RESEARCH REPORT SERIES
(Statistics #1992-17)

Alternative Approaches to Length
of Month Adjustment

William R. Bell

Statistical Research Division
U.S. Census Bureau
Washington, DC 20233

Report Issued: May 7, 1992

Disclaimer: This series contains research reports, written by or in cooperation with staff members of the Statistical
Research Division, whose content may be of interest to the general statistical research community. The views reflected
in these reports are not necessarily those ofthe Census Bureau nor do they necessarily represent Census Bureau statistical
policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical
Research Division, Bureau of the Census, Washington, D.C. 20233



BUREAU OF THE CENSUS
STATISTICAL RESEARCH DIVISION REPORT SERIES

TECHNICAL NOTE SERIES, No. TN—92/01

ALTERNATIVE APPROACHES TO LENGTH
OF MONTH ADJUSTMENT

by

William R. Bell
Statistical Research Division
U.S. Bureau of the Census
Washington, DC 20233

This series contains research reports, written by or in cooperation with staff members of
the Statistical Research Division, whose content may be of interest to the general
statistical research community. The views reflected in these reports are not neceéssaril
those of the Census Bureau nor do they necessarily represent Census Bureau statistical
policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series
é Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C.
3 20233.

Report issued: May 7, 1992



ALTERNATIVE APPROACHES TO LENGTH OF MONTH ADJUSTMENT

William R. Bell
Statistical Research Division
U. S. Bureau of the Census

May 7, 1992



ALTERNATIVE APPROACHES TO LENGTH OF MONTH ADJUSTMENT

William R. Bell
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ABSTRACT

We consider two approaches to adjustment for length of month variation in
nonnegative flow time series observed monthly. One approach is to divide the observed
series value in each month by the length of that month and then multiply all series values
by the average length of month (30.4375). The other approach is to include length of
month as an explanatory variable in a regression model with ARIMA time series errors
(REGARIMA model), and then estimate and remove the length of month effect. For
additive models we observe that the two approaches will be different, and that arguments
can be made for either approach so that the choice between them may be a matter of
personal preference. For multiplicative models (additive models for the logged series), we
observe that the two approaches are approximately equivalent if and only if the estimated
length of month coefficient is approximately .035. Since this is also the value that would
be expected for the lehgth of month coefficient in a model for the logged series, we argue
that in multiplicative models one should adjust for length of month by division and then
rescaling, rather than by using an estimated term from a REGARIMA model.
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Let Y be a nonnegative flow time series observed monthly. Then Y could be expected
to vary according to the length of month t, which we denote as m,. Y may also be subject
to trading day and other variations (e.g. holiday variation). Two general approaches to
accounting and adjusting for length of month variation are (i) division by m,, yielding the
daily rate Yt /m., (which is then typically rescaled to the average month length of 30.4375
days) and (ii) inclusion of m, as a regression variable in a REGARIMA model, and
subsequent removal of the estimated effect. In the following, we compare these two

approaches and examine when their results would be approximately the same.

1. Additive Model
A general additive REGARIMA model is

6
Y, = fym, + iﬁlﬂiTit +xia+Z; (1.1)

where T,, through T, are trading-day variables as in Bell and Hillmer (1983), the x, vector
contains other regression variables and a the corresponding parameters (e.g. for holiday or
outlier effects), and Zt has mean zero and follows some ARIMA model. In some cases, the

x; a term will be absent from (1.1). Also, there may be no trading—day variation apart from
length of month, in which case ﬁl = ﬁ6 = 0 or we drop the 2 ﬁl 5t term from (1.1).

If we divide (1.1) by m, we get
6 p-
Y, /m, = f, + iilﬂi(Tit/mt) + (x{/m,) a+ Z;/m, . (1.2)

H the trading-day and x; o terms are absent from (1.1), then f is clearly the average daily

rate. This interpretation still holds with other regression variables in (1.1) as long as the



long-run averages of these variables divided by m, are zero, so that these new variables are
asymptotically orthogonal to the constant term. The long-run averages of the Tit /mt
variables, which are the proportion of days in month t that are Mondays minus the
proportion that are Sundays, etc., are in fact zero.

Comparing (1.1) and (1.2), we see two basic differences. The first is the change in the
regression variables from (1.1) to (1.2). One concern about (1.2) may be interpretation. The
interpretation of the Tit /mt is straightforward, but some Xt /mt variables may not have a

natural interpretation. (One regression variable for which interpretation after dividing by
()
m, is not a problem is the additive outlier indicator variable, AOt 0 , whichis 1 fort = tg

and is 0 otherwise, since AO?O) /mt is just a rescaling of AOitO).) Also, notice that if we
difference (1.2), we will annihilate f; and hence will not be able to explicitly estimate it, nor
will we need to. If we difference (1.1), we do not annihilate fym, and still need to explicitly
estimate ﬂo. (There is no natural value for ﬁo in the additive model; this will vary from
series to series.) Notice if the model for Z /m, involves differencing, then (1.2) accounts for
length of month effects with one less parameter than does (1.1).

The second basic difference between (1.1) and (1.2) is the ARIMA modeling of Z, in

m
(1.1) versus the ARIMA modeling of Z,/m, in (12). Let Z, = Etzit where Z., is the daily
i=1

flow series with means removed. If Z;, is ii.d. then Var(Z,) = m, Var(Z;) and Vaz(Z, /m,)
= m{l Var(Z;,). In more general settings, it may also be reasonable to assume
autocovariances of Z, are proportional to m, , and so those of Z, /mt are proportional to mgl.
In both cases there is a time dependence in variances and autocovariances which could be
accounted for by modeling Z, / (mt)ll 2 instead. Since the variation in m, is small, this may
not make much difference. Also, except for leap year Februaries, the variation in m, is

perfectly-seasonal, and so could be confounded with seasonal fluctuations in variance that

might arise from other sources. For the remainder of this note, we shall assume that the



effects of dividing by m, or not on the autocovariance structure of the series are negligibly
different from a constant rescaling.

Though (1.1) and (1.2) should be at least approximately consistent with each other as
models for Y,, they suggest different length of month adjustments. (1.1) naturally suggests
the additive length of month adjustment, Y, — f(m, — m), where m = 30.4375 is the average
month length. (1.2) naturally suggests taking mY ;/m, as the length of month adjusted
series. (The rescaling by m is to maintain the average level of the series. We take up this
adjustment again in the next section. Note we can use (1.2) multiplied by m as a model for
the adjusted series; the relevant statistical properties are unchanged by the rescaling by m.)
One could argue that the additive adjustment, Yt - ﬁo(mt —m), is the more natural when
using models with additive effects as in (1.1) and (1.2). On the other hand, this adjustnient
requires estimation of the parameter ﬁo, whereas taking mY /m does not. In the end, the

choice between these two approaches to length of month adjustment might depend on

personal preference.

A multiplicative version of (1.1) is

Y = exp[fym, + E ﬂl i T XialZ, . (2.1)

On taking logarithms of this we have

6
log(Y,) = fym 1;+ E ﬁl it T Xpa +log(Z,) . (2.2)

Dividing (2.2) by m, gives



6
108(Yt)/mt = ﬂo + iﬁlﬂi(Tit/mt) + ({{é/mt)g + lOg(Zt)/mt (2.3)

Notice (2.2) and (2.3) are analogous to (1.1) and (1.2), so our previous remarks about (1.1) .
and (1.2) apply to (2.2) and (2.3). The remark about the effect on autocovariance structure

of dividing by m, applies if Zit is a multiplicative daily effect so Zt = thx Y/ and

m,.t
T4

log(Z,) = X log(Z;,). We shall again assume dividing by m, has effects on autocovariance
i=1

structure that are negligibly different from a constant rescaling.
The individual regression terms in (2.1) can be converted into multiplicative form. For

. Bomy By . .
length of month, this is e =[e 7] ". If B;is not large (and it shouldn’t be, for reasons

seen subsequently) then eﬁ0 81+ f;and eﬂomt s(1+ ﬂo)mt. We see (1 + ﬂo)mt functions
as a compounding factor, with 1 + ﬁo giving an "average" proportionate increase in the series
day. Thus, 100ﬂ0 is the average percentage increase each day.

An alternative to (2.1) — (2.3) is to start with regression effects as in (1.1) for ﬁlYt/mt,

but in a multiplicative structure, i.e. .

_ 6
mY, /m, = exp[f, + izlﬂiTit + x;alZ, (2.4)

Here m = 30.4375, the average month length, is incorporated as a rescaling factor to avoid

changing the overall level of the series. Taking logarithms in (2.4) gives
- 6
log(mY, /m,) = §, + -ElﬂiTit + x{a+ log(Z,) . (2.5)
1=

We now examine under what circumstances (2.4) — (2.5) may be regarded as approximately

consistent with (2.1) — (2.3). We examine this question two ways.



2.1 Approximation 1
Notice that

log(mY, /m,) = log(Y,) + log(m/m.,)
= log(¥,) - log(m, /)
= log(Y,) —log[1 + (m, — m)/m]
% log(Y,) ~ (m, —m)/m
= log(Y,) ~m,/m + 1 (26)

using a one term Taylor series to approximate log[1 + (m, —m)/m]. The accuracy of this

approximation can be seen in the following table.

m, 28 29 30 31.
log(m/m,) .0835 0484 0145 ~.0183
1-m, /m .0801 0472 0144 ~.0185

The approximation is excellent for months other than February, and appears adequate for
most purposes in February as well.

The additive constant 1 in (2.6) is immaterial for modeling purposes (but not for
scaling) since it will be annihilated by differencing. Apart from this, (2.6) shows taking
log(mY,/m,) is approximately the same as taking log(Y,)+1 — f;m, as implied by (2.2) if
and only if 4 is approximately 1 [m = .0829. Notice that, to avoid level differences, we take
log(Y,) + 1 -. 0329m,, and not just log(Y,) —.0329m,, because the long term average of
1 -.0329m, is zero. In the original scale we take Ytexp{l —.0329m,] and the average effect
on the level is the long-term average of exp[1 — mt/ﬁ], which is about 1.0004, or
approximately 1. Hence, the level in the original scale is not altered, on average, by taking
Yt exp[l - m, /m]. If instead we wish to estimate 9, and then use BO to adjust for length of



month, we should take log(Y,) + 1 - Bomt (not just log(Y,) ~ Bomt) and, in the original
scale, Ytexp[l—ﬁ0 mt], to keep the scaling consistent with that of ﬁlYt [m,.

Suppose our model involves seasonal differencing. Taking A12 of (2.5) annihilates ﬂO’
leaving no trace there of the length of month effect. Taking A,, of (2.2) suggests taking
A 12103('&!1;) — fyAm, to remove length of month effects from the seasonally differenced
data. Notice A12mt is nonzero only in leap year Februaries and the following Februaries,
and Alzmt = A12LFt where LF, is the "leap February variable" used in REGARIMA.

Now notice that

Aqq log(mY,/m,) = A, log(Y,) + log(m,_,,/m,) + A, log(m)
= Ay, log(Y,) + log[l + (m;_;o-m,)/m,] +0
8 Ay, log(Y,) + (my_;,-m,)/m,

-1/29 t - leap Feb.
= Ay, log(Y,) + { 1/28 t-12 - leap Feb.
0 otherwise

# Ay, log(Y,) - .035A,,m, (2.7

where a one term Taylor series is used to approximate log[1 + (m;_;, —m,)/m,] and we use
1/29 = .03448 » .035 and 1/28 » .03571 » .035. The Taylor series approximation is exact in
all months other than February (since then A, m, = 0) and gives —1/29 and 1/28 instead of
log(28/29) = —0351 and log(29/28) = .0351 in leap year and the following Februaries,
respectively. We see (2.7) implies approximately the same length of month adjustment as
(2.2) if and only if ﬁo = .035. This is a very slightly different value from .0329, the required

value of ﬁo for the approximation in section 2.1.



The approach here could also be used with a nonseasonal difference A in place of A12,

but the resulting Taylor series approximation is less accurate than that of section 2.1.

ve expect for 5.

Consider (2.1). If there is no trading day variation present, and no other regression
effects, then Y, # 1+ ﬁo)mt Zt’ since exp(ﬂo) ¥ 14 ‘60 if ﬂo is not large. Ift corresponds to
a leap—year February then

Yi/Yy 198 (14 Bp)2y/Z 19
If all other things are equal and log(Zt/ Zt—lz) is stationary, we would expect Z,/Z, ;, to be
around 1 "on average", and would expect Yt to proportionally exceed Yt—12 according to the
lengths of months ¢ and t-12; that is, we would expect 1 + ﬂo 8 m, /mt_12 = 29/28. This
implies £, = 1/28 » .085. If t were the February after a leap year, then we get (1 + ﬁo)"l %
m, /mt__12 = 28/29 also implying ﬂo = 1/28. These relationships also make sense in more
general models: if other regression effects are present, they should be explained with other
regression variables and so do not affect the interpretation of 1 + ﬂo, and if there are
stochastic nonstationarities present, these should be part of both Z, and Yt 1+ ﬂo still
reflects the relative magnitude as above). Year-to—year comparisons of other months yield
no information about ﬂo, and comparing different months with different lengths is more

complex since there would be a confounding with seasonal effects.

3. Conclusions

Length of month effects in a time series Y, can be modeled and adjusted for using a
term fym, in a REGARIMA model. With an additive model (a REGARIMA model for Y,)
we can subtract ﬁo(mt -m) from Yt to adjust for length of month, where BO is the estimate
of f;. With a multiplicative model (a REGARIMA model for log(Y,)) we can take



log(Y,) + 1- Bomt, or Y expl[l - Bomt] on the original scale, to adjust for length of month.
Alternatively, we can adjust for length of month effects by a simple division by m, and
rescaling, i.e. taking iﬁYt /mt. In this note we have compared and contrasted these two
approaches.

In the additive model the two approaches to length of month adjustment will lead to
different results, although the resulting models, (1.1) and (1.2) multiplied by m, should be
approximately consistent with each other. Arguments can be made for both approaches; the
choice between the two maj be a matter of personal preference.

In the multiplicative model, on the other hand, taking iﬁYt / m, has approximately the
same effect as taking Ytexp[l - f@omt] if and only if f@o % 1/m » .035. This is also the
approximate value we would expect for ﬂo in the multiplicative model anyway. An argument
can be made for preferring division by length of month in this case on the grounds that if
modeling length of month effects with a ﬂomt term yields very different results, then
believing these results places great faith in the model that is probably unwarranted. Notice
that estimates of §j in (2.2) or (2.3) can deviate from .035 due to various model failures as
well as to simple estimation error. Among possible model failures is omission of needed
regression terms from the model, since such omissions are known to bias the estimates of the

regression parameters that are in the model.
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