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1. Background

Historically the Census Bureau has favored
disclosure limitation methods that protect sensitive data
by limiting the amount of information given out.
However, the Bureau is now considering methods that
would allow for the release of more information but at the
cost of having to distort the data in some way (Zayatz,
Moore, and Evans, 1996). In the case of establishment
tabular data, the traditional approach has been to suppress
the publication of cells that are deemed sensitive, i.e., at
risk for disclosing an individual respondent’s data. Other
cells, called complementary suppressions, must then also
be suppressed to prevent the values of sensitive cells from
being recovered through-addition and subtraction of
published cells. (For a complete discussion of cell
suppression, see e.g., Federal Committee on Statistical
* Methodology, 1994.) Cell suppression thus protects
sensitive data by limiting the amount of information given
in the tables.

Cell suppression has its disadvantages, however.
It withholds information that is not sensitive, namely the
complementary suppressions. The process of choosing
complementary suppressions is a complicated and time-
consuming operation. And suppression patterns must be
coordinated among all tables; that is, if a cell is
suppressed in one table then it must be suppressed in all
other tables in which it appears. This last requirement
creates tremendous difficulty in the fulfillment of requests
for special tabulations following publication of standard
tables.

In an effort to simplify the disclosure review
process and to increase the amount of data that can be
released, the Census Bureau has recently begun looking at
alternatives to cell suppression for performing disclosure
limitation on establishment tabular data. Thus far the
research has focused on introducing noise into the
establishment microdata records prior to tabulation.
Noise addition would allow more cells to be published
because it eliminates the need for complementary
suppressions; sensitive cells are protected simply by the
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noise present in their published values. Also, noise would
greatly simplify the disclosure limitation process because
the noise only needs to be added once, and then any
number of tabulations can be produced from the perturbed
microdata. There would be no worries about consistency
of cell values between tables or about coordinating
suppression patterns among all data products.

While using noise would allow for the release of
more data, questions remain about the usefulness of data
that has been perturbed. Others have explored this
question regarding the possibility of releasing perturbed
economic microdata files (e.g., McGuckin and Nguyen,
1990), but to date little work has been done on the
usefulness of tabular data in the presence of noise. Evans,
Zayatz, and Slanta (1996) experimented with introducing
multiplicative noise into establishment microdata prior to
tabulation and found that resulting level estimates were
generally not adversely affected. Muralidhar, Batra, and
Kirs (1995) looked at descriptive statistics of distributions
in statistical databases and found that adding noise to
microdata provided sufficient security while preserving
the accuracy of the descriptive statistics. They also
observed that using multiplicative noise produced more
useful data than using additive noise.

Observing the behavior of simple level estimates
in the presence of noise is only the necessary first step,
however. Data users use these level estimates to perform
many types of analyses, such as describing relationships
among data items or looking at the behavior of certain
variables over time. It remains to be seen what effect
noise may have on these analyses. This paper begins to
address this issue by investigating the effects of noise on
a simple type of analysis: year-to-year trends.

2. Formulation of the Problem

In assessing the effect of noise on a trend
statistic, we will look at the ratio of the noisy trend to the
true trend. Let Y; and Y, be the true (noise-free) level
estimates of some variable Y for year 1 and year 2 (not

necessarily consecutive), respectively. Let R = :,7 . The

true trend in Y (expressed as a decimal rather than a
percent) between the 2 years is %

, which is equal to
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When noise is added to the underlying
microdata, all estimates produced from that microdata will
contain at least a small amount of noise. The noise
derives from individual multipliers being applied to
individual observations and then being summed. For
simplicity, assume we are dealing with unweighted data,

and express Yy as Y, = Z Yy » Where y; is establishment
’ i

i’s value of Y in year 1. Then the noise-added estimate of
Y in year 1 can be written as

noisy Y,=M,Y:= Zml,i * Yo

where my; is the multiplier associated with establishment
i in year 1 and M; can be described as the net noise

multiplier for Y. Explicitly, M , =X

. Similarly, let
M, be the net multiplier for year 2. Note that M, and M,
are not known in advance. Assuming the strategy
described in Evans, Zayatz, and Slanta (1996) for
assigning the values of the m;’s, M; and M, will generally
be much closer to 1 than the individual m;’s, and their
distance from 1 will depend on the skewness of the
distribution of the y;’s. (The assignment scheme
recognizes and attempts to accommodate the fact that
most economic data distributions are inherently skewed.)
The more skewed the distribution of the establishments
contributing to a particular cell estimate, the less likely it
is that noise in individual establishments will cancel out as
establishments are aggregated, and hence the farther from
1 we would expect the net noise multipliers to be.

Note also that, since the establishment
multipliers were selected such that E(m;) = 1, the expected
value (given the y;’s) of the resulting net noise multiplier
is also 1:

B0 =E(35 = 5| . mu
= tle’ *2 E( ml,i)* Y
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We are interested in how the noise in the component level
estimates translates into noise in the trend. Our measure
of the noise in the trend is the trend’s net noise multiplier,
which we will denote Mgend. Specifically,

M wend = —"{:—;—ﬂ% . The noisy trend is the trend computed

using the noise-added level estimates and can be written
MaY2-MiY

as S We can then express Myeyq as follows:

M:Y2-MiYy M} Yo _ M, R -1
MY, _(MI)YI 1___ M

Y2-Yi - Y2-Yu - .
Y Y R 1

M trend =

The amount of noise resulting in the trend thus depends
on two quantities. First, it depends on R, the true ratio of
the Y values between the 2 years. It stands to reason that
if there is little change in a variable Y between 2 years,
then the year-to-year change would be very easily
obscured by even a small amount of added noise. If the
change in Y is very small, that is if Y, is very nearly equal
to Y, then R is close to 1 and My Will have a tendency
to be very large (in magnitude). Note in particular that if
R =1, then My.yq is undefined; in this case it is impossible
to express any noise in the trend as a percentage of the
true value because the true trend is O.

Secondly, the amount of noise in the trend

depends on —2*. Regardless of the magnitude of the true

trend, notice that the closer M, is to M, the closer Myeng
will be to 1. That is, if the values of Y in the 2 years
ended up with the same amount of noise in them, the
common net noise factor would cancel when computing

the trend (—L—‘——‘—LM YoMy V) o Mo (Y2 Y1) = Yoo Yl) and the

M Y1 Meommon Y1
resulting trend would have no noise in it at all.

It is worth noting that M., does not depend
directly on the values of M; and M, individually, only on
their relative sizes. Even if M and M, are both very far
from 1 (as in a single-contributor cell), if they are far from
1 in the same direction and by about the same amount, the
trend can still end up with almost no noise in it. Two very
noisy level estimates do not necessarily produce a noisy
trend.

Values of R close to 1 will tend to make Menq
large in magnitude (in either the positive or negative
direction, depending on whether M, is larger or smaller

than M,), while values of %f close to 1 will tend to bring

Mireng closer to 1. Which is the stronger force?
3. Amount of Noise in Trends

The first question we would like to answer
regarding trends is whether the addition of noise to the
microdata results in any bias in the trends computed from
the noisy level estimates. We have already seen in
Section 2 that the level estimates themselves are unbiased
[E(M;) = 1]; do unbiased level estimates result in an
unbiased trend? Using the Taylor series expansion result

that E(¥) = EE’Y() and treating R as fixed, we see that

M2
E(Muend) = E(MJ{IJ R *E@q_~l_

R-1 ] R-1 ™7 R-1
R ,EM2) 1 R I
R-1 EM) R-1 R-1 R-1
In order to verify this unbiasedness, and to

assess the amount of noise that will typically be present in
a trend (since in individual applications Mg Will in




general not be 1), we conducted an experiment using 4
years’ worth (1990-1993) of data from the Census
Bureau’s County Business Patterns (CBP). For three
variables and for a number of 2-digit SIC (Standard
Industrial Classification) codes, we added noise to the
microdata and computed trends for each cell and for each
pair of years. This resulted in a total of 3486 trends. We
replicated the addition of noise and computation of trends
100 times and observed the behavior of the trends over all
replications. :

For each trend, we computed the average value
of Myea over all replications and looked at the
distribution of this quantity over all trends. The
distribution was centered exactly at 1, with very narrow
spread, thus bearing out the theoretical result.

The next question we would like to answer is
how much noise we can typically expect to be present in
a trend. The amount of noise in the trend can be
measured several ways. One way is to look at the noise
relative to the size of the original trend, i.e., as a percent
of the percent change. Using.the CBP data, for each cell
and for each replication we computed the relative percent

noisy trend - true trend
——W—i *100% . (Note that

this is equal to the absolute value of Mgenq — 1, expressed
as a percent.) For each cell, we looked at the distribution
of this quantity over all 100 replications and computed
selected percentiles. Then we looked at the distributions
of these percentiles over all trends. So we are looking at
distributions, over all trends, of percentiles which are
themselves computed from distributions, over all
replications, of the absolute relative noise present in an
individual trend. 7

Among all trends with a true value larger than 1
percent in magnitude (i.e., true trend < -1% or > +1%),
the distribution of Q1 as described above had quartiles Q1
=2.06% and Q3 = 11.31%. The distribution of Q3 had
quartiles Q1 = 5.00% and Q3 = 19.85%. Even the
maximum Q3 over all trends was 113.78%, meaning that
even in the worst cases it only happened slightly more
than 25% of the time that the noise-added trend was more
than twice as large (in magnitude) as the noise-free trend.
Thus, judging by the behavior of the quartiles over all
cells, we can typically expect noise-added trends to
contain about 2 to 20 percent noise, relative to the true
value of the trend.

It was generally true, moreover, that the larger
values of the replication-distribution  quartiles
corresponded to trends whose true values were small. In
fact, it was this tendency for small trends to contain large
amounts of relative noise that led us to exclude very small
trends (smaller than 1 percent in magnitude) from the
preceding analysis. This phenomenon is not surprising
and illustrates the limitations of looking at percent
changes in a statistic that is itself a percent change rather

noise in the trend as

than an actual quantity. Because most percent change
statistics tend to be relatively small, changes in the
magnitude of the percent change that are small in absolute
terms appear very large when viewed as a fraction of the
statistic itself.

As a more familiar example, consider that even
a moderate-sized year-to-year change of 4.4%, for
instance, has a substantial amount of “noise” introduced
into it (relative to the size of the change) simply by being
rounded to the nearest whole percent. Expressing this
trend as .04 rather than .044 has changed its value by 9%,
a percentage that would be highly objectionable in a level
estimate.

Recognizing the limitations of expressing the
noise in trends in relative terms, we also looked at the
noise in absolute terms. For each trend and for each of
the 100 replications, we computed the absolute difference
in percentage points between the noisy trend and the true
trend, i.e., lnoisy trend — true trend | * 100%. (For
example, if the true trend was .02 and the noise-added
trend was .04, we would describe this as a 2% difference
in this instance, as opposed to a 100% difference in
relative terms.) We then averaged this quantity over all
replications for each trend and looked at the distribution
of the average over all trends.

Using the average absolute percentage point

difference as the measure, the median amount of noise

over all trends was only 0.7%, and even the 9o™ percentile
was only 2.89%. In particular, among trends having a true
value of less than 1% in magnitude, the median amount of
noise was only 0.5%. In relative terms this amount would
appear very large but is in fact only on the order of
rounding error when looked at in absolute percentage
points. This time, points in the right tail of the
distribution tended (unsurprisingly) to correspond to very
large true trends, for which these large absolute
differences would appear small in relative terms.

To summarize, the extent to which adding noise
to the underlying microdata (and thence to the level
estimates used in computing the trend) introduces noise
into trend statistics depends on how the amount of noise
in the trends is measured. When viewed in relative terms,
the amount of noise in a trend will typically be in the
range of 2 to 20 percent. The amount can potentially be
much higher, but these higher values tend to correspond
to small values of the true trend; in these cases measuring
noise in relative terms makes the situation look worse than
it is. When viewed as a straightforward difference
between the noisy trend and the true trend, the amount of
noise will typically be only 1 or 2 percent. In either case,
whether these levels of noise in trends are acceptable is a
question for further discussion and is beyond the scope of
this paper.



4. Apparent Changes in Direction of Trend

However the amount of noise in a trend is
measured, certainly a critical issue in reporting percent
changes is whether the change is significantly different
from 0. In this light, we would like to know under what
conditions the presence of noise in level estimates might
cause a trend to appear to change sign.

If Mieng < O, this means that the addition of noise
to the level estimates caused the trend to change sign.
Intuitively we would expect that the true trend would have
to be very small in order to be so adversely affected by the
noise as to appear to change direction. Is this the case?

M,
 Note that M <0 < —“4—’————-——1-<0 .

If R > 1, then

Mt <0 & (2)R-1<0 & ()R <l & Mctel,
It stands to reason that this requires M, < M, considering

that the true trend is upward but the noise makes it appear
to be downward. IfR < 1, then pf, . <0 & _th>%>1

by a similar argument.

In either case, in order for Mgenq to be < 0,
My

va and its multiplicative inverse, taken as a pair, must be

“farther away” from 1 than R and % are, but in opposite

directions. More precisely, the interval (%,R) [or

(R, %), depending on the size of R relative to 1] must be
contained in the interval (4, ) for (M 2 )ifR < 1],

This condition is very rarely met, mainly because
of the restrictions imposed in Evans, Zayatz, and Slanta
on the updating of individual establishment noise
multipliers from one period to another. These restrictions
were designed to maintain the utility of trend statistics,
and the net result is that M, seldom differs from M, by
more than about 1%, whereas most trends are larger than
this.

The results from the test with County Business
Patterns data reinforce this assertion. Of the 3486 trends
examined, only 376 (slightly more than 10%) changed
sign even once over all 100 replications. Of these, about
50% were trends whose true values were less than 1% in
magnitude, again illustrating the susceptibility of very
small trends to being obscured by even a small amount of
noise. Of the remaining 50%, the majority were trends in
cells that were dominated by a very large contributor or
contributors, i.e., sensitive cells. In such cells, the net
noise multipliers M; and M, are very close to (and in
single-contributor cells, identical to) the establishment-
level multipliers m; and m, assigned to the dominant
contributor. (If the cell is dominated by 2, 3, etc.
contributors that are all perturbed in the same direction,
the effect will be similar to that of a single dominant

contributor.) It is not uncommon for these individual
establishment multipliers to differ from each other by
several percent, so for these sensitive cells that exhibit
micro-level behavior, the ratio of the net noise multipliers
can easily exceed the size of the true trend, resulting in the
trend appearing to change direction. (Section 5 discusses
sensitive cells in more detail.)

For the majority of cells, then, noise does not
cause the trends to change direction. The only exceptions-
are trends that are very close to zero to begin with (in
which case measurement errors probably make their true
direction questionable anyway) and trends in sensitive
cells, for which an apparent change in direction is not
necessarily undesirable and can even be looked at as a
form of protection.

5. Differing Effects on Sensitive vs. Nonsensitive
Cells

A final area of concern is whether there will be
differences in the amount of noise that typically results in
trend statistics for sensitive cells as compared to
nonsensitive cells. In assigning noise multipliers to
establishments, the goal was to ensure that sensitive cells,
whose values (i.e., level estimates) need to be protected,
would receive large amounts of noise, while at the same
time trying to minimize the amount of noise that would
appear in cells that aren’t at risk for disclosure. Ideally
we would like the same to be true for trend statistics — that
trends for nonsensitive cells remain relatively untouched
by the addition of noise but that trends for sensitive cells
be more noticeably distorted.

Examination of the County Business Patterns
data yields mixed results in this regard. When noise is
measured in relative terms, a comparison of the
distributions of the amount of noise in sensitive cells vs.
nonsensitive cells indicates that trends in sensitive cells
get only slightly more noise than those in nonsensitive
cells. When measured as a simple difference between
noisy and noise-free trends, the amount of noise in
sensitive trends is much greater than in nonsensitive
trends, but even here there is some cause for reservation.

We observed that the most extreme (largest in
magnitude) year-to-year changes almost always occur in
sensitive cells. As mentioned in the previous section,
values in sensitive cells reflect the behavior of only one or
two dominant companies, while nonsensitive cells
generally have many contributors and hence describe
more aggregated, macro-level behavior. Naturally, we
expect more variability at the micro level. Just as noise in
individual establishments has a tendency to cancel out as
the establishments are aggregated into cell totals, so too
will highly divergent percent changes in individual
establishments tend to produce a more moderate estimate
of change as more establishments are added together.




Conversely, it is the sensitive cells whose values of R
have the potential to differ the greatest from 1 by virtue of
their describing what is effectively micro-level behavior.
Considering the results of Section 3, these sensitive cells
would be the most immune of all cells to having their
trends disturbed by the addition of noise.

6. Conclusions

The situation regarding sensitive vs. nonsensitive
trends raises a very important question: How much
protection do we need to give to trend statistics? If we are
looking at a cell that is dominated by one large
contributor, is it sufficient to protect the level estimates
and simply let the trends fall where they will, even if the
trend in the presence of noise is virtually identical to the
true trend? Would the noise in the level estimates
discourage users from putting too much faith in the trend
for that cell, even if in actuality the trend computed from
the noisy estimates were a very close approximation to the
true value? ;

Also at issue is how protection is measured, and
more generally how the amount of noise is measured, for
trend statistics. Measuring noise in relative terms can
overstate the seriousness of the distortion in trends that
were very close to zero before noise was added. On the
other hand, measuring noise simply as the difference
between the noisy trend and the true trend can imply more
protection than actually exists for trends that were very
large to begin with. It is our feeling that neither method
is satisfactory and that better criteria need to be developed
for evaluating the amount of noise present in trends.

Finally, as mentioned in Section 3, we need to
decide how much noise is acceptable in trends for cells
that aren’t sensitive. Noise is desirable in sensitive trends
as a means of protecting respondent data by preventing
data users from recovering the true value of the trend from
published results. At what point does the amount of noise
in nonsensitive trends preclude users being able to draw

meaningful conclusions from them as well?

The answers to the above questions will
probably vary from one survey to another and from one
data user to another. In any event, they cannot be
answered mathematically (other than the measurement
question) and must therefore be left to policy makers.
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