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Abstract: It is demonstrated, using transportation theory, that controlled selection can be used 
to solve the following sampling problem. Sample primary sampling units (PSUs) are to be 
selected with probability proportional to size for two designs, both one PSU per stratum, denoted 
as D, and D, The universe of PSUs is the same for each design but the stratifications are 
different. The goal of the problem is to simultaneously select the sample PSUs for the two 
designs in a manner which maximizes the expected number of PSUs that are in both samples. 
This procedure differs from previous overlap procedures in that it yields a better overlap, but is 
only applicable when the two samples can be selected simultaneously. An important special case 
occurs when the probability of selection for each PSU in D, does not exceed its probability of 
selection in D,. The procedure can then guarantee that the D, sample PSUs are a subset of the 
D, sample PSUs. A proposed, but since cancelled, expansion of the Current Population Survey 
would have been a potential application of this special case, which is discussed. Variance 
formulas for estimators of total under the controlled selection procedure are also presented. 

Key words: Controlled selection; Current Population Survey; maximizes; overlap; stratification. 



1. Introduction 

Consider the following sampling problem. Primary sampling units (PSUs) are to be selected for 

two designs, denoted as D, and D,, both of which are one-PSU-per-stratum designs. The 

selection of sample PSUs for each design is to be with probability proportional to a measure of 

size which need not be the same for the two designs. The universe of PSUs is the same for both 

designs, but each is stratified independently. The sample PSUs in D, are required to be a subset 

of the sample PSUs in D,. This necessitates the following assumption: 

The probability of selection for each PSU in D, does not exceed the probability 

of selection of that PSU in D,. 

In this paper we demonstrate how the two-dimensional controlled selection procedure of Causey, 

Cox and Ernst (1985) can be used to satisfy all the conditions of this problem, that is: 

There is one sample PSU selected from each D, and D, stratum, with the required 

probabilities. (l-2) 

Each D, sample PSU is a D, sample PSU. (1.3) 

A particular application of this procedure to a proposed expansion of the Current Population 

Survey (CPS), which motivated this work, is presented in Section 6. Plans for this expansion 
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have since been dropped for budgetary reasons. Some readers may wish to read the beginning 

of Section 6 before proceeding further, to obtain an understanding of this motivation, 

After developing this procedure, this author became aware of a more general result by Pruhs 

(1989), who considers the same problem without the assumption (l.l), in which case (1.2) and 

(1.3) cannot, in general, be satisfied simultaneously. Instead, using a graph theory approach, 

Pruhs presented an algorithm for which (1.2) is satisfied and the following additional condition 

holds: 

The expected value for the number of sample PSUs common to the two designs 

is maximized and the actual number in common for any sample is always greater 

than the expected value minus one. (14 

Thus, Pruhs viewed the problem as one of maximizing the number of sample PSUs common to 

the designs when the sample PSUs are chosen for the two designs simultaneously. Previously, 

Causey, Cox and Ernst (1985), and Ernst (1986) presented optimal linear programming 

procedures for maximizing the number of sample PSUs in common to two designs when the two 

sets of sample PSUs are chosen sequentially. In general, choosing the two samples 

simultaneously permits a larger expected overlap, but in many applications it is not possible to 

select the samples simultaneously, such as when the two designs are for the same periodic 

survey, but the second design is a redesign of the first design done at a later date. 
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It is shown here that the problem considered by Pruhs can also be solved by the controlled 

selection procedure of Causey, Cox and Ernst (1985). This approach has two advantages over 

Pruhs’ approach. The controlled selection approach involves solving a sequence of transportation 

problems. Software is readily available which can solve transportation problems, and the 

remainder of the controlled selection algorithm is easily programmable. In addition, the proof 

that the controlled selection procedure satisfies the required conditions is not difficult. In 

contrast, both the theory and the task of programming the algorithm with Pruhs’ graph theory 

approach appears to be much more complex. 

In Section 2, a brief review of the procedure of Causey, Cox and Ernst is given. In Section 3, 

the formulation of the stated sampling problem as a controlled selection problem is presented. 

The presentation will first be for the more general problem in which (1.1) is not assumed. It will 

then be shown, quite simply, that with assumption (l.l), a special case of the general problem 

arises for which (1.3) is satisfied. In Section 4, methods for avoiding some difficulties caused 

by rounding error in using this procedure are described, together with an illustrative example. 

In Section 5, formulas for the between PSUs variances for both designs for the usual estimator 

of total corresponding to probability proportional to size sampling are presented for the controlled 

selection procedure. Finally, in Section 6, an application of the procedure to the proposed 

expansion of the CPS is considered, which includes an empirical comparison, for each design, 

of between PSUs variances for controlled selection and three other procedures for selecting the 

sample PSUs for the expanded sample. 
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2. Review of Controlled Rounding and Controlled Selection Concepts 

The concepts of zero-restricted controlled rounding and controlled selection are briefly reviewed 

here. The reader is referred to Cox and Ernst (1982), and Causey, Cox and Ernst (1985) for 

more details and motivation on this subject, and for other references. 

An (m+l)x(n+l) array, A=(a$, is said to be a tabular array if 

m 

c a.. B = a(m+l>i) j=l,...,n+l, 
i=l 

n 
c a.. = a. 
j=l ’ 

r(n+l)~ i=l ,...,m+l. 

Such an array can be represented in the form 

a11 
. . . 

aln 

. . . 

. . . . 

. . . . . 

amI 
. . . a mn 

al(n+l) 

. 

. 

. 

am(n+l) 

a(m+l)l ’ ’ * a(m+l)n ‘(m+l)(n+l) 
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with the internal, row total, column total and grand total cells clear from this diagram. 

A zero-restricted controlled rounding of an (m+l)x(n+l) tabular array, A=(a$, to a positive 

integer base b is an (m+l)x(n+l) tabular array, R(A) = (r$, for which 

rG = h+.+bJb or faij/blb for all ij, 

where LxJ, 1x1 denote the greatest integer not exceeding x and the smallest integer not less than 

X, respectively. If no base is stated, base 1 is understood. 

By modeling the controlled rounding problem as a transportation problem, Cox and Ernst (1982) 

obtained a constructive proof that a zero-restricted controlled rounding exists for every two- 

dimensional tabular array. 

If S=(,sij) is an (m+l)x(n+l) tabular array, a solution to the controlled selection problem S is 

a finite sequence of arrays, Nl = (niil), N2 = (n&,..., Nr = (n$, and associated probabilities, 

pl,...,pI, satisfying: 

Nk is a zero-restricted controlled rounding of S for all k, (2.1) 

I 

t: pk = 1, 
k=l 

(24 

I 
E(ngk 1 i,]> = c ngk pk = sq i=l)...) m+l, j=l ).q.) n+l. (2.3) 

k=l 
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If S arises from a sampling problem for which sg is the expected number of sampling units 

selected in each cell, and the actual number selected in each cell is determined by choosing one 

of the Nk’s with its associated probability, then by (2.1) the deviation of sij from the number of 

sampling units actually selected from cell (k~) is less than 1, whether (i,j) is an internal cell or 

a total cell. By (2.3) the expected number of sampling units selected is Sij. 

In Causey, Cox and Ernst (1985), a solution to the controlled selection problem is obtained by 

computing the sequences Nl,...,Nl and pl,...,pl as follows. For fixed k, to obtain Nb pk begin 

with the (m+l)x(n+l) tabular array Ak = (a&, which is computed as described below. Then Nk 

is simply a zero-restricted controlled rounding of Ak To define pk first let 

dk = max{ 1 ngk - agkj : i=l,...,?n+l, j=l,...,n+l}, 

and then let 

pk = 1 - dk if k=I 

k-l 
= (1-c pi) (1sdk) if k>l. 

i=l 

(24 

(2.5) 

Finally, to compute A, let A, = S and for k>l, obtain A, recursively from A,,, Nk-1, d,, by 

letting for all ij, 

aijk = nij(k-l) + (‘ij(k-1) - ng(k-l$idk-l * (2.6) 



-- P ijua =P(Bgu E Ga 3 a=1,2, and let Piju3 = min{Pij,l, Piju2>. Finally, for i=l,... m’, j=l,..., n’, 
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It is shown in Causey, Cox and Ernst (1985) that there is an integer I for which dl = 0 and that 

this terminates the algorithm; that is N1,...,N1 and pl,.,.,pz satisfy (2.1)-(2.3). 

3. The Controlled Selection Procedure for Selection of Sample PSUs 

The procedure begins by construction of an (m+l)x(n+l) tabular array, S, for which a sequence 

of arrays, N1,...,Nk and associated probabilities, pl,...,p~ satisfying (2.1)-(2.3) lead to a solution 

of the problem described in the Introduction. To construct S, let m’, n’ denote the number of 

strata in D, and D,, respectively, and let m=m’+l, n=n’+l. Let G1, G2 denote the random sets 

consisting of all sample PSUs in D, and D,, respectively. For i=l,...,m’, j=l,...,n’, let tij denote 

the number of PSUs in both the i-th D, stratum and j-th D, stratum; let Biju denote the u-th such 

PSU, u=l,...,tij; and let T denote the set of all triples (i,j,u). For (ij,u) ET, let 

let 

4) 
s.. = 

11 c P.. l)U3’ 
u=l 

, t . . 

Smj=l-~ ~ pan, 

i=l u=l 



'ij 

%l =1-g c P&&J, (3.3) 
j=l u=l 

and let S=(s$ denote the (m+l)x(n+l) tabular array with internal elements defined by 

(3.1)-(3.4). Note that the marginal values for S are as follows: 

si(n +l) = 1, i=l,..., m’, s(m+lp = 1, j=l,..., It’, 

Sm(n+l) = n’ - c P-* 
(ij,u)ET @’ 

(3.5) 

(3.6) 

(3.7) 

s(m+l)(n+l) = m’+ n’ - C Piid. 
(Uu)ET 

(3.8) 

Interpretation of the array Swill now be provided. For i=l,...,m’, j=l,...,n’, sii is the probability 

that a PSU in the i-th D, stratum and j-th D, stratum is in G,flG,, while Smj is the probability 

that a PSU in the j-th D, stratum is in G,- G,, and Sin is the probability that a PSU in the i-th 

D, stratum is in G, -G,. Thus, cells (i,j) for which ism’, jsn’ correspond to the selection of 

PSUs that are in sample for both designs, while internal cells in row m correspond to the PSUs 

in G,-G, , and similarly, internal cells in column n correspond to PSUs in G, -G, . 
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As for the marginals (3.5)-(3.8), (3.5) arises because D, and D, are one-PSU-per-stratum 

designs. (3.6) is the expected number of PSUs in G,- G,, with an analogous interpretation for 

(3.7). (3.8) is the expected number of PSUs in G,lJG2. 

After computing, using the controlled selection algorithm described in Section 2, a set of arrays, 

Nk and associated probabilities, pk k=l,..., , I satisfying (2.1)-(2.3), the selection of the sample 

PSUs for the two designs is a two-step process. First one of the Nk’s is selected. The internal 

cells of Nk are either 0 or 1. A 1 in a cell (i,j) with ism’, jsn’, indicates BijuEGInG2 for a 

single u=l,...,tij. Among the tij such PSUs, one is selected at the second step with conditional 

probability 

P(BduEG, n G, 1 n,=l) = Piid/sp u=l,...,tg. 

A 1 in a cell (m,j), j=l,...,n’, indicates that the PSU selected for G, from the j-th D2 stratum is 

I 

not in G,. Among the 5 tij PSUs in the j-th D, stratum, one is selected at the second step 
i=l 

with conditional probability 

P(BguEG,-G, 1 nmjk=l) = <pii~-P~~)/~~p i=l,...,m’, U=l,...,tij. (3.10) 
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An analogous expression holds for a 1 in an internal cell in column n. 

This two-step procedure just described satisfies (1.2) and (1.4). To establish (1.2), first note that 

clearly, by (3.5), there is exactly one PSU from each Di stratum in Gi, i=1,2. To show that each 

PSU is selected into the G, and G, samples with the correct probabilities, observe that by (2.3) 

(3.9) and (3.10), it follows that for each (ij,u)ET, 

P(BpEGl II G2) = P(ndkk=i) P(B,iuEGl n 

Consequently, P(BpE G2) = Pud. Similarly, it can be shown that P(BiiuEGi) = Piiul . Hence, 

(1.2) holds. 

To establish (1.4), first note that for any selection procedure satisfying (1.2), 

P(B+EG, n G2) s Pijd, (ij,u)E T, 

and hence 

E[card (G1 n G2)1 s C 
(ij,u)ET 

pijd. 

Then (1.4) follows, since for the controlled selection procedure, (2.3) and (3.1) yield 
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m’ n’ 

E[card (Gl n G2)] = c c E(nqk 1 ij) = c Piid, 
i=l j=l (ij,u)ET 

and (2.1), (3.5) (3.6) yield 

m’ n’ 

card (G1 fl G2 INk) = c c niik = It’ -nm(n+l) > c Piid -1, k=l,...,Z. 
i=l j=l (ij,u)ET 

Finally, to show (1.3) holds for this procedure with the additonal assumption (l.l), simply 

observe that if Piiul s Piju2 for all (ij,u)ET, then by (3.3), 

, t . . 

%l = 1 -e 2 Paul= 0, i=l,..., m’, 
j=l u=l 

and hence Gl - G2 = 8 for all G,, G2. Note that in this case, the n-th column can be omitted 

in defining S. If this is done and n is redefined to be n’, then (3.1)-(M) would remain 

unchanged with the exception of (3.3), (3.4) and (3.7) which would no longer be defined. 

4. Overcoming Rounding Error Problems 

In implementing the procedure described in Section 3, some programming difficulties relating 

to rounding error arose in the solution of the controlled selection problem (2.1)-(2.3) which 

subsequently were resolved by adding some additional steps to the procedure. Since the solutions 
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to these problems are not obvious, they are presented here along with an example illustrating 

relevant portions of the procedure. 

As background, the input to the software that performs the zero-restricted controlled roundings 

must be an integer array, which can be rounded to any positive integer base. To use this 

software to obtain a zero-restricted controlled rounding of a real-valued array, Ak=(a& to the 

base 1, proceed as follows. Express (aij& in the form (a&/b& where aik is an integer for each 

i,j,k and bk is a positive integer. Obtain a zero-restricted controlled rounding Ni=(nbk) of 

A;=($& to the base bk. Then Nk =(n&/bk) is a zero-restricted controlled rounding of Ak to the 

base 1. 

For example in Figure 1, rounding the array &Al to obtain Nl would be the first step in solving 

the controlled selection problem S. (This example is for the special case described in the last 

paragraph of Section 3. Here the internal cells in rows 1-3 and row 4 correspond to (3.1) and 

(3.2), respectively; the row and column marginals with value 1.000 correspond to (3.5); the row 

4 marginal to (3.6); and the grand total to (3.8)). Instead of directly rounding A1 to the base 1, 

each element in A1 is first multiplied by b,=lO,OOO to obtain an integer array, A\=(abk), whose 

internal cells are less than 10,000. (In general b, is the smallest integer power of 10 that yields 

an integer array, A; .) Next round A; to the base b, to obtain an array N; =(n$, whose internal 

elements are 0 or 10,000. Then divide by 10,000 to obtain N1 in Figure 1. 
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0.0000 0.0000 0.2067 0.7933 0.0000 1 .oooo 

0.3528 0.1922 0.0000 0.0000 0.4550 1 .oooo 

S=A,= 0.4224 0.2645 0.3131 0.0000 0.0000 1 .oooo 

0.2248 0.5433 0.4802 0.2067 0.5450 2.0000 

1.0000 1.0000 1.0000 1.0000 1 .oooo 5.0000 

0 0 0 1 0 1 

0 0 0 0 1 1 

Nl = 1 0 0 0 0 1 

0 1 1 0 0 2 

1 1 1 1 1 5 

Figure 1. Rounding of S=A, 

The software that obtains the zero-restricted controlled rounding A?i of Ai uses only integer 

arithmetic, and consequently no rounding error can occur during this step of the procedure. 

However, two other types of rounding problems did occur for this example. First, when S was 

initially computed in the illustrative example, the array S in Figure 1 was not obtained, but 

instead, due to rounding error in the computation of the cell entries, the array S*, presented in 

Figure 2, was obtained. 

0.0000 0.0000 0.2067 0.7933 0.0000 1.0000 

0.3528 0.1923 0.0000 0.0000 0.4550 1.0001 

s* = 0.4225 0.2645 0.3131 0.0000 0.0000 1 .OOOl 

0.2248 0.5433 0.4802 0.2067 0.5450 2.0000 

1.0001 1.0001 l.tXKJO 1.0000 1.oooo I 5.0002 
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0.000000 0.000000 0.206717 0.793282 0.000000 

0.352783 0.192262 0.000000 0.000000 0.454954 

s 
** 

= 0.422456 0.264462 0.313082 o.oooooo 0.000000 

0.224759 0.543275 0.480201 0.206717 0.545046 

.999999 

.999999 

1 .oooooo 

1.999998 

0.999998 0.999999 1 .oooooo 0.999999 1.000000 1 4.999996 

0 0 206700 793300 0 

352800 192200 0 0 455000 
*** 

N = 422400 264500 313100 0 0 

224800 543300 480200 206700 545000 

1000000 1000000 1000000 1000000 1000000 

1000000 

1000000 

1000000 

2000000 

5000000 

Figure 2. Overcoming Rounding Error in Computation of S 

The fact that not all row and column totals in S* have only O’s after the decimal point can result 

in failure to meet the requirement that there be exactly one PSU in Gi from each Di stratum, 

i=1,2. For example, if S* was used to initiate the controlled selection process, and no further 

rounding errors occurred in the procedure, then the second row total of 1.0001 would result in 

two PSUs being selected into G, from that D, stratum with probability .OOOl. 

To convert from S* to S and thus avoid this problem, proceed as follows. First a new array S** 

in Figure 2 is obtained by carrying 6 decimal places instead of 4, with the 6th place truncated. 

The reason for the choice of 2 extra places for this example is that, since there are fewer than 

100 internal cells, this insures that all marginals, including the grand total, will be within .OOOl 



15 

of the desired values. The truncation in the last place insures that none of the marginals exceed 

their desired values. 

Next multiply S** by lo6 to obtain an integer-valued array, S***, which is omitted from 

Figure 2. Then obtain a zero-restricted controlled rounding N*** of S*** to the base 100 in 

Figure 2, with N*** satisfying the additional constraint that its grand total is 5,000,000, rather 

than 4,999,900, thereby also forcing all other marginals in N *** to be multiples of 106. (The 

fact that a feasible solution exists to a rounding problem with this additional constraint on the 

grand total was established by Cox and Ernst (1982).) S in Figure 1 can then be obtained from 

N *** by dividing by 106. 

The second rounding error problem for this example occurred in the recursive computation ofAk 

for k>l, which can result in rounding error if Ak is computed using real or even double precision 

arithmetic. To illustrate for the example in Figure 3, the array A2 with rounding error was 

obtained from A1 and NT by converting both arrays to double precision, dividing the elements 

of these arrays by 10,000 and then computing A2 from (2.4) and (2.6) in double precision 

arithmetic and rounding to four places. 

0.0000 0.0000 0.3579 0.6421 0.0000 

0.6108 0.3328 0.0000 0.0000 0.0564 

0.0000 0.4579 0.5421 o.oooo 0.0000 

0.3892 0.2093 0.1001 0.3579 0.9436 

1 .oooo 1 .oooo 1.0001 1.0000 1.0000 

Figure 3. A2 with Rounding Error 

1 .oooo 

1 .oooo 

1 .oooo 

2.0001 

5.0001 
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This rounding error problem can be avoided by performing the recursive computation in a 

different manner. For k>l, Nk is obtained by computing integers, bk, and integer arrays, 

A; =(a&) and Ni =(n$, from bkml, Akel, NL-l, using integer arithmetic only, as will be 

described, and then letting 

Nk = (n$b& . (4.1) 

b,, A’r, N; are obtained as described earlier in this section, with bl=lO,OOO for this example. 

For k>l let 

bk= mix{ jnk(k-1) - a&l)I : i=l,..., m+l, j=l,..., n+l} (4.2) 

abk = (nj)(k-l)/b(k-l)> bk + a;(k-1) - n&(k-1) 9 (4.3) 

with only integer arithmetic used in the computation of (4.2) and (4.3). Then let NL be a zero- 

restricted controlled rounding of A; to the base bk 

It can readily be shown that computing the sequence Nl,...,Nz in this manner is equivalent to 

obtaining this sequence from (2.4) and (2.6), except that using (4.2) and (4.3) avoids rounding 

error and thus the marginals of Nl,...,Nz computed from (4.2), (4.3) are always the same as the 

marginals of S. The fact that 

can be used in establishing the equivalence of the two methods of computing Nl,...,Nz . 
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Rounding error also can be avoided in the computation of the sequence of probabilities pl,...,pz 

using the following approach. (2.5) can be rewritten as 

pk = (1 -d,) if k=l 

(l-d& if k>l , (4-5) 

where a recursive proof can be used to establish the equivalence of (2.5) and (4.5). Then (4.4), 

(4.5) yield 

bk-bk+l 
& = 

bl 

, krl. 

Thus, for the illustrative example, since bl pk can be obtained without rounding error 

by computing the four digit integer bk - bk+l, with possible leading O’s, and placing a decimal 

point in front of the integer. 

Note also that Z is the first integer k for which bk+l=O. 

For the example, Z=6, Ai-Ai and Ni-Ni are presented in Figures 4 and 5, respectively, while 

b2=5776, b3=4567, b4=2500, b5=578, b6=252, p1=.4224, p2=.1209, p,=.2067, p4=.1922, 

p5=.0326, p6=.0252. N2 -Ns are omitted, but can be obtained by using (4.1). 



A; = 

A; = 

A& = 

A; = 

A; = 

18 

0 0 2067 3709 0 

3528 1922 0 0 326 

0 2645 3131 0 0 

2248 1209 578 2067 5450 

5776 5776 5776 5776 5776 

0 0 2067 2500 0 

2319 1922 0 0 326 

0 2645 1922 0 0 

2248 0 578 2067 4241 

4567 4567 4567 4567 4567 

0 0 0 2500 0 

252 1922 0 0 326 

0 578 1922 0 0 

2248 0 578 0 2174 

2500 2500 2500 2500 2500 

0 0 0 578 0 

252 0 0 0 326 

0 578 0 0 0 

326 0 578 0 252 

578 578 578 578 578 

0 0 0 252 0 252 

252 0 0 0 0 252 

0 252 0 0 0 252 

0 0 252 0 252 504 

252 252 252 252 252 

Figure 4. A;-A~ 

5776 

5776 

5776 

11552 

28880 

4567 

4567 

4567 

9134 

22835 

2500 

2500 

2500 

5000 

12500 

578 

578 

578 

1156 

2890 

1260 



N; = 

N; = 

N; = 

19 

0 0 0 5776 0 

5776 0 0 0 0 

0 0 5776 0 0 

0 5776 0 0 5776 

5776 5776 5776 5776 5776 

0 0 4567 0 0 

4567 0 0 0 0 

0 4567 0 0 0 

0 0 0 4567 4567 

4567 4567 4567 4567 4567 

0 0 0 2500 0 

0 2500 0 0 0 

0 0 2500 0 0 

2500 0 0 0 2500 

2500 2500 2500 2500 2500 

N; = 

N;, = 

5776 

5776 

5776 

11552 

28880 

4567 

4567 

4567 

9134 

22835 

2500 

2500 

2500 

5000 

12500 

0 0 0 578 0 578 

0 0 0 0 578 578 

0 578 0 0 0 578 

578 0 578 0 0 1156 

578 578 578 578 578 2890 

0 0 0 252 0 252 

252 0 0 0 0 252 

0 252 0 0 0 252 

0 0 252 0 252 504 

252 252 252 252 252 1260 

Figure 5. N;-& 
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5. Variances for the Controlled Selection Procedure 

In this section, variance formulas are derived for estimators of total for both designs for the 

sampling procedure detailed in Section 3, under the assumption that a census is conducted in the 

sample PSUs. If the sample PSUs are subsampled, then these formulas represent the between 

PSUs component of variance. Let X denote the total value over the entire population for a 

characteristic of interest and let Xdu denote the total for PSU Bou for each (ij,u)ET. For 

a=1,2, let Xa denote the usual estimator for X for design a corresponding to probability 

proportional to size sampling, that is 

where the summation is over all (i,j,u) such that ByuEGa. For (i,j,u), (i*j*,u*)ET, (i,j,u) # 

(i*,j*,u*), a = 1,2, let 

JGgui*j*u*a = P(Bou, Bi *j l I( *E GJ . 

Finally, for each ij,i : j * for which km, i *sm, jsn, j *sn, let riji*j* = P(nvk = ni*j*k = 1). 

Note that r iii*j* is the sum of pk over all k for which n# = nidcj*k = 1. 
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Then from Raj (1968, p. 54), 

v(2a) = ; c (Piiua Pi*j*U*a - x~ui*j*u*a) 
(ij,u),(i �j *,u l ) ET 

(ij,u)t(i *j *,u l ) 

Consequently, it is only necessary to show how to compute Jl;ijui*j*u*a for each 

(iJ,u), (i *, j *,u *)ET, (ij,u)z(i *,j *,u *). TO do this for a=2, first observe that ~~ui*j*u*2=0 

if j=j*. Consequently, it may be assumed from now on that j*j*. Then to obtain “ijui*j*u*2, 

observe that both Biju and Bi*j*u* can be in G2 if, for some k, either 

?jk = ni*j*k = 1, nmjk = ni*j*k = 1, ngk =5 n,j*k = 1 or nmjk = ?Z,j*k = 1, 

which combined with (3.9) and (3.10) yield the four terms in the following expression: 

p.. 
x.. yui *j l u ‘2 

= LJd r...*.. - 

Pi *j l u *3 

111 I 
%j 

S.+.* 
11 

+r 
&jl# -Pij~) ‘i l j *u ‘3 

mji l j * 
smj s.+.* 11 

P ~~ (Pi*j*u*2-pi*j*u*3) 
+ r.. .* - 

w 
su S 

mj l 
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+r 
KjU2 -Piju7) (‘i *i ‘u ‘2 -‘i *i *u l 3) 

mjmj * 
. (54 

S mi 
S mj * 

The only differences in the expression for 7Gijui+j*ul, which 

subscripts mj, mj* and 2 are replaced by the subscripts in, 

~ijui*j*u*l=O if i=i*. 

Note, in the special case when Pijul s Piju2, and hence Piju3 = P ijul, for all (i,j,u) E T, it follows 

is obtained similarly, are that the 

i*n and 1, respectively, and that 

that the last three terms in the expression for ~cijui*j*u*l drop out, and therefore, 

n.. . . . . 
p.. Pi*j*u ‘1 

yul 
lpi ] u’l = r...*.* - . 

w J s.. 
v 

S.+.+ 
11 

All four terms in Jcijui*j*u*2 remain, although now 1 can be substituted for 3 throughout (5.2). 

Note that (5.2), and hence (5.1), are different for the controlled selection procedure than if 

independent sampling is used to select the sample PSUs for each design. In the latter case, 

?jzzi*j*u*a = p.. zpa ‘i*j*u*a if either a=1 and irri*, or if a=2 and j+j*, and hence there is no 

between strata component of variance for independent sampling. 

We next consider further the question of whether controlled selection or independent selection 

should yield lower variances. Note that for each (ij,u)ET, 
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c n.. .*.* rjur j u 'a = (ml-l) PijuI if a=l, 
(i,*j,*u ‘)ET 

(i,*j,*u ‘)*(ij,u) = (n’-1) Piti if a=2, 

for both controlled selection and independent selection (see Raj (1968, p.54)) and hence 

c Cp@a �i l j l ua - �i;iL *j *u *a> 
(ij,u),(i,*j,‘u *)ET 

(ij,u)*(i,*j,*u l ) 

is the same for both procedures. Consequently, there is no reason to expect the variances for one 

procedure to be higher or lower than the other unless the relationship between the Pqua Pi*j*u*a 

- 3tijui*j*u*a and the (Xijl/Pdua - Xi*j*u*IPi*j*u*a )’ factors differs for the two procedures. 

However, one might surmise from the following argument that controlled selection tends to yield 

lower variances than independent selection for D, (and analogously for DI). For consider (i,j,u), 

(i*,j*,u*)ET with i=i*, j+i*. Then nijui*j.u.l may tend to be relatively small for such a pair 

of PSUs since r . ..* .*, and hence the first term in (5.2), are 0. 
ZlZ 1 

(That is, the probability that a pair 

of PSUs from the same D, stratum, but different D, strata, are both D, sample PSUs tends to 

be smaller under controlled selection than independent selection.) Furthermore, assuming the 

characteristic of interest is well correlated with the D, stratification variables, (Xiiu/Piua - 

X i*j*u*lPi*j*u*a)2> a=1,2, tends to be small for such pairs of PSUs since they are both in the 

same Dl stratum. Thus, controlled selection may result in many pairs of PSUs with a large value 

for Pijul Pi*j*u*l - Ztijui*j*u*l and a small value for (XqJPdul - Xi*j*u*lPi*j*u*1)2, a 

combination which tends to lower variances. 
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of the issues considered in the empirical comparisons presented in the next 
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6. Application to Proposed Expansion of the Current Population Survey 

The proposed, but since cancelled, expansion of the CPS would have been an important 

application of the controlled selection procedure described in the preceding sections. The 

following is a general outline of this proposal. (For further details see Tupek, Waite and Cahoon 

(1990).) Beginning in 1994, a redesign of the CPS, baaed on 1990 census data, is scheduled to 

be phased in (the D, design). The reliability requirements for the redesign are to be 

approximately the same as for the 1980s design, which has precision requirements for monthly 

estimates for the nation and the 11 largest states, and for annual estimates for the remaining 

states and the District of Columbia. Beginning in 1996, if the proposal had been implemented, 

a sample expansion (the D, design) would have taken place to meet reliability requirements for 

monthly estimates for all 50 states and the District of Columbia. 

Four methods have been investigated for selection of the D2 sample PSUs for this application. 

In addition to controlled selection, they are the independent sample and independent supplement, 

both described in Chandhok, Weinstein and Gunlicks (1990), and multiple workloads (Weidman 

and Ernst 1991). The independent sample method selects the D, sample PSUs from an optimal 

D, stratification independently of the D, sample PSUs. The independent supplement method 

includes all D, sample PSUs in D, and selects additional PSUs for inclusion in the D, sample 
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independently from a second supplemental stratification. Mutiple workloads also includes all D, 

sample PSUs and then selects additional PSUs for inclusion in the D, sample from the D, strata, 

in a manner that conditions the selections of these additional PSUs on the D, sample PSUs. 

Among these four procedures, independent selection has the drawback that it will generally result 

in some D, sample PSUs being dropped from the D, sample, a feature which undesirably impacts 

on field operations. Independent selection and independent supplement both might be expected 

to result in larger variances for D,, since they do not select D, sample PSUs from an optimal D, 

stratification. 

The controlled selection approach of this paper with assumption (1.1) can be used as a procedure 

for simultaneously selecting sample PSUs for both designs while avoiding both of these 

problems. To use this procedure, first obtain optimal stratifications for D, and D,. Then the 

controlled selection procedure results in a set of sample PSUs for D, and D2 satisfying (1.2) and 

(1.3). 

An empirical investigation was undertaken to compare variances using the four approaches to 

selection of PSUs for the proposed CPS expansion. For this comparison of the variances, the D, 

and D2 stratifications were obtained using several labor force characteristics from the 1980 census 

as stratification variables. 1980 census data was used since 1990 data was not available at the 

time the stratification was done. A modified Friedman-Rubin clustering algorithm (Kostanich 

et al. 1981) was used to obtain the stratifications. The D, and D, stratifications and the 
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controlled selection were performed separately for each state. 

The variables used here to compare the variances of the four procedures are number of 

unemployed persons and number of persons in the civilian labor force. The comparisons were 

done only for the 31 states listed in Table 1. Of the remaining 20 states (counting the District 

of Columbia), the 11 largest were omitted since the precision requirements for this study, and 

hence the stratifications, were the same for D, and D,. Eight states were omitted because they 

consisted entirely of self-representing PSUs for D,. For these 19 states, variances for all four 

procedures would be identical for both D, and D,. Finally, Alaska was omitted because of 

problems with the data files. 

For each state and each characteristic, variances were computed for each of the two designs and 

each of the four selection procedures using 1970 census data, which was chosen to simulate a 

lo-year lag between the data used in the stratifications and the collection of the survey data, 

which is roughly the anticipated average lag time for the D, and D2 designs. The total number 

of sample persons assumed for the D, design for each of the four methods is the number needed 

by the independent sample method to meet the proposed D2 reliability requirements. This 

resulted in the same estimate of within PSUs variances for each of the four methods, which was 

obtained by multiplying the simple random sample variance by a fixed design effect, thus 

allowing the variance comparisons to be made on the basis of between PSUs variances only. 

Table 1 can be used to compare the between PSU variances for the four procedures. Each entry 
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in numerical columns 1, 2, 5 and 6 is a ratio of the between PSUs variance for the controlled 

selection procedure to the between PSUs variance for independent sample for the indicated state, 

characteristic and design, Each entry in the remaining four columns is the ratio of the between 

PSUs variance of either multiple workloads or independent supplement to independent sample 

for the D2 design. (The D, variances are the same for all the methods except controlled selection 

since the D, sample is selected in the same way for the other three methods.) Each entry in the 

last row of a column is the arithmetic mean of the entries in the preceding rows of that column. 

It can be observed from Table 1 that the D2 between PSUs variances are generally considerably 

lower for controlled selection than for either multiple workloads or independent supplement. 

Furthermore, the means of the ratios in the first four columns are all relatively close to 1. These 

numbers do not provide support for the supposition in Section 5 that controlled selection tends 

to produce lower variances than independent selection, but instead are more in line with the 

hypothesis that neither method is superior to the other in terms of between PSUs variances. 

An additional observation is that the deviations from 1 of the ratios of the between PSUs 

variances for controlled selection to independent selection are generally smaller on a state-by- 

state basis for D, than D,, an observation for which these are at least two explanations. First, 

for the controlled selection procedure with assumption (l.l), no two PSUs in the same D, stratum 

can be in G,. However, there can be as many PSUs in G, from a single D, stratum as there are 

D, strata with PSUs from that D, stratum, provided this does not violate the requirement imposed 

by (3.6) on the maximum number of PSUs in G,-G, . Thus, the restrictions imposed by the 
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controlled selection procedure on the possible sets of sample PSUs are more restrictive for D, 

than for D,, which partially explains the smaller deviations of the ratios for D,. 

The second reason for the smaller deviations for D, is that many of the D, strata in this 

application consisted entirely of PSUs from a single D, stratum. If the j-th D2 stratum is such 

a stratum, then for this j, nijui*j*u*2 = Pgu2 Pi*j*l(*2 if j*+j and nijui*j*u*2 = 0 if j*=j, for all 

distinct triples (i,j,u), (i*j*,U*)ET for both controlled selection and independent selection, and 

thus the contribution to (5.1) from all such pairs is the same for both of these procedures for D,. 

No analogous relationship holds for D,. 

Although the between PSUs variances for controlled selection are considerably lower than those 

for multiple workloads and independent supplement, the same is not true for total variances, since 

within PSUs variance, which is estimated to be the same for all the procedures, is the dominant 

component of total variance for each of these estimators. For example, Weidman and Ernst 

(1991) present the analogous table to Table 1 for total variance. None of the entries in the 

bottom row of that table exceed 1.130. 

In summary, based on this limited study, if the proposed CPS expansion had taken place and it 

had been required that the D, sample PSUs be a subset of the D, sample PSUs, then among the 

three methods considered here which satisfy this requirement, controlled selection is the clear 

choice if minimization of between PSUs variances is the chief criterion. However, as previously 

mentioned, controlled selection is not usable in applications where the D2 sample PSUs are 
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selected subsequent to selection of the D, sample PSUs. Furthermore, unless one is willing to 

ignore the effect on the variances of the between strata variance component induced by controlled 

selection, variance estimation would be more complex than for some other approaches to 

selection of PSUs. 
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Table 1 

Ratios of Between PSU Variances for Other Options 
to the Independent Sample 

State 

Dl 

cs 

Unemployed 

D2 

cs IS MW 

Dl 

cs 

Civilian 
Labor Force 

D2 

cs IS MW 

Alabama 0.71 1.12 3.36 2.97 1.24 1.03 2.87 5.33 

Arizona 0.83 1.07 4.21 18.63 0.61 0.89 4.68 1.84 

Arkansas 0.88 1.06 2.67 0.53 1.44 0.99 1.57 0.33 

Colorado 1.60 1.01 4.32 3.59 0.78 1.00 5.31 2.33 

Georgia 0.80 1.04 2.42 1.25 1.20 1.02 1.91 0.64 

Idaho 0.67 1.10 13.47 2.96 0.88 1.06 4.64 2.05 

Indiana 0.57 0.89 4.00 4.52 1.34 1.47 3.90 1.08 

Iowa 1.23 0.78 3.63 1.10 1.60 0.83 4.29 1.09 

Kansas 0.73 0.95 3.49 1.89 0.99 0.92 1.71 0.85 

Kentucky 2.08 1.08 3.35 4.21 0.42 0.84 3.67 3.13 

Louisiana 2.27 0.95 2.65 3.88 0.76 0.97 2.63 2.10 

Maryland 0.91 1.00 4.62 1.09 0.85 1.00 4.92 0.04 

Minnesota 0.88 1.12 1.51 1.69 0.82 0.87 2.75 1.39 

Mississippi 1.12 0.93 4.84 1.28 1.66 1.03 3.70 0.59 

Missouri 0.56 0.95 3.99 2.17 0.55 1.09 3.25 0.61 

Montana 0.82 0.88 2.16 2.53 1.24 1.19 6.24 0.58 

Nebraska 0.95 0.99 2.83 1.52 0.78 1.00 2.78 0.62 

Nevada 1.12 1.02 5.81 0.78 0.66 0.86 15.02 0.35 

New Mexia, 0.75 0.91 3.06 7.27 0.63 1.41 4.13 2.98 

North Dakota 0.71 0.91 6.34 1.85 0.88 0.72 3.09 0.57 

Oklahoma 1.14 1.02 2.72 2.27 0.43 0.83 3.86 0.88 

Oregon 0.74 0.89 2.25 2.72 0.63 0.98 5.40 0.61 

South Carolina 1.25 1.17 3.64 0.68 0.83 1.10 9.67 1.56 

South Dakota 0.85 0.90 2.53 1.56 0.99 0.95 2.50 0.63 

Tennessee 1.11 1.10 8.16 1.77 0.58 1.00 3.01 0.76 

Utah 0.93 0.97 2.66 1.19 1.48 0.94 2.67 0.73 

Virginia 1.11 0.95 2.87 0.87 2.10 1.33 3.07 0.44 

Washington 1.14 0.94 3.29 1.78 0.54 1.25 5.86 1.48 

Wrt Virginia 3.05 0.93 1.60 4.23 2.13 1.12 0.37 1.22 

Wisconsin 1.60 0.96 2.17 1.62 0.92 0.98 2.94 0.75 

Wyoming 0.37 0.67 5.69 5.04 0.43 1.03 35.91 12.08 

Mean 1.08 0.98 3.88 2.89 0.98 1.02 5.11 1.60 

CS = Controlled Selection 
IS = Independent Supplement 
Mu’ = Multiple Workloads 


