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1. Introduction . 

In Bell (1984) I discussed decomposition of a deterministic function of time ft into 

seasonal and nonaeaaonal part8 a8 ft = f8, + fn,. This is important for decomposing 

regression effects, such a8 trading-day and holiday effects, in.seasonal adjustment. The 

general approach presented in Bell (1984) for a monthly time series is a8 follows: 

1. Compute the long-run monthly mean8 of ft, fk for k = 1, . . . , 12. 

2. Cozppute the long-r&overall mew of ft, f = (f, + s-S + $2)/12. 

, 
. . 

3. Letfst = il k(t) - f, where k(t) is the calendar month of time t (i.e., in any 

a 
January k(t) = 1, in any February k(t) = 2, etc.). Let tit = ft -fs,. 

It is assumed that the long-run monthly and overall means exist. With easy modifications, 

this approach applies to data with a seasonal period other than monthly. 

Bell (1984) applied this procedure to flow and stock trading-day effects, and to 

Easter holiday effects. Thia note correct8 the results given there for stock tradingday 

effect8 in regard to the treatment of the stock length-of-month effect. This effect arises a8 ’ 

the cumulative summation over time of &,, the flow length-of-month effect, where mt 

denotes the length of month t. This can be broken into three terms, the last of which is a 

time trend.(constant time8 t). It is t&e latter which I treat differently here. The 

treatment of a time trend in seasonal-adjustment is di8CU88ed in Section 2. Section 3 then 

redoes the seasonal decomposition of stock trading-day effect8 in light of this result. 

Section 3 also improve8 on the notation of Bell (1984) to clarify the presentation. 



4 

2. Time Trends and Seasonal Adiustment 

Consider the function ft = t. Suppose the time frame. of the series under 

consideration begin8 in .-tmuary of some year. If the series contain8 the time trend effect 

@t, this will tend to make December8 higher than Januaries (if p > 0). This could be 

interpreted as a seasonal effect, suggesting that ft = t be decomposed into seasonal and 
. 

nonseasonal parts. This wa8 the reasoning employed in BeIl(l984). The result of this is 

shown in Figure 1 for a time series of eight years (t = 1, . . . ,96). The “nonseasonal” part 

of ft = t is a step function constant over calendar year8 that.starts at 6.5 and increase8 by 

12 each year. The graph of this is auperimpoeed on the graph of ft = t in Figure 1.. The 

. seasonal part of ft = t increases linearly within calendar years from -5.5 in January to.55 

in December, repeating this pattern each year. This is the dotted line graphed about the 

horiz&tal axis in Figure I, and also in Figure 2. _ . 

A major problem with this approach is that the nature of the “seasonal component” 

of ft = t depend8 on the starting month of the series. For example, consider the seasonal 

component in ft = t for a series that starts in July. In this ca8e the computed seasonal 

increases linearly from 4.5 in July to 5.5 in June. When this pattern is plotted over 

, calendar year8 we get the solid line in Figure 2. Note the shift from the dotted line, the 

seasonal pattern when the series starts in January. Thus, we 8ee the seasonal component in 

ft = t defined this way shifts depending on the starting month. 

(Actually, a sign of probkms with seasonal decomposition of ft = t is that the general 

scheme given in the introduction cannot be applied directly, since the long-run monthly 
’ 

and overall mean8 of ft = t do not exist. E88entitiy, this diffic&y ~88 sidestepped in 

Bell (1984) by defining the seasonal fst as the difference between ft = t and the mean of 

ft = t for the calendar year that include8 t,’ this difference being the same for all calendar 

years.) 
J 

Although au argument can be made for the seasonal decomposition of ft = t as shown 

in the graphs, it seems undesirable to use a seasonal decomposition that changes if the 
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Fig. 1. Time trend and seasonal decomposition 
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starting month of the series change8 (e.g., if we drop some of the first data points). In fact, 
, 

a related point made in Bell (1984) is that the general decomposition approach given in 

Section 1 should not compute the seasonal au:! overall means.defined only over the finite 

time frame of a given data set primarily because such decompositions would generally 

change if the time frame of the data set changed. Thus, the decomposition of ft = t in 

Bell (1984) violates a generalization of thie principle, which can be stated as follows: 

Princinle. The seasonal component of a deterministic effect ft should be the same 

over calendar years regardless of the starting or ending date of the time series. 

. 

Except for the time trend arising in stock length-of-month effects, the other 

dec&positions of deterministic effect8 in Bell (1984) satisfy this principle. This is 

.reviewed in the next section for stock trading-day effects. 

I now feel that the preferred treatment off 
_t 

= t in seasond adjustment is to assign it 
m 

entirely to the nonseasonal as part of the trend. Thus, it has no sedonal component, and 

ft = t will not differentially affect the seasonal component of the -series depending on the 

starting month. The function ft = t will differentially affect the trend level depending on 

the starting month, but this is not of concern since the series will presumably contain other 

level effects that will confound this anyway. 

3. Seasonal DecomDosition of Trading-Dav Effects in Stock Series - New ADDroach 

From Bell (1984) the trading-day regression effect for a stock series can be written 

4: ; p.x.. = i! (7. - T)+(i) + 3 + p 6 m. 
j=l i=l ’ ‘J 4 i=l l iet j=l J (1) 

where Xij is the number of time8 day i occurs in month j, It(i) is 1 if month t ends on an i 
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day and i8 0 otherwise, and mj is the length of month j. The pi’8 and yi)s are parameters 

with ? = (@l + ... + p7)/7 and 7 = (71 + ..a + r7)/7. The first term on the right hand 

sideof (1) canbewx?‘Was 

6 

= &TiDit 
,- ‘. . 

c 

(2) 

. where “ri = ri -. 3 and Dit = It(i) - It(7). Since th e ong-term overa,lI means of the Dit’s 1 ’ 

are all zero, this contain8 no seasonality or trend - it is a pure stock trading-day effect. 

The second term on the right hand aide of (1)) 7, is part. of the trend. Bell (1984, p. 7) 

t 
shows that c m. can be written a8 follows: 

j=l J 

km . = :: (. + :: LF. + (30.4375)t 
j=l J j=l J j=l J (3) 

, 
0 

xhere ~j f 40) is the seasonal component of mj (.5625 in 31+lay months, -.4375 in 

3O-day monthe, and -2.1875 in Febmary), and LFj is the leap February variable (-.25 in a 

non-leap February, .75 in a leap February, and zero otherwise}. Bell (1984) broke the last 

term in (3) into season4 and nonseasonal parts. We now 8ee that the effect of this term, 

R30.4375)t, should merely be assigned to the trend. 

t 
For the tit term on the right haqd side of (3)) Bell (1984, p. 8) notes that C ~j is a 

j=l 

tees of mQnthly me? Since any 12 consecutive ~j’8 s,um to zero, and thus 
I 
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: 6 = [ :: c. - t*] + t* 
j=l J j=l J 

= seasonal + level 

(4) 

12 t 
where & is the long-term overall mean, & = (l/12) D D Ij = (1/12)[12ek(l) + 

\ t=l j=l 

‘lck(2) + ‘*- + tk(12) ’ ] which depend8 on the month k(1) that the series start8 in. This * 

t 
raises a question a8 to whether this decompoeition of D ~j satisfies the invariance principle 

j=l 
. 

put forward in Section 2. However; computation of’ h c. i & for t =~-l, . . . , 
j=l J 

12 starting 

. from each possible month k(1) = Jan., . . . , k(1) = Dec. yield8 the 8ame seasonal pattern 

over calendar months. This pattern is a8 follows. 
, rl 

sbB&Mar &xMavJm JdA al2 Qa &!I! Dee 
1.2604 -.9271 -.3646 -.8021 -.2396 -.6771 -.1146 3 447 .0104 .5729 .1354 .6979 

The sum of these 12 number8 is 0 (within round-off error). Thus, this ie the seasonal part \ 

t t 
of C t. regardless of the starting month. The level part of C e., &, depend8 on the 

j=l J j=l J 
starting month k(1). But this is not of concern, since the level will be absorbed into the 

overall mean (if the seriee is not differenced), or anqihilated by the differencing. ’ 

, A similar analysis can be performed for the second term on the right hand side of (3)) 

% LF.. Note k LFj ha8 period 48 since the 8llm of LFj OVeI 4 year8 i8 zero. Bell (1984, 
j=l J 

j=: 
p: 9) note8 that C 

j=l 
LFj is orthogonal to a pure SeasOtiti effect in the long run (actually, 

t 
over each 4 year period). Thus, C LFj Consist8 of a pure leap-year effect, plus a level 

j=l 

effect & which is constant over time but depend8 on whether the first, second, third, or 
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. . fourth February in the series is a leap-year February. The level values 6* are .375, .125, 

-.125, and -.375, depending on whether the first leap-year February occurs in the first, 

second, third, or fourth ; xu of the series (Bell 1984, p. 9). We can thus write 

:: LF. = [ 4: LF. - &] + & 
j=l J j=l J 

= leap-year effect + level. 

(5) 

. 

Computation of h LFj - & show8 that it follows a 48 month pattern that does not depend 
j=l 

on when the first leap-year February occurs. This pattern is as fOflOW8 (Feb* = leap-year 
~_ 

February, Feb = non-leap-year February). 

\ * 

d i,F. - & ‘- 
j=l J 

. . . Jan m )I& 1.. Jan Feb* && . . . 
i --* -.125 -.375 -.375 . . . -.375 .375, .375 . . . 

The long-term monthly means of this sequence are ti zero, so it is a pure leap-year effect. 

Using (2) - (5), the stock trading-day regression effect (1) can be decomposed as 

fOuOW8: 

'6 
:: ; /j&x.. i ~ ~iDit + 3 + aj:: l~j + jglLFj + (30.4375)t] 

j=l i=l ’ ‘J i=l = , 
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= ; 7.D 

i=l ' it 

+ a’ tj - F*) 

t’ 
+ fl( C LFj - 6,) _ 

j=l 

+ 3 + P(;l;c + 6,) + P(30.4375)t 

(pure stock trading-day) 

(pure seasonal) 

(pure leap-year) 

(level and trend). 

(6) 

% 

Only & and S* in the last line depend on the month the series start8 in. But since these 

will be confounded with the overall level, there is no need to break them out separately. 

Tbu8, if 4: g P.X.. = 
7 TV 
C /3. C 

j=l i=l ’ ‘J i=l ‘j=l 
Xij ha8 been estimated, it &u be broken down into the 

-first three lines in (6)) and fl(30.4375)t can be added to the level estimate for the series 

with these regression effects removed (however the level estimate is obtained). 

When estimating stock tradingday modela,.weSneed to include the variable8 

Dlt, -a. I Det- If we also want to allow for the cumulative length-of-month effect 

t 
(p C mj), we have several choice8 about which variable to include: 

j=l 

6) 

(ii)’ 

(iii) 

k m 
j=l j’ 

in which case, after estimation, a k m. should be decomposed a8 in (6); 
j=l J’ 

( k 
j=l 

LFj - 6,) + (30.43’75)& if the model include8 fixed seasonal effect8 or 

seasonal differencing; 

& LF. - & , if the model include8 two difference8 (to wipe out t) one of which 
j=l J 
is seasonal (to wipe out fixed seasonal effects),. or only a seasonal difference but 

with a trend constant, or only 3 nonseasonal difference but with a trend 

constant and fixed seasonal effect 8, or no difference8 but with fixed seasonal 

effect8 and a linear time trend. 
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When the condition8 are met for (iii), using it give8 a direct estimate of B( A 
j=l 

LFj - 6,)) the 

pure stock leap-year effect. This may have au advantage of convenience. Using (iii) all 

the time, though, forces us to meet the condition8 of (iii) by either including sufficient 

differencing in the model, or by including fixed 8ea8onal effects and/or a time trend (or 

trend constant) in the model. Similarly, always using (ii) force8 us to meet it8 condition by 

including fixed seasonal effect8 or seasonal differencing in the model. Thus, (1) is more 

general, but it requires the decomposition in (6) for interpretation. Another alternative 

would be to use the variable 
w 

(iv). tjhltj - &t) + ( k LF. - 6,) = k m.-(& + &)-(30.4375)t. . 
= j=l J j=ls J 

Thia is like (iii), and require8 the 8ame condit!one, except that it doe8 not separate out the 
s 

seaaonal part of the cumulated length-of-month variable. Thus, p time8 the above can be 

regarded as the stock length-of-month effect. 
* 

Fin,al note: This presentation asmmes, as in Bell (1984)) that length-ofinonth effects in 

the flow series which aggregate8 to the stock series of interest are to be mode&d using a 

length-of-month regression variable (mt, possibly with its tied seasonal and leap-year 

effects removed). There are two rea8on8 why this may not be the ca8e. First, if the flow 

series would be transformed before modelling (or if the flow series was the difference of two 

flow series that would be transformed), then this condition is violated since . 

length-of-month effect8 in the transformed flow scale would not- aggregate to anything 

simple’in’ the stock series. Second, research done since my earlier work (Bell 1992, Findley 

and Chen 1994) suggests that length-of-month effect8 in flow aeries’are better handled by 

dividing the series by length-of-month, i.e., if yt is the original (untransformed) series 
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being modelled we take yt/mt. This at least seems preferable for series yt that are 

transformed by taking logs or otherwise. If length-of-month effect8 in the flow series are 

handled by division, there is again no simple expression for the length-of-mout-, effect in 

the corresponding stock series. Therefore, the decomposition discu88ed here is strictly 

relevant only for the ca8e where the flow series is best modelled without transformation 

(additive seasonal decomposition of the flow series). In other case8 u8e of k m. as a 

* 

j=l J 
regression variable is not strictly appropriate, though it may eometimes be used as an 

approximation. However, a better alternative in such case8 i8 probably to simply ignore 

possible length-of-month effects in a stock series. If one thinks of directly addressing the 
. 

modelling of calendar effect8 in a stock series, there is no obvious reason why the series 

shoulJ depend on some function of the length-of-month time series mt. 
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