
THE DISCRETE EDIT SYSTEM

William E. Winkler and Thomas F. Petkunas
U.S. Bureau of the Census

ABSTRACT

 This document describes the DISCRETE prototype edit system. The system is based on the
Fellegi-Holt model and applies to general editing of discrete data.

Keywords: set covering, error localization, integer programming, imputation

 This document provides background on the workings and an application of the DISCRETE edit
system. The system is a prototype whose purpose is to demonstrate the viability of new Operations
Research (OR) algorithms for edit generation and error localization. While the OR algorithms are
written in a general fashion that could be used in a variety of systems, the i/o, data structure, and
imputation sections of the code are written in a survey-specific fashion. The source code cannot
easily be ported to a variety of computer systems and is not easy to maintain. The first two sections
consist of a description of the basic edit system and an example showing specific details of the input
and output files used by the software. The final section is a summary.

I. DESCRIPTION OF THE DISCRETE EDIT SYSTEM

 The following subsections describe aspects of the DISCRETE edit system.

1. Purpose, Model, and History

 The DISCRETE edit system is designed for general edits of discrete data. The system utilizes the
Fellegi-Holt model of editing. Source code for DISCRETE was written by the author (Winkler
1995a) and is based on theory and computational algorithms from Fellegi and Holt (1976) and
Winkler (1995b).

2. Software and Computer Systems

 The software consists of two programs, gened.for and edit.for. The software is written in
FORTRAN and is not easily portable. With some work, the software runs on IBM-PCs under DOS
and UNIX workstations. The programs run in batch mode and the interface is character-based.
 The first program, gened.for, generates the class of implicit edits that are necessary for the error
localization problem. The error localization problem consists of determining the minimum number
of fields to impute so that an edit-failing record will satisfy all edits. It uses as input a file of explicit
edits that have been defined by an analyst. As output, it produces the file of implicit edits that are
logically derived from the explicit edits and also checks the logical consistency of the entire set of
edits. The class of implicit edits that are generated are so-called maximal implicit edits. The class
of originally defined explicit edits plus the class of maximal implicit edits is known to be sufficient for

solving the error localization problem (Garfinkel, Kunnathur and Liepins 1986, hereafter GKL) and
known to be a subset of the class originally defined by Fellegi and Holt. The method of generating
the maximal implicit edits is due to Winkler (1995b) and replaces an earlier method of GKL. The
GKL edit-generation algorithm has a driver algorithm for traversing nodes in a tree and an algorithm
for generating new implicit edits at each node in the tree. The nodes are the locations at which new
implicit edits can be generated. The Winkler algorithm has a different driver algorithm for traversing
the nodes in the trees, an in-between algorithm that determines the subset of edits that are sent to the
implicit-edit-generation algorithm, and an edit-generation algorithm similar to the one of GKL.
 The second program, edit.for, performs error localization (i.e., determines the minimal number of
fields to impute for a record failing edits) and then does imputation. The input files consist of the set
of implicit edits produced by gened.for and the data file being edited. The error localization algorithm
(Winkler 1995b) is significantly faster than an error localization due to GKL because it first uses a
greedy algorithm and then, if necessary, uses a cutting plane algorithm. Error-localization by GKL
is via a pure cutting plane argument which is orders of magnitude slower than the greedy algorithm
even with moderate size problems. While greedy algorithms can yield suboptimal solutions with
general problems, greedy algorithms typically yield optimal solutions with edit problems. Cutting-
plane arguments are generally known to be the most effective for solving integer programming
problems (Nemhauser and Wolsey 1988). Another difference between Winkler (1995a) and GKL
is that the number of edits passed to the error localization stage grows at a somewhat slower
exponential rate under Winkler (1995b) than under GKL. The slower exponential growth is due to
a more precise characterization of the implicit edits needed for error localization (Winkler 1995b).
As computation in integer programming is known to grow faster than the product of the exponential
of the number of edits and the exponential of the number of variables associated with the edits, the
new error localization procedure should be much faster in practice. The imputation module of
edit.for currently delineates the set of values for the minimal set of variables needing to be changed
so that all edits are satisfied. In applications of the DISCRETE edit system, the imputation
methodology currently consists of analyst-defined if-then-else rules of substitution. The substitutions
for edit-failing data satisfy the edit rules and are very survey specific. Although general substitution
rules within the restraints imposed by the Fellegi-Holt theory could be developed, they often would
not be as acceptable to subject-matter specialists as the survey-specific rules. The advantage of the
general substitution rules is that they would greatly speed the implementation on new surveys because
analysts would not have to spend as much time defining edit rules and substitution rules.
 The outputs from the second program consist of summary statistics, the file of edited (i.e.,
containing imputes) data, and a file giving details of each record that was changed. The details
consist of the failed edits, the minimum fields to impute, and other information related to specific data
records.

3. Documentation

 The only documentation associated with the DISCRETE edit system is Winkler (1995a). The
documentation is minimal and only describes how to compile and run the software on the example
included with it.

4. Limitations

 As computation grows exponentially as the number of variables and the number of value-states of
variables increase, large systems of edits may be slow. At present, we do not know the the larges size
the system will handle. The system, which has i/o modules based on an earlier system that utilized
algorithms of GKL, does not easily recompile and run. A large number of include files must be
modified and initial values of some data structures that describe the data are hard-coded.
 As the software is an early prototype version, insufficient time has been spent on debugging source
code. While the OR portions of the source code run perfectly on a variety of test decks, it may fail
in certain data situations that have yet to be encountered. Because the i/o portions of the code are
survey-specific, they are very difficult to port to new surveys because the size and initial values of
several of the data structures need to be hardcoded in the include files.

5. Strengths

 The DISCRETE system deals with completely general edits of discrete data. If the FORTRAN
include files (see above) can be properly changed, then the software is straightforward to apply in all
situations. Checking the logical consistency of the set of edits (via gened.for) does not require test
data. Error localization (via edit.for) should be far faster than under previously written FH systems
for discrete data.

6. Maintenance of DISCRETE Code

 As it is presently written, DISCRETE code is not sufficiently well organized and documented so
that it can be maintained. Hundreds of lines of code associated with i/o and data structures are
survey-specific.

7. Future Work on DISCRETE

 The DISCRETE system will be improved with general i/o modules, more efficient algorithms for
determining the acceptable value-states of the set of error-localized variables, and an indexing method
for tracking the set of imputes for each set of edit failures. The optimization loops of the error-
localization code may also be improved. The advantage of the indexing method is that it will make
the code more easily useable on large surveys such as censuses because many of the optimization
loops associated with error localization will only be used once. A loop in the future code will
produce a string based on the set of failing edits, perform a binary tree search on previously computed
strings associated with edit failures, find the index and set of error-localized fields if the index exists,
and, if the index does not exist in the existing trable, perform optimization and add the appropriate
error-localized fields for the new index. The main overhead of the indexing method is a sorting
algorithm that periodically rebalances the binary tree after a certain number of updates.

II. EXAMPLE

 The example basically shows what the inputs and outputs from running the two programs of the
DISCRETE system look like. The first program generates all the implicit edits that are needed for
error localization and checks the logical consistency of the entire edit system. An edit system is
inconsistent when no data records can satisfy all edits. The second program uses the entire set of

implicit edits that are produced by the first program and edits data records. For each edit-failing
record, it determines the minimum number of fields (variable values) to change to make the record
consistent.

1. Implicit Edit Generation

 The first program, gened.for, takes a set of explicit edits and generates a set of logically derived
edits. The edits are generated by the procedure of FH and consist of the smallest set needed for error
localization. Two tasks must be performed. The first is to create an input file of explicit edits. The
edits are generally created by subject-matter analysts who are familiar with the survey. An example
is given in Table 1. There are 5 edits involving 6 fields (variables). The kth variables takes values
1, ..., n , where the number of values n must be coded in a parameter file. A record fails the first editk k

if variable 1 takes values 1 or 2, variable 4 takes values 1 or 2, and variable 5 takes value 1. Variables
2 and 3 may take any values in edit 1.

Table 1. Example of Explicit Edit Input File

 Explicit edit # 1: 3 entering field(s)
 VAR1 2 response(s): 1 2
 VAR4 2 response(s): 1 2
 VAR5 1 response(s): 1

 Explicit edit # 2: 4 entering field(s)
 VAR2 2 response(s): 3 4
 VAR3 1 response(s): 2
 VAR5 1 response(s): 2
 VAR6 2 response(s): 1 2

 Explicit edit # 3: 3 entering field(s)
 VAR3 1 response(s): 1
 VAR4 2 response(s): 2 3
 VAR6 3 response(s): 2 3 4

 Explicit edit # 4: 2 entering field(s)
 VAR2 2 response(s): 1 2
 VAR4 2 response(s): 1 3

 Explicit edit # 5: 3 entering field(s)
 VAR1 2 response(s): 2 3
 VAR3 1 response(s): 2
 VAR6 1 response(s): 1

 The second task is to change a parameter statement at the beginning of the program and recompile
the program. The statement has the form

 PARAMETER (MXEDS=20,MXSIZE=8,NDATPT=8,NEXP=5,NFLDS=6).

MXEDS is the upper bound on the storage for the number of edits. MXSIZE is the maximum
number of values that any variable can assume. NDATPT is the sum of the number of values that all
the variables assume. NEXP is the number of explicit edits. NFLDS is the number of variables.

Table 2. Example of Selected Implicit Edits from Output File

 6 VAR3 VAR4 VAR5 VAR6
 1 0 0 0
 1

 7 VAR3 VAR4 VAR5 VAR6
 1 0 1 0
 2 1

 8 VAR4 VAR5 VAR6
 2 1 1

 9 VAR3 VAR4 VAR6
 1 0 0

 10 VAR2 VAR4 VAR5 VAR6
 2 1 1 1
 3 2

 11 VAR2 VAR3 VAR6
 0 0 1
 1 2
 3

The example of this section is a modified version of the example of GKL. The modification
consisting of permuting the variables as follows: 1 -> 3, 2 -> 4, 3 -> 5, 4 -> 6, 5 -> 1, and 6 -> 2. The
DISCRETE software generates all 13 implicit edits whereas the GKL software generate 12 of the 13
implicit edits. With an example using actual survey data and 24 explicit edits, the DISCRETE
software generates all 7 implicit edits whereas the GKL software generates 6 of 7. The reason that
the GKL software does not generate all implicit is due to the manner in which the tree of nodes is
traversed. The GKL software traverses the tree of nodes according to their theory.

2. Error Localization

 The main edit program, edit.for, takes two inputs. The first is the set of implicit edits produced by
gened.for. The second input is the file being edited. A FORTRAN FORMAT statement that
describes the locations of the input variables in the second file must be modified. A large parameter
statement that controls the amount of storage needed by the program is not described because of its
length. Eventually, the parameter statement will have to be described in comments.
 Two output files are produced. The first consists of summary statistics. The second (see Tables
3 and 4) contains details of the edits, blank fields, and possible imputations for each edit-failing

record. The edit code presently only delineates acceptable values for the fields designated during
error localization. The actual imputed values could be determined via statistical modelling by
analysts. The imputation could be written into a subroutine that would be inserted at the end of error
localization.

Table 3. First Example of Edit-Failing Record in Main Output from EDIT.FOR

 Record # 1 (1) ID: 1001

 Implicit edit # 1 failed:
 1. VAR1 : 2
 4. VAR4 : 1
 5. VAR5 : 1

 Implicit edit # 5 failed:
 1. VAR1 : 2
 3. VAR3 : 2
 6. VAR6 : 1

 Implicit edit # 6 failed:
 3. VAR3 : 2
 4. VAR4 : 1
 5. VAR5 : 1
 6. VAR6 : 1

 Deleted fields:

 6. VAR6 5. VAR5

 The weight of the solution is 2.1100

imputation candidates for field 6. VAR6 :
 3. 3
 4. 4

imputation candidates for field 5. VAR5 :
 2. 2

 Failed
 Field names Reported Revised Weights Edits
 ----------- -------- ------- ------- ------
 VAR1 2. 2 2. 2 1.100 2
 VAR2 4. 4 4. 4 1.090 0
 VAR3 2. 2 2. 2 1.080 2
 VAR4 1. 1 1. 1 1.070 2
*VAR5 1. 1 -1. 1.060 2
*VAR6 1. 1 -1. 1.050 2

Table 4. Second Example of Edit-Failing Record in Main Output from EDIT.FOR

 Record # 2 (2) ID: 1002

 Implicit edit # 1 failed:
 1. VAR1 : 2
 4. VAR4 : 1
 5. VAR5 : 1

 Implicit edit # 4 failed:
 2. VAR2 : 1
 4. VAR4 : 1

 Implicit edit # 5 failed:
 1. VAR1 : 2
 3. VAR3 : 2
 6. VAR6 : 1

 Implicit edit # 6 failed:
 3. VAR3 : 2
 4. VAR4 : 1
 5. VAR5 : 1
 6. VAR6 : 1

 Implicit edit # 7 failed:
 2. VAR2 : 1
 3. VAR3 : 2
 5. VAR5 : 1
 6. VAR6 : 1

 Implicit edit # 16 failed:
 1. VAR1 : 2
 2. VAR2 : 1
 5. VAR5 : 1

 Deleted fields:

 5. VAR5 6. VAR6 4. VAR4

 The weight of the solution is 3.1800

imputation candidates for field 5. VAR5 :
 2. 2

imputation candidates for field 6. VAR6 :
 2. 2
 3. 3
 4. 4

imputation candidates for field 4. VAR4 :
 2. 2

 Failed
 Field names Reported Revised Weights Edits
 ----------- -------- ------- ------- ------
 VAR1 2. 2 2. 2 1.100 3
 VAR2 1. 1 1. 1 1.090 3
 VAR3 2. 2 2. 2 1.080 3

*VAR4 1. 1 -1. 1.070 3
*VAR5 1. 1 -1. 1.060 4
*VAR6 1. 1 -1. 1.050 3

 In a typical application, the revised values (Tables 3 and 4) would not be left blank but would be
imputed according to rules developed by analysts familiar with the specific set of survey data.

III. APPLICATION

 A prototype application of the DISCRETE edit was developed for the New York City Housing and
Vacancy Survey (NYC-HVS). This prototype was used to edit ten of the primary fields on the
questionnaire. Data collected via the NYC-HVS are used to determine rent control regulations for
New York City. The variables that we used in edits were: TENURE, PUBLIC HOUSING?, TYPE
OF CONSTRUCTION (TOC), TOC CODE, YEAR MOVED, YEAR BUILT, YEAR ACQUIRED,
CO-OP OR CONDO, RENT AMOUNT, and OWNER OCCUPIED. With previous edits, these
fields were edited sequentially, starting with the TENURE field. The TENURE field reports whether
the occupant of the dwelling is 1) the owner, 2) pays rent, or 3) lives there rent free. A sequential
edit, implies an edit based on if-then-else rules. The advantage of sequential edits is that they are
often easily implemented. A principal disadvantage is that they are not easily checked for logical
consistency. Another disadvantage is that there has to be a initial field from which the remaining
fields will be edited. The TENURE field was the initial field for the AHS Survey. The initial field
is never edited in the sequential edit application but can be using a Fellegi-Holt model.
 The prototype edit considers all fields simultaneously. The TENURE field was edited in the same
manner as the other nine fields. It would be a correct assumption that most respondents are aware
of their living arrangement, making TENURE a very reliably reported field. Therefore, TENURE
did hold a higher weight. However, there are other circumstances that would cause it to be incorrect.
It still needed to be edited.
 The explicit edits needed for the DISCRETE prototype were developed from the edits of the prior
set of sequential edits. Only the 24 edits that exclusively included the ten fields were considered.
Because of the existing sequential edits, the explicit edits needed for the prototype DISCRETE edit
were developed with very minimal support from the subject-matter specialists. These 24 edits were
run through the edit generator, gened.for, and 8 implicit edits were computed. The edit generator
reduced the number of explicit edits to 23, because it determined that one of the explicit edits was
redundant. There was now a total of 31 edits for the ten data items.
 The DISCRETE prototype produced edited data that were only slightly cleaner than the sequential
edit because the data for the AHS were quite clean. The AHS is a long-term survey in which
responses are obtained by experienced enumerators rather than via mail responses. The results of the
prototype edit were similar to those of the previous sequential edit, except for one striking difference.
Using the prototype edit, the TENURE field was in conflict with other fields more often than the
subject-matter staff had anticipated.
 A second prototype was developed for the Survey of Work Experience of Young Women. This
prototype showed the power of the DISCRETE system because it allowed the editing of a large
number of data items involving a very complicated skip pattern. No edits had previously been
developed for these items because of the complicated nature of the edit situation. The core data items

consisted of WORKING STATUS, HOURS/WEEK, HOURS/WEEK CHECK-ITEM, OFF TIME,
OVERTIME, and CURRENT LABOR FORCE GROUP. Overall, this prototype was developed for
24 data items. Using previous edit systems, these data items were not edited because of their
complex relationships and skip patterns. However, these skip patterns were incorporated into the
prototype as explicit edits. This turned out to be a surprising advantage of the simultaneous edit.
Working with subject-matter staff, 42 explicit edits were developed for the 24 data items. The edit
generator computed an additional 40 implicit edits for a total of 82 edits. Because of the use of the
method of data collection used for this survey, the data were very clean. However, the results of this
prototype were not as important as was the fact that the prototype was able to edit relationships that
were previously considered too complex.

IV. SUMMARY

 The DISCRETE system is a Fellegi-Holt edit system for general edits of discrete data. It is a
prototype system that is written in FORTRAN. As currently written, it is not maintainable and not
easily portable. Due to new theoretical/algorithmic characterizations (Winkler 1995b), the system
should be more generally applicable than any currently existing system. Although no speed tests have
been done, the software should be approximately as fast as other currently existing edit systems.

REFERENCES

Fellegi, I. P. and Holt, D. (1976), "A Systematic Approach to Automatic Edit and Imputation,"
 Journal of the American Statistical Association, 71, 17-35.
Garfinkel, R. S., Kunnathur, A. S. and Liepins, G. E., (1986), "Optimal Imputation of Erroneous
 Data: Categorical Data, General Edits," Operations Research, 34, 744-751.
Winkler, W. E. (1995a), "DISCRETE Edit System," computer system and unpublished
 documentation, Statistical Research Division, U.S. Bureau of the Census, Washington,
 D.C., USA.
Winkler, W. E. (1995b), "Editing Discrete Data," American Statistical Association, Proceedings
 of the Section on Survey Research Methods, 108-113.

