOW, from (1.4). with Sii = (T2 + T)/12 and C, Zi,t,u = 0, we have 

RivE = 144 / ( n(n-1) (T3 -T>2) Ci, (C, (Rii - m)(& - m))2 

= ( n(n-l) 1-l &#j &,u zi,L,u ‘j,t,u 

= ( O-1) 1-l &;, ( <ci zi,t,J2 - Ci ZT,t,” 1. (3.1) 

For small T and large n, the expression of Riv, in (3.1) is faster to compute than the definition in (1.4). The 

expression in (3.1) also provides some insights in the form of the limit distribution in Theorem 2. That is, the 

sums in (3.1) suggest limiting normal distributions, and when squared, suggest limiting weighted sums of x2 

distributions as appear in Theorem 2. 
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I now establish the following 

THEOREM 2. Assume Al and that the random variables (ei,) have a continuous distribution. Then, 

n (Ri,, - (T-l)-’ ) +D Y = a(T)( Xy.T-1 - (T-l)) + b(T) ( d,T(T-3)/Z - Tfl-3)i2). 

Here, XT and xi are independent x2 random variables with T-l and T(T-3)/2 degrees of freedom, respectively, 

and a(T) = 4(T+2) / ( 5(T-1)2 (T+l)) and b(T) = 2 (5T+6) / ( 5T (T-l)(T+l)). 

Remarks: Note that E Z = 0. Further, a(T) and b(T) are constants which depend on T such that Var Z = 

4 (T-2) (25T2 - 7T -54) / (25T (T-1)3 (T+l)) = 2 Var h,(Y,, Y2). Since the limiting standardized asymptotic 

variance equals the variance of the limiting distribution, under uniform integrability, the fact that Var Z - n Var 

RivE is expected. 

The method of proof below utilizes a conversion of the class of statistics to a quadratic form and then 

applies classical techniques. An alternative method of proof would have been to appeal to results on degenerate 

U-statistics with limiting distributions which are weighted sums of x2, due to Gregory (1977) and Serfling 

(1980). However, these results were only explicitly stated for the case in which the arguments of the kernels are 

real-valued instead of vector-valued as is the case here. Presumably, this extension is minor but it seems that the 

classical techniques provides more insights into what makes the theorem work and computations needed to check 

the conditions underlying each technique are the same. 

Proof of Theorem 2: Define the centered version of Z, ii,t,u = Z,,,,, - E Z,,,,, and note that E Zi,t,u = T-’ for t=u 

and = -l/(T (T-l)) for tfu. Starting with the second line of (3.1), with some algebra we have 

n (RivE - (T-1)’ ) = n ( 0-WW’ Ci+j I&, Z;,t,u Zj,,,g - tT-llml 1 

= (n-l>-’ Ci+j Et,” ii,t,p ij,*,” 

= (n-1)-l Ci+ ( (Xi Zi,tp)2 - Ci Zt,i,” ). 

Now, by the weak law of large numbers, (n-l)-’ & Zt,r,, +p Var (Z,,“). Thus, 

(3.2) 
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(n-l)-’ I& & S& = T Var (zt,r) + T(T-1) Var (Zt2) + o&l) 

= (T-2) / c-r-1) + op(l), (3.3) 

after some algebra similar to that in Corollary 2. Now define Q, to be a T x T matrix with n-In & q,LU to be 

the element in the tn’ row and u* column. Further define X,, = vet (Q,), the T2 x 1 vector built by stacking the 

columns of Q,. Then, using (3.2) and (3.3). we have 

n (RivE - (T-l)-’ ) = (1 + o( 1)) X& - (T-2)/(7-1) + oP( 1). (3.4) 

BY the rfd.hiate Centd hit thmrem, x,, jD X =D N(0, C), where C = E o(r X;). Putting this into (3.4), 

we have 

n (RivE - (T-l)-’ ) jD x’ x - (T-2) / (T-1). 

Thus, we only need to show that Y =D X’ X - (T-2)/(T-1). To this end, first compute the eigenvalues of C, 

defined by 

ha=Ca. (3.5) 

Here, ‘a’ is a T2 x 1 vector built from a = vet(A) where A is a T x T matrix with q, is the t* row and uth 

column. The (t,u)* component of (3.5) is 

h %, = I;,, 4 Cov Gt,,, Z,) = E & C, G 2,). (3.6) 

Recall & A,, = 0 and note that C, &, = 0. Thus, from (3.6). q, = 1 yields li = 0 as an eigenvalue. To find 

non-zero eigenvalues, from (3.6), assuming hf0, we have C, %t = & +” = C, %tu = 0 for each t. With these 

constraints, now evaluate (3.6) for the case t=u. This yields 

= % cov (ill* 4, 1 + cov G&v 21, > c&&J) % + 4r 1 
+ ‘Ov @I l* %2 ) &d&t) &I ) + cov @I19 %3 ) (&,r,d(r,s,t) % ) 



9 

= qt (COV (ill, iI** ) - 2 COV (i**, it2 ) - COV (ill, Z22 ) - 2 COV (ill, 223 )) 

= att ND (3.7) 

Here, 1, d(r t) means the sum over r =l, . . . . 1 I T With distinct r and t. Similarly, &r,d(r,s,r) means the sum over r 

and s with (r, s, t) distinct. Calculations similar to those in Corollary 2 show that the last equality in (3.7) 

holds. Now, for tfu, 

= cov cq,, 4, > (at” + qJ + cov t&,9 A,, 1 (qt + au”) 

+ ‘Ov (‘129 %I3 ) (&.d(r,u,t) % ) + cov @I29 %3 ) (%,d(r,u,t) %I + ‘tr + % + %t) 

+ cov @I29 i34 ) Cr,s.d(r.s.t,u) %s 

= (3” + St > (Cov G&3 212 > - cov (i,,, &3 > + cov @I2954 >I 

+ tqt + qJ”> (Cov cq,? A* * ) - COV (&2,i33 ) - COV (i,2,i23 ) + 2 COV (i12,i34 )) 

= tat, + aut l/2 W-U + tqt + au,> c(T). (3.8) 

Here, &,d(r,s,t.u) means the sum over r and s with (r, s, t, u) distinct. Again, calculations similar to those in 

Corollary 2 yield the expressions b(T) and c(T). By (3.8), we have q, = aut. 

For L#O, solutions to (3.7) - (3.8) are of two forms. First, if auf0 for some t, then h = a(T). Second, if 

qt = 0 for each t, then h = b(T). Thus the eigenvalues of C are either 0, a(T) or b(T). It is also useful to recall 

that the sum of eigenvalues = trace(C) = &, Var (ZrU) = (T-2) / (T-l), from (3.3). Now, there are T-l free 

diagonal terms qt since we have the restriction & qt = 0. If any of these terms are non-zero, by (3.8), (a(T) - 

b(T)) arU = (au + a,,,) c(T) . Thus, fixing the diagonal terms of A determines the remaining elements of the 

matrix and thus there are T-l multiplicities at the root La(T). If the diagonal terms of A are all zero, then there 

are T(T-1) off-diagonal terms to contend with. Due to the symmetry of A noted above and the restrictions 

&, atU = 0 for each t, it is easy to verify that there are T(T-1)/2 - T = T(T-3)/2 free off-diagonal terms of A. 

This then establishes that there are T(T-3)/2 multiplicities at root Lb(T). To establish that the only other roots 

are h=O, we have that (T-l) a(T) + T(T-3)/2 b(T) = & hi = (T-2)/(T-1) = trace(C). That is, the sum of 

eigenvalues equals the trace, as it should. 
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The remainder of the proof is similar to the proof for RAVE, cf., Hettmansperger (1984, page 184). 

There exists a T2 x T2 orthogonal matrix G such that GCG’ = D, a diagonal matrix with the eigenvalues of C on 

the diagonal. With U = G X =D N(0, D), we have 

X’ X - (T-2)/(T-1) = X’ G’ G X - (T-2)/(T-1) = U’ U - (T-2)/(T-1) 

= & 4 & - (T-2)/(T-1) = a(T) &-m, + b(T) t&(-J-3),2 - (T-2)/v-1) 

=D Y. 

Here, xt,r are independent x2 random variables with one degree of freedom. Q. E. D. 

4. RESIDUAL BASED CORRELATIONS 

As an extension of (l.l), now consider the model 

Yi, = /.lj + &t(e) + ai ei, i=l, . . . . n t=l, . . . . T (4.1) 

where gi, is known up to 8, a p x 1 vector of parameters. This is a nonlinear, heteroscedastic version of the 

model independently introduced by Hausman and Taylor (1981) and Laird and Ware (1982). Again, l.r.i is a 

nuisance parameter and may be taken to be fixed or random. Let 6 be a root-n consistent estimate of 0, i.e., 

assume 

nln (6 - (3) = On(l). (4.2) 

Note that I do not require consistency of pi. Using these estimates and estimates of j.+, pi, define the residuals 

ei, = Yi, - P, = l.$ - pi + sit(e) - g;,(8) + Oi ei, and the corresponding ranks ri, = ZT,t I(Ci, < 9,). Analogous 

to (3.1). the contemporaneous correlation statistic based on residuals considered in this section is 

l?ivE = 144 / ( n(n-1) (T3 -T)2) Ci, (C, (&, - m)& - m))2. (4.3) 

Let F(.) and f(.) be the distribution function and probability density function, assumed to exist, of the 

errors (ei,) . Some additional regularity conditions on the regression function gn are given in assumption A2 
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below. I am now in a position to state the main result of this section. 

THEOREM 3. Assume Al, A2, (4.2), infi Oi > 0, and that the probability density function of (ei,) exists. Then, 

under the model (4.1), 

n&E - R&E) = ET,, (w,,“(t) + &#>) &#> + OptI> 

where W,,“(t) = 2 n -‘I2 & ii,r,t9 w2,“tt> = nln (8 - 0)’ (n-l Ci VM, ,(0)) (12/(T3-T)) and VMi,~(0) is the 

gradient vector of E, (Rt(0)-m)2 which turns out to be 

VM,,t(0) = 2 (T-2) ( S (F(X) - 1D) f(X) *(XI >bi XT=* (a&) k&(Y) - Sit(Y)Iy,e* (4.4) 

Perhaps the most useful aspect of Theorem 2 is to give precise conditions when residuals behave as do 

i.i.d. error terms in the limiting distribution of RivE. An important special case is when f(.) is symmetric. 

Here, VMi,(0) = 0 and we have 

COROLLARY 1. Assume Al, A2, (4.2) and that random variables (ei,) have a symmetric probability density 

function f(.). Then, 

n (It&E - (T-l)-’ ) -+, z = a(T)( X~,T-I - (T-1)) + b(T) ( ?$,T(T-3),2 - T(T-3)D). 

The method of analysis employs the “estimated parameter” approach advocated by Randles (1984). To 

this end, I use Randles’ (1984. Condition 1.10) regularity condition on the regression function, as follows. 

A2. Let K(0) be a neighborhood of 8 in R p. - For each y E K(8), assume that g;,(y) is differentiable uniformly 

in i and the gradient vector, a/@ gi,(y) is uniformly bounded in i. 

Implicit in A2, as noted by Randles, is that if gi, contains covariates then the covariate space is bounded. Now, 

for y E RP, define the perturbed errors, eit($ = git(t3) - git(y) + Oi ei,, SO that ei,(O) = C, UP to tti - & which, 

being merely location shifts, do not affect the subsequent analysis. We also need the perturbed ranks 
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&t(Y) = CT=* It%(Y) 5 ei,tY>) = XT,* I(ei, s eit + qi,r,t(y)) (4.5) 

where ni,r,t(Y) = (g,(e) - &r(y) - sir(e) + sir(y)] / oi. Note that pi ,i(y) = -‘tjitr(y). Similar to Section 3, * 7 1 , 

define Zi t ,(y) = 12 (Rit(Y) - m)&“(y) - m) / (T3 - T). The main work in proving Theorem 3 is in 1 > 

LEMMA 2. Under the assumptions of Theorem 3, for each t, u, 

n-in ( Ci zi,t,u(0) - z,,,,,(e) > - I(t=U) W,,(t) +p 0. 

Proof of Lemma 2: The lemma is a consequence of Theorem A.9 of Randles’ (1984). To verify the conditions 

of that theorem, first note that (4.2) and Assumption A2 satisfy Randles’ A.4 and Condition 1.10, respectively. 

Define the kernel of order 1 to be 

It is easy to see that the kernel is uniformly bounded (satisfying Randles’ A.8a). Now, following Randles’ 

notation, for K(0) in A2, let D(y,d) E RP be a sphere centered at y with radius such that D is contained in 

K(B). We wish to prove that there exists K>O so that 

qitd> z EO suPy ‘E D I h;(ei, y) - h&ei, y ‘) I 5 K d. (4.6) 

By A2, there exists K, > 0 such that sup Y sE D I git(y) - git(y ‘) I 5 Kt d. This, and since infi Cri > 0, implies 

that there exists K2 > 0 such that sup y tE D 1 rli,r,t(Y) - qi,r,t(Y ‘> 1 2 K2 d. From this ad (4.51, 

E, WY *E D 1 &,(I’) - &,(I’ ‘) 1 = E, WY ‘E D 1 C, ICei, 5 eit + Ti,r,ttY)> - ICei, s eit + Ti,r,t(Y ‘1) I 

’ E, supy ‘E D & d(r t) 3 . It lei, - eit 1 5 hi,r,t(Yl - 17i,r,ttY ‘>I 1 

’ % d(r t) I 9 Eu I( lei, - ei, I I K2 d ) 

2 (T-2) K, d. 

Recall that &&t) means the sum over r with distinct (r,t) . This and the triangle inequality are sufficient for 

(4.6). 
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We only need now calculate the gradient of Es hi(e;, y) = M;,“(y) and check that it is uniformly (in i) 

achieved at y = 8. First consider the case t=u. From (4.5), we have 

%t(y) - m = &,d(r,t) t1Ceir 5 eit + Ti,r,t(Y)) - l/2)- (4.7) 

Thus, 

Mi,tY) E Ee @it(Y) - ml2 

+ Ee &sd(rst) *, 3 (1 (I(ei, 2 ei, + qi,r,t(Y>> - lb9 Wei, s ei, + rli,s,t(Y)) - lf2) 

= tT-l)i4 + &,s,d.(r,s,t) Ee (We + Yi,r,t(Y)) - W CFte + Ili,s,t(Y)) - W. (4.8) 

Note that @/au> Ili,,,t(y) = (a/a) [gi,(y) - g,(y)]/Oi. By the chain rule, for fixed e, i, r, S, and II, we have 

= (F(e) -112) f(e) / oi @/aY> [f&,(Y) + i+,(Y) - ‘&&(Y)]~e- (4.9) 

Now take the vector derivative of (4.8). Since r and s are finite, an application of the Bounded Convergence 

Theorem, with A2 and (4.9), yields VM@) in (4.4). Showing that this is achieved uniformly in i is another 

application of the Bounded Convergence Theorem. 

For t#u, first recall that ~i,u,t = -‘$t,u and thus ICei,, 5 eit + rli,“,t(Y)) - l/2 = l/2 - ICeit 2 ei, + qi,t,u(Y))* 

Thus, from (4.7) 
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Ee Oii,tY)-m)(Ri,tY)-m) 

= Ee &d(r.t,u) Mei, 2 eit + “rli,rJtY)) - l/2) + Mei, 5 eit + Ili,“,ttY>> - l/2)1 

[=Mr,t,u) Nei, 5 eiu + Ili,r,utY>> - l/2) + tI(Q 2 eiu + r\i,l,qtY)) - l/2)1 

= Ee { &.d(r.t,u) (Itei, 5 ei, + Iii r t(Y)) - l/2)1 1 * [I, ,j (r t “) (Itei, 2 ei, + Ili,,u(Y)) - l/2)1 , , 91 

+ [Otei, 5 e;, + Ili,“,JtY)> - WI 

[=r,d,(r,t.u) (Itei, 5 eit + Ili,ttY)) - Itei, 5 ei, + Ili,r,“tY)>ll - l/4 

= Cr,d(r,t,u) Ee (ICei, 2 eit + qi,r,t(Y>> - l/2) (ICei, 2 eiu + Ili,rqu(Y)> - l/2)1 

+ Cr,s,d,(r,s,t) Ee (F(e + ‘Vi,r,t(Y)) - l/2) Ee(F(e + ‘Tli,r,u(Y)) - l/2) 

+ &,d(r.t,u) Ee Mei,, 5 eit + qi,u,t(Y)) - lLQ[F(eit + qi,r,t(Yl) - CF(e;, + Ti,r,u(Y)>l - 114. 

Since E, (F(e) - l/2) = 0, by the chain rule, we have 

(WY) IEe @i,(Y)-m)(Ri,(Y)-m)lFfj 

= ta/au> [&,d(r,t,u) Ee CItei, 2 eit + IJi,r,t(Y)) - l/2) (ICei, 2 ei,, + qi,r,u(Y)) - l/2) 

•t &.d(r t u) 3 . Ee (I(e;, 5 e;, + qi,u,ttY)) - l/2) O;te, + Ili,,t(Y)) - Fteiu + Ti,r,u(Y)))Iy=e 

= @iti) %.d(r,t,u) (E,((F(e + q&Y)) - l/2) (F(e + Ili,JY)) - l/2) 

+ (We + Ili,“,ltY>) - 14 (Fte + qi,r,,(Y)) - ln) 

+ (F(e + qi,t,g(Y)) - l/2) (F(e + Ili,r,,(Y)) - l/2))&e 

= (E, (F:(e) - l/2) f(e) / Oi) <W&9 [l&t(Y) + SJY) - 2SirtY) 

+ l&(Y) + k&(Y) - 2 &t(Y) + &t(Y) + &r(Y) - 2 SbtY)l,e 

= 0, 

since (WY) E, [(F(e + 77i,u,t(Y)) + F(e + ~i,~,,(Y))],e = 0. This establishes that the gradient of E q,,,,(Y) at 

~==8 is zero. The fact that it is uniformly achieved in ‘i’ can be established similarly to the case t=u. Q. E. D. 
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Proof of Theorem 3: From (4.3) and (3.1), we have 

n(Ri,E - a:VE) = (1 + o(l)) n-l Et,” I(& ii,t,u12 - CC, ii,t,u(8))2 - C& &,t,u2 - ‘i,t,u(o)2)I 

where &,,,(f?) = Zi,t,,(e) - E Zi,,,,(e). By Lemma 2, n-l Ci (ii,,,, - ii,,,(e)) jp 0. Similar arguments can be 

used to show that n-l Ci (ii,t,02 - ii,,,“(e)‘) +P 0. Thus, 

ntRivE - ai& = n-l I&u (C& Zi,t,+ - ~i,p(~>> C& 2i.t.u + &tqu(e>>I + Op(l> 

= I&” (I(t=u> W,,(t) + optl>> w,,to + w,,w + opU>) + optl> 

which, with A2, (4.2) and Lemma 2, is sufficient for the proof. Q. E. D. 
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