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Executive Summary

For years, the U.S. Bureau of the Census has collected and disseminated data. It has come to
realize the importance of these data products for research, analysis, planning, and policy-making.
Technological advances of the 1980s have greatly increased the demand for data, particularly for
the microdata products. Users now demand more detailed microdata sets than ever before.
Unfortunately, the more information which the Census Bureau provides, the greater the risk that
auser can determine the responses for some respondents.

Title 13 requires that the Census Bureau take the necessary steps to ensure the confidentiality of
al respondents. Traditional approaches to disclosure limitation (i.e., supplying the user with
microdata for only a small sample of the population, using bottom- and top-codes for continuous
variables, and limiting detail-- e.g., use of ranges for some sensitive variables, providing
geographical codes for only highly-populated regions) no longer provide adequate protection for
some of the more sophisticated demands. As aresult, the Census Bureau is constantly exploring
the use and development of different disclosure limitation techniques. This paper explores the
possible use of a data-swapping technique.

Data-swapping was first introduced in the late 1970s. In the early 1980s, Dalenius and Reiss
proved that, when used properly, the technique provided adequate protection to a microdata file
without altering marginal frequency counts. This procedure has other desirable properties,
namely: (1) it removes the relationship between the record and the respondent; (2) it can be used
on sensitive variables, without disturbing the non-sensitive ones; (3) it can be designed to
provide protection where it is most needed; and (4) it is ssmple to implement.

Data-swapping also has its drawbacks. We see two major disadvantages. First, arbitrary
swapping can severely distort the statistics of sub-domains of the universe. Thiswill render the
file inappropriate for research and inference. Second, the implementation of more involved
swapping procedures may require a substantial amount of computer time and storage.

Rank-based proximity swapping (Section VII) appears to retain al the positive attributes (i.e.,
easy to implement, adequate masking, etc.), while retaining a sufficient amount of the file's
analytic validity. The method can be designed to preserve (1) a sufficient proportion of the
multivariate dependence/independence relationships, or (2) the means (within prescribed
confidence intervals) of randomly selected subsets.

In Section V111, we note that rank-based proximity swapping can be designed to provide
sufficient control of the distortion. Let aand b be two arbitrary continuous fields, which we
subject to swapping. We desire to satisfy one of the two following constraints.

(1) Let R(a b) and R(@, b’) be the correlation between the fields before and after the
swap. Suppose we desire the swap to reduce the correlation by no more than a factor of
Ry, 0<R,<1. Thatis,E(R(a,b))=R,* R(a b). Suppose N(a) is the number of
observations between the bottom- and top-coded values for field a. Assume we let P(a)
be the maximum percentage of the difference of the ranks (i.e, thei-th ranked value of a
can be swapped with the j-th ranked valueif and only if |i -] |<P(@) * N(a@) ). Then



P(&) =100 « y2-var(a) «(1-Ry)

a

topc - botc)

A similar percentage can be derived for field b.

(2) Suppose we wish to swap so that each value of field ais expected to differ from its
swapped value by + K, timesitsvalue, (i.e, [E(a) - a| <K, * a). Then P(a) isafunction
of the mean rather than the variance, namely
8 Ko *a
P(a) =100 x*,| — * .
3 ( atopc_abotc)

Although these relationships are proven in Appendices A, B, and C under the assumption of
uniform distribution, empirical testing on five relatively highly-skewed continuous variables,
indicates that a rank-based proximity swap may give good results on most unimodal
distributions. These results are displayed in Section XI.

Testing also indicated that such a swap could be done quickly. The time required can be
approximated by the formula

CPU for a.(sec.) = N(a,) ( P(ai)+ L )

. : i 4 3000""°

K P(a.) 1
PU for Total ) =2, N3, I |
CPU for Total Swap(sec.) ,z; () 4 +3000)

Here (1) k is the number of continuous variables swapped, (2) N(a) is the number of values that
have to be swapped for the i-th continuous variable, and (3) P(a) is the percentage of the total
number of records in the swapping interval for the i-th continuous variable.

Finally, the method can be designed to provide adequate protection against even the most
sophisticated intruder. Tables 6 and 7 compare the rank-based proximity swapping approach
with one that adds randomly generated multivariate noise, a technique which the Census Bureau
has aready employed to mask a specially requested microdatafile. Rank-based proximity
swapping appears to provide asimilar level of protection.

The rank-based proximity swapping method is easy to implement, has the ability to control the
amount of distortion, and masks the datawell. We strongly urge the U.S. Bureau of the Census
to consider implementation of this technique to limit the risk of disclosure in future public use
microdatafiles.



CONTROLLED DATA-SWAPPING TECHNIQUES
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Abstract

For many years, the U.S. Bureau of the Census has collected and disseminated data. The Bureau
has come to realize the importance of such datafor research, analysis, planning, and policy-
making. In 1963, the Bureau released a one-in-a-thousand sample file for the 1960 Decennial
Census. Today, microdata files are an important part of our decennial census and demographic
surveys program. The advent of the technological revolution in the early 1980s and the
accessibility of personal computers to small businesses and individuals has greatly increased the
demand for such data. Users now demand large and extremely detailed data sets. Unfortunately,
the more information which the Census Bureau provides, the greater the risk that a user can
determine the responses for some respondent.

Title 13 requires that the Census Bureau take the necessary steps to ensure the confidentiality of
all respondents. Since today's data users are more sophisticated than those of the past, it is
becoming difficult to provide the anonymity which the law requires. Asaresult, the Bureau is
not always able to completely fulfill all requests. This paper gives a brief overview of the
evolution of data-swapping techniques and presents a more sophisticated technique than found in
the existing literature.

|. Introduction

For many years, the U.S. Bureau of the Census has recognized its obligation to collect and
supply the nation's data user community with meaningful products. Some of these products
include public use microdata sample files. Accessto such files allow researchers to conduct
important studies quickly, inexpensively, and efficiently. Without them, all specially requested
tabul ations would have to be conducted through a contract with the Census Bureau. Thiswould
put a tremendous strain on the programming and computer support staffs, since much of their
time is committed to the day-to-day operations of producing the standard products.

On the other hand, the Census Bureau not only has an obligation to its data users but also to its
data suppliers. Title 13 requiresthat it disseminate no product from which specific information
about any particular respondent can be derived. In the case of a microdatafile, thisimplies that
data users are not able to query the file for the purpose of identifying individuals. To reduce the
risk of respondent identification, it must subject each file to the appropriate disclosure limitation
techniques. Many of these techniques have been in use since 1963, when the Census Bureau
released itsfirst public use microdata set.



II. Current Disclosure Limitation Techniques

The Census Bureau currently uses several standard techniques to mask microdata sets. The first
isarelease of datafor only a sample of the population. Intruders (i.e., those who query thefile
for the sole purpose of identifying particular individuals with unique traits) realize that there is
only asmall probability that the file actually contains the records for which they are looking.
The Bureau currently releases three public use samples of the decennial census respondents.
Oneisal percent sample of the entire population, the second a5 percent sample, and the third a
sample of elderly residents. Each is a systematic sample chosen with arandom start. None of
these files “overlap,” so there is no danger of matching to each other. Most demographic surveys
are 1-in-1000 and 1-in-1500 "random" samples. Generally the public use file for each survey
contains records for each respondent.

The second technique involves the limitation of detail. The Census Bureau releases no
geographic identifiers which would restrict the record to a sub-population of less than 100,000.
It also “recodes” some continuous values into intervals and combines sparse categories.
Intruders must have extremely fine detail for other highly sensitive fields in order to positively
identify targets.

The third technique protects the detail in sensitive responses in continuous fields. It isreferred
to as top/bottom-coding. This method collapses extreme values of each sensitive field into a
single value. For example, the record of an individual with an extremely high income would not
contain his exact income but rather a code showing that the income was over $100,000.
Similarly the low-income records would contain a code signifying the income was less than $0.
In this example $0 is a bottom-code and $100,000 a top-code for the sensitive or high visibility
field of income.

I11. The General Data Swapping Disclosure Limitation Technique

The accessibility of personal computers and the accompanying technology (modems and
electronic data transfer) have allowed data users to handle larger and more detailed data sets than
ever before. They aso allow the user to compare individual records from Census Bureau-
released records with those from other files available to the genera public (e.g., real estate
databases, information released by local governments, etc.). Today's users are demanding larger
and more detailed microdata files than ever before. Users are also demanding larger samples,
finer geographic detail and relaxation of the top- and bottom-codes. Disclosure limitation
techniques of the 1960s may no longer sufficiently mask the anonymity of the respondents.
When used in conjunction with the techniques listed above, data swapping may be afeasible
procedure to adequately mask data files while providing users with more information.

One of the first references to data swapping is found in Reiss (1980). In his article, the author
describes interchanging values of individual records within ahighly visible field. The swap
protects the univariate distribution of that variable. Since its value belongs to some other
respondent, each respondent’s anonymity is protected. Consider the example below, where



income is to be the sensitive field protected.

Example. A microdata file contains the age and income for 6 respondents. In order to
protect the anonymity of the respondents, income values are randomly swapped among
the records. Incomes on the first and sixth records, those on the second and third, and
those on the fourth and fifth are pairwise swapped.

Original Responses Responses After Swap #1
# Age Income # Age Income
1 21 20,000 1 21 15,000
2 24 30,000 2 24 30,000
3 35 30,000 3 35 30,000
4 36 25,000 4 36 55,000
5 45 55,000 5 45 25,000
6 50 15,000 6 50 20,000

Records 2 and 3 appear unchanged. Record 2 was swapped with a record having the
same income. For these respondents, the swap has provided no masking. The
probability that a swap has masked a particular record is inversely proportional to the
frequency of its value appearing in the file. For large datafiles, thisis acceptable. An
income which appears frequently in a microdata file does not as easily identify the
respondent as one which appears very rarely.

The releasing agency may aso decide to swap more sensitive fields. 1n the example
above, age could also be deemed as a highly visible identifier. In this case, age values
would be swapped in the file "Responses After Swap #1". Suppose the age value on
Record 1 is swapped with the one on Record 2, that on Record 3 with the one on Record
4, the age values on Record 5 with Record 6. The following file results.

Responses After Swap #1

# Age Income
1 24 15,000
2 21 30,000
3 36 30,000
4 35 55,000
5 50 25,000
6 45 20,000

The random swap of age can differ from the random swap of income. Independent
multiple random data swaps can be used in succession. This further ensures that the
resulting file has adequately masked accurate information about each respondent.



V. Advantages of a Data Swap
Any data swapping procedure has the following benefits and advantages.
1. Data swapping masks accurate information about each respondent.

2. If performed on all potential key variables (i.e., variables whose values when taken
together may contribute to the linking of a record with a respondent), swapping removes
any relationship between the record and its respondent.

3. This procedure is extremely simple and requires nothing more than a microdatafile
and a random number generating routine to implement. The programming is very
straight-forward.

4. The swapping procedure can be used on a select set of one (or more) variables,
without disturbing the responses for non-sensitive and non-identifying fields.

5. Swapping of continuous variables provides protection when it is most necessary.

Rare and unique responses are generally used to identify respondents. These values are
very likely to be changed. Frequently recurring responses are less likely to be of value to
an intruder and less likely to be altered by the swap. (See the income example in Section

1)

6. The procedure is not limited to continuous variables, categorical variables (such as
race, sex, occupation) can also be swapped. Care must be used when swapping
categorical variables, otherwise one can greatly decreases the usefulness of the file by
losing the true information and creating a large number of strange combinations (such as
mal e secretaries).

V. Disadvantages of a Data Swap

The advantages of a data swap are listed above, but any data swapping procedure has several
disadvantages.

1. One disadvantage was briefly mentioned in item 6. Arbitrary categorical swaps can
produce alarge number of records with unusual combinations. Arbitrary swaps on
continuous variables may do the same. For example, a clerk'sincome may be swapped
with that of a brain surgeon.

2. Another isafunction of the number of recordsin the file and the number of variables
that are to be subjected to a swap. It may take a significant amount of time and computer
resources to swap and store the original file and the swapped version.



3. Data swapping may significantly weaken the microdata file's analytical value.
Although swapping does not affect univariate analysis on the entire population, it will
affect analysis on any sub-domain (e.g., calculation of means and variances for the
income of janitors). Swapping can aso destroy multivariate relationships (such as,
regressions and correlations between two or more variables).

VI. The Dalenius and Reiss Data Swap

Reiss (1980) realized that data swapping would mask most microdata files. However, such a
procedure could destroy the analytical value and utility of the released file. Researchers,
analysts, planners, policy-makers, and other data users would draw inaccurate inferences from
thefile. Recent research in this area has concentrated on controlling the data swap so that there
would be some control over the amount of distortion introduced into the resulting file. Dalenius
and Reiss (1982) defined at-order frequency count as follows:

Let x,, ..., X, bet pre-specified variables. For any valuesa,, ..., a, define N(a,, ..., &) to
be the number of observationswith x;, = a,, ..., X,=a. Theset{N(a, ..., &)} over all
ordered combinations { (&, ..., &)} isthe set of t-order statistics for x, ..., X,

The authors then proceed to show that any data swap which preserves a pre-specified set of t-
order statistics will significantly reduce the risk of disclosure. Such a swap is possible with the
following agorithm.

1. Two observations, x and X', are (t-1, x,) equivalent if X, =x,', X3 =X3', ..., X, =X,. Thet-1
indicates that they agree on t-1 of the t key variables; x, indicates that records may disagree on
thefield x,. Form all (t-1, x,) equivalence classes.

2. Within each (t-1, x,) equivalence class, randomly swap the values of x,.

3. Repeat Steps 1 and 2 for (t-1, x,), (t-1, X3), ..., (t-1, X,) onefield at atime.

Example.
A datafile contains the fields, Race, Occupation, and Salary. Construct a swap which

preserves the 2-order frequency counts Race x Occupation (X, = race, X, = occupation,
t=2).

First, swap race codes within each occupation class. The races of Clerks 1 and 4 are
swapped; as well as those of Executives (Exec) 6 and 8.

Next, swap occupations within each race class. Individual 2's occupation got swapped
with individual 6's, while individual 3's occupation got swapped with individual 5's.

The table below allows the reader to follow the consequences of this procedure.



Original Data After Race Swap After Occupation Swap

# Race Occup Saary # Race Occup Saary # Race Occup Salary
1 w Clerk 10000 1 B Clerk 10000 1 B Clerk 10000
2 W Clerk 12000 2 W Clerk 12000 2 W Exec 12000
3 B Clerk 11000 3 B Clerk 11000 3 B Exec 11000
4 B Clerk 11000 4 W Clerk 11000 4 W Clerk 11000
5 B Exec 70000 5 B Exec 70000 5 B Clerk 70000
6 B Exec 75000 6 W Exec 75000 6 W Clerk 75000
7 W Exec 65000 7 w Exec 65000 7 W Exec 65000
8 w Exec 80000 8 B Exec 80000 8 B Exec 80000

Dalenius and Reiss did not require swapping to occur for all recordsin each (t-1, x;) equivalence
class. They only required that records be swapped for 2 records within each class. The authors
then proceeded to calculate the protection provided by such a swap, when (1) the file contains
"N" individuals, (2) there are "t" key variables, (3) there are "r" individualsin each (t-1, x;)
equivalence class, and (4) "k" of theser individuals have their observations swapped.

Although frequency counts are preserved, statistics for variables outside of the pre-specified
ones need not resemble the original data. In the example above, we have swapped the
occupation of aclerk with that of an executive. Statistics for race-occupation have not been
changed; but the distribution for occupation by income has been drastically altered. We'd like to
do more than preserve frequency counts for some pre-specified set of t variables.

VII. A Rank-Based Proximity Swapping Algorithm

In an unpublished manuscript, Brian Greenberg (1987) introduced a data swap procedure for
masking ordinal field data. This procedure can be used to swap values for any continuous
variable. The rank-based proximity swap procedure differed from Reiss original procedurein
that it restricted the range for which each value could be swapped. Any data swap with this
enhancement would definitely limit the distortion. Greenberg assumed that the ranges could be
made so stringent that any statistic obtained from the resulting set should be a good estimate of
the corresponding statistic obtained from the original set. Below isthe algorithm which he
suggested.

1. Start with adatafile of size N and order responses by asingle variable, a. That is, index
responsesto a by i=1, 2, ...,N; whereg < a, if i <j.

2. Determine avalue P(a), with 0 < P(a) < 100. The intent of the procedure is to swap the value
of g with that of g, so that the percentage difference of the indices, i and j, isless than P(a) of N.
That is|i -j| < P(@ * N/ 100.

3. Initialize al ranks with g set to atop- or bottom-code as "swapped”. Also initialize the ranks
of all imputed and blank values to "swapped"”. Initialize all other ranks as "unswapped”.



4. Let] bethelowest unswapped rank, randomly select arecord with an unswapped rank from
theinterval [j+1, M] where M= min {N, j + (P(@*N/100)}. Suppose the randomly selected
record has rank k.

5. Swap thevalues g and a,. Set the labels on these to ranks to "swapped".
6. Return to Step 4 and continue until al ranks are labelled "swapped".

7. Suppose one swaps on several additional fields, b, ¢, ... . Return to Step 1 and repeat the
procedure one field at atime. First usefield b, thenfieldc, ... . P(b) need not equal P(a).

8. When the swap is complete, calculate and compare multivariate statistics. If they are not
within a suitable range, repeat the procedure using smaller values for P(a), and/or P(b), ... .

Greenberg stopped short of guaranteeing that such a swap would preserve statistics within an
acceptable error. Methods, proposed in this paper, extend rank-based proximity swap idea. We
construct suitable sets from which each swap can occur. The resulting set preserves multivariate
statistics within a suitable statistical error.

VIIl. Enhancing the Rank-Based Proximity Swap Algorithm

The remainder of this paper concentrates on enhancing the Rank-Based Proximity Swap
Algorithm. The research focuses on finding a methodology for specifying suitable values for
P(@), P(b), ... prior to theinitial swap. Before proceeding, determine which statistics must be
preserved, then concentrate on the preservation of the following two conditions:

1. Preservation of Multivariate Dependence/Independence. Let R(a, b) = original
correlation between the valuesin fieldsaand fieldsb. Let R(&, b') = the correlation
between the two fields after swapping. Given an 0.0 < R, < 1.0, swap so that

E[ R@&, b)] =R, * R(a b).

Even under controlled conditions, a random swap will destroy some of the natural
dependence between any two fields. Hence, R, must be lessthan 1.0. One definitely
does not want R, < 0.0, otherwise he has reversed the correlation between the fields (i.e.,
positively correlated fields would appear to be negatively correlated and vice-versa).

2. Preservation of Means of Subsets Which Contain a Large Number of Observations. A
second desirable property of the swap isto preserve most univariate statistics (e.g.,
means, variances, skewness). Thisis particularly important for subsets which contain a
large number of observations. Researchers may draw conclusions based on subsets of the
microdatafile. They are skeptical of inferences based on a small number of

observations. This skepticism diminishes as the size of the subset increases. The easiest
such statistic to preserve isthe mean. Given K, > 0.0, we would like to construct a swap
so that if & is swapped with a, then




El |a -ala] =K,

For example, if K, = 0.10, then on average the swap would alter the value of each a by
10 percent. By the Central Limit Theorem, one would expect that a 95 percent
confidence interval for the mean of a subset with N observations would be

o 2*K0*7 7. 2*K0*7

N N

The algorithm defined below involves calculating afew initial statistics for each swap field.
These are then used to set the corresponding percentages. This guarantees the swapped file will
approximate the original file. It requires only the very simplistic assumption:

Let a,,. = value of the bottom code for field g, and a,,. = the value of the top-code for
fielda Thenthe a intheinterval (.. aq,) are approximately uniformly distributed.

At first glance, this assumption seems too simplistic. However, an almost identical assumption
was used by Dalenius and Hodges (1959) to derive the "Cumulative Root f Rule" for an optimal
construction of strata. Our empirical work with 5 skewed variables seems to indicate that such an
assumption works well here also. Theorem 3 gives an estimate for P(a) which preserves
multivariate dependence/independence. Theorem 4 gives an estimate for P(a) which preserves
the univariate means of large subsets.

Lemmal. Letaandb betwo continuous fields. Suppose each value g is swapped with the
value a. and each vaue b, is swapped with b,.. Let R(a, &) = the correlation of the valuesin field
abefore the swap to the values in field a after the swap. Define R(b, b') similarly. Let R(a, b) =
the correlation of the valuesin the field ato those in field b before the swap and R(&, b') = the
correlation after the swap. Appendix A shows that

E[ R@, b) ] =R(a &) * R(b, b) * R(a, b).
Corallary 2. Givenan 0.0 < R, < 1.0, assume one construct swaps on fields a and b so that
R(a &) = R(b, b) = R, then

E[R(@, b)) ] =R, * R(a b).

Theorem 3. Givenan 0.0 < R, < 1.0, one can construct a swap so that R(a, &) = R,"2

Let a,, and a,,. equal the top- and bottom-codes for field a. Let Var(a) = variance of the
remaining valuesin field a Appendix B shows that a reasonable estimate for P(a) is



‘/2 «Var(a) =(1-R,)
a

P(a) =100 *

topc - botc)

Suppose rather than preserve multivariate covariances, one desires to preserve univariate means
of large subsets. The theorem below shows the relationship between P(a) and K.

Theorem 4. If one desires to control the swap so that each value of Field ais expected to differ
from its swap value by +K, times its value, using the notation of Theorem 3, Appendix C shows
that a reasonable estimate for P(@) is

’ K *a
P(a) =100 * 8, 0 :
3 ( atopc_abotc)

Equate the right-hand-side expressions for P(a) in Theorems 3 and 4 to find that R, and K,
spawn the following relationships:

4 a’ )
R=1-S4__& k2 .
0 3 var(a) °

ar(a
K,= %*(1—R0) Jvar(a)
a

0

Once one has specified K, he has also specified avalue of R,, and vice-versa. For example, A
distribution has a mean of 1000 and a variance of 1500°. A controlled ordinal swap is used with
Ko = 0.10. One expects

R, =1- (4/3) * (0.10)* * (1000/1500)* = 0.995.
Similarly, if arank swap yields an R, of 0.99, then one expects

Ko = (3/4)¥2* (1-0.99)%2* (1500/1000) = 0.131.



I X. Testing the Enhanced Data Swap Theory, The Test Deck

All research was performed on the 1993 Annual Housing Survey Public Use File. From each of

the 64,998 individual records, the following 10 fields were extracted:

(1) IDNUM : A 12-character identification number
(2) REGION: Region in which the housing unit was located (1, 2, 3, or 4)

(3) BEDROOMS: Number of bedrooms in the unit (O through 10)

(4) BATHS: Number of bathroomsin the unit (O through 10)

(5) YR _BLT: Year the unit was built (80 through 92)

(6) INCOME: Income of the household (0 through 100,000)

(7) HOME_VAL: Vaue of the housing unit (0 through 350,000)

(8) MORTGAGE: The monthly mortgage payment (O through 1,800)

(9) MAINTAIN: Annual cost of maintenance (O through 9,000)

(10) TAXES: Property taxes (0 through 62).

The IDNUM was used to link swapped and unswapped values. REGION, BEDROOMS,
BATHS, and YR_BLT were used as categorical key variables. INCOME, HOME_VAL,
MORTGAGE, MAINTAIN, and TAXES as continuous key variables.

The rank-based proximity swapping procedure was performed on each of the 5 continuous

fields. Values, which were either not reported or which failed the top- (bottom-) code edits,
were not subjected to the swap. All remaining values were. Table 1 below shows some relevant

statistics for each of the continuous fields.

Table 1. Statisticsfor the Fields Subjected to Swapping

FIELD #0BSY TOP- | BOTTOM- | MEAN? | STANDARD
CODE CODE DEVIATION?
INCOME 35,717 100,000 0 11,369 13,986
HOME 31,394 350,000 0 97,608 67,184
VALUE
MORTGAGE 15,908 1,800 0 607 359
MAINTAIN 18,374 9,000 0 571 821
TAXES 30,671 62 0 19.83 12.83

Y These counts exclude non-reported, top-, and bottom-coded val ues.

? These statistics exclude non-reported, top-, and bottom-coded val ues.
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X. Objectives of the Rank-Based Proximity Swap

Retention of the Covariate Relationships. This study's primary objective isto show that oneis
able to control the swap. The masking agent wants to swap values so that the univariate and
covariate properties of the universe are retained. He uses a swapping procedure which retains all
of the universe's univariate distributions. Unfortunately, this procedure destroys some of the
intrinsic bivariate relationships. One hypothesizes that for agiven value of R,, 0< R, < 1, he
can control the ranges from Fields a and b, on which he performs the random swaps. He
constructs these ranges so that the expected post-swap correlation of valuesin aand b is assumed
to be R, times the value of the original correlation, (i.e., R(d, b)) = R, * R(a b)). The goal isto
demonstrate that, by using this method, one can come close to his correlation, R(a, b').).

Control Within Each Continuous Field. The project has severa secondary objectives. If one
has achieved his target correlation, R(&, b'), has he done so by controlling the distortion within
each field? The test must confirm three conjectures. First, there exists a relationship of the
percentage of the total number of records in each swapping interval, P(a), with the desired
correlation of the swapped value with its original, R(a, &). Second, there is also arelationship of
P(@) with K,, the average expected absol ute percentage difference of the swapped value with the
origina. Third, R(a &) isagood predictor of K,, and vice-versa.

Feasibility of Implementation. Another objective examines the logistical feasibility of
implementing such aswap. The procedure must be relatively easy to program. Programs must
be written so that they can be readily modified for different variables and microdatafiles. The
programs must also execute in a reasonable amount of time.

Masking Ability. A final objective examines the amount of distortion necessary to adequately
mask the data. How is the amount of protection related to R, or K,? We can use matching
software developed by Winkler (1995) to determine the percentage of records in any masked
file, which can be re-identified.

XI. Results of the Testing

Retention of the Covariate Relationships. Testing reveals that the swapping method generally
yields covariances within an acceptable range of their targets. In Table 2, the pre-swap original,
post-swap target, and post-swap observed correlation coefficients for the 10 bivariate
combinations of fields swapped are listed. Values correspond to the factor R, = 0.975. One
obtains the values in "POST-SWAP EXP" column by multiplying the corresponding value in the
"PRE-SWAP" column by afactor of 0.975. Compare these to the actual post-swap correlation
coefficients displayed in the final column.
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Table2. Comparison of the Observed with Expected Correlation Coefficients
For a Data Swap with Factor, R, = 0.975

CORRELATION COEFFICIENTS

FIELD a FIELDb # PRE- POST- POST-
OBSERV | SWAP SWAP SWAP

ATIONSY EXP. OBS.

INCOME HOME VAL 23,318 0.150 0.146 0.141
INCOME MORTGAGE | 11,225 0.034 0.032 0.024
INCOME MAINTAIN 14,058 0.050 0.049 0.045
INCOME TAXES 22,791 0.095 0.093 0.087
HOME VAL | MORTGAGE | 15514 0.607 0.592 0.595
HOME VAL [ MAINTAIN 17,735 0.202 0.197 0.202
HOME VAL TAXES 29,871 0.576 0.562 0.567
MORTGAGE | MAINTAIN 10,872 0.166 0.162 0.164
MORTGAGE TAXES 15,326 0.511 0.499 0.500
MAINTAIN TAXES 17,487 0.167 0.163 0.168

Y Number of Records on which FIELD aand FIELD b both contained a reported value that fell
between the corresponding bottom- and top-code range.

In Table 2, all expected covariances differ from the observed post-swap by less than 0.008.
There are only three combinations (HOME_VAL/MORTGAGE, HOME_VAL/TAXES, and
TAXES/MORTGAGE) which have a correlation over 0.500. The swapping algorithm does an
excellent job of hitting its target correlation for these combinations. These three combinations
are of the most interest to data-users, since it seems frivolous to do regression analysis on
independent variables. The swap achieves its objective. It preserves bivariate independence and
reduces the correlation of highly dependent variables by a pre-defined factor of R,.

Use Table 3 to compare the expected values to observed post-swap correlations for the
HOME_VAL/MORTGAGE, HOME_VAL/TAXES, and MORTGAGE/TAXES combinations.
The listed values correspond to R, = 0.975, 0.950, and 0.900. Expected post-swap correlations
are also calculated for these combinations when a swap is constructed to yield an average
absolute percentage difference of 10 percent (i.e., K, = 0.10). In the latter instance, the target
factor R, is calculated by multiplying the correlation (corresponding to K, = 0.10 (See Theorem
4.)) for FIELD awith the corresponding correlation for FIELD b (i.e,, R, = R(a, &) * R(b, b)).
Table 3. Observed versus Expected Correlation Coefficients of
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Highly Correlated Combinations of Continuous Variables
For Various Target Values of R,

CORRELATION
COEFFICIENTS

FIELD a FIELD b # PRE- | POST- | POST-
OoBS.” R, SWAP | SWAP | SWAP
EXP. OBS.

HOME_VAL MORTGAGE | 15,514 0.975 0.607 0.592 0.595

15,514 0.950 0.607 0.577 0.590

15,514 0.900 0.607 0.541 0.560

15,514 0.973” 0.607 0.590 0.591

HOME_VAL TAXES 29,871 0.975 0.576 0.562 0.567

29,871 0.950 0.576 0.548 0.555

29,871 0.900 0.576 0.518 0.538

29,871 0.970” 0.576 0.556 0.558

MORTGAGE TAXES 15,326 0.975 0.511 0.499 0.500

15,326 0.950 0.511 0.486 0.487

15,326 0.900 0.511 0.460 0.467

15,326 0.9717 0.511 0.495 0.496

Y Number of Records on which FIELD aand FIELD b both contained a reported value that fell
between the corresponding bottom- and top-code range.

? These factors are calculated by multiplying the predicted factors for the two fields which
corresponds to K, = 0.10.

Table 3 indicates that our swapping procedure adequately predicts the post-swap correlation for
large values of R, (namely, R, > 0.950). This precision diminishes as R, drops from 0.950 to
0.900. One now has to address the reason for the diminished accuracy of the estimator.
Attribute alarge portion of this problem to the loss of control of the swap within one or more of
the continuous variables (i.e., R(a, &) differs significantly from R,"2).

Control Within Each Continuous Field. The original problem states,
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"Given R,, can we determine appropriate values of P(a) and P(b), (i.e., the maximum
number of observationsin each swapping set)?"

One "solves' this problem by constructing appropriate percentages based on R,,. If the expected
value of the post-swap correlation, R(&, b'), differs significantly from the original correlation
diminished by afactor of R, (i.e., R, * R(a, b)), then the problem may occur in one of the
following three assumptions:

(1) E[R(@, b) ] =Ry * R(a b);
(2) Theorem 3 does not adequately estimate P(a) for certain values of R,; or
(3) Theorem 3 does not adequately estimate P(b) for certain values of R,.

See Appendix A for a proof that Assumption (1) holds. The results of Tables2 and 3 also
support this. Let's concentrate attention to the validity of P(a) and P(b). Recall that the
construction of P(a) hinges on one ssimple, but very crucial, assumption, "The values of Field a
are uniformly distributed between the bottom- and top-code for a" How uniform are these
distributions?’

All five of these continuous variables are skewed. In uniform distributions, the standard
deviation would be approximately 28 percent of the interval length. Use Table 1 to calculate
these ratios for each field. They are approximately

INCOME .............. 14 percent,
HOME VALUE ... 18 percent,
MORTGAGE ....... 20 percent,
MAINTAIN ........... 9 percent, and
TAXES.....ccoeeee 21 percent.

The most highly skewed fields are INCOME and MAINTAIN; while the other three are
relatively uniform. Expect P(a) to be a worse approximation of interval length for MAINTAIN
than for TAXES. Table 4 confirmsthis. Suppose one desires atarget correlation of the
swapped to the unswapped value of 0.987. For MORTGAGE, TAXES, and HOME VALUE,
this method yields correlations which fall between 0.982 and 0.985. Notice the observed post-
swap correlations for the other variables. INCOME has a post-swap correlation of 0.955, while
MAINTAIN has one of 0.924. One cannot dismiss the importance of a distribution's skewness.
Should he abandon this hypothesis, since it was based on an erroneous assumption?

For "near uniform" distributions, the theory does a good job of estimating P(a) for large values
of R,. YetitfalsasR, decreases. Examine the proofsin Appendix B. It isvery important that
the distribution be nearly uniform on each swapping interval. The range of the swapping

interval increases as R, decreases. For values of R, near 1.00, the ranges will be very small and
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Table 4. Resultsof the Rank-Based Proximity Swap Test

CORRELATION AVERAGE
BETWEEN SWAPPED ABSOLUTE
AND ORIGINAL PERCENTAGE
VALUE, R(a, &) CHANGE,
100*|a-a'|/a
FIELD PCT OF CPU EXP. ACTUAL EXP. ACTUAL
RECSIN TIME
SWAP INT (MIN:
SEC)
INCOME 3.1 5:15 0.987 0.955 16.79 19.70
4.4 7:26 0.974 0.930 23.89 27.56
6.2 10:18 0.948 0.895 33.58 39.52
1.8 3:07 0.996 0.975 10.00 11.43
HOME 4.4 5:15 0.987 0.982 9.44 11.62
VALUE
6.3 7:17 0.974 0.967 13.35 16.79
8.8 9:54 0.948 0.943 18.88 23.24
4.5 5:56 0.986 0.981 10.00 13.21
MORTGAGE 4.4 1:32 0.987 0.985 8.10 8.84
6.3 2:09 0.974 0.973 11.45 12.84
8.8 2:57 0.948 0.953 16.20 17.45
5.5 1:59 0.984 0.980 10.00 13.18
MAINTAIN 2.0 0:59 0.987 0.924 19.74 8.84
3.1 1:32 0.974 0.893 27.93 11.34
4.0 1:52 0.948 0.847 39.48 15.39
1.1 0:48 0.996 0.983 10.00 4.72
TAXES 4.6 5:52 0.987 0.983 8.89 10.75
6.5 8:09 0.974 0.970 12.56 14.85
9.2 11:11 0.948 0.949 17.78 20.68
5.2 6:36 0.982 0.983 10.00 11.79
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distribution will be "almost" uniform of most swapping intervals. As R, decreases, the intervals
become bigger and less uniform.

For highly-skewed distributions, P(a) can be accurately determined only at relatively high values
of R,. For INCOME, R, = 0.975 (R(a, &) = R,"? = 0.987) istoo low. For less-skewed
distributions, such as TAXES, R, = 0.900 and R(a, &) = 0.948 give remarkably good estimates.
A good topic for future research will be the quantitative relationship between the skewness of
the distribution and the ability of R, to give an accurate prediction of the appropriate number of
percentage of the total number of observations in a swapping interval, P(a).

Recall that K, is the average percentage change induced by the rank swap. Table 4 shows that
the theory provides good predictions for the relationship between K, and P(a). Again, the
distribution of each swapping interval is assumed to be approximately uniform. For relatively
small swapping intervals, the K -estimator is an extremely good predictor. It even compensates
for a"moderately" skewed distribution such as INCOME (Target K, = 10, Observed K, =
11.43). However, for very extremely skewed distributions, such as MAINTAIN, even the K,
estimator fails miserably (Target K, = 10.00, Observed K, = 4.72.). Asthe theory predicts, P(a)
and the observed value of K, are directly proportional. Compare values (within each field) of
the "PCT OF RECORDS IN SWAPPING INTERVAL" column with the "AVERAGE
ABSOLUTE PCT CHANGE/ OBS."column from Table 4. The columns are almost directly
linearly correlated. When P(a) doubles, the observed value of K, approximately doubles.

Also use Table 4 to confirm the inverse relationship between the observed correlation, R(a, &)
and the corresponding observed value of K,. Thisisalogica consequence of the validity of
Theorems 3 and 4. For pre-defined values of K, which correspond to values of R, near 1.00
(e.g., R, > 0.95), one can construct a sampling interval for which the observed correlation is near
the target. For less skewed distributions, values for this corresponding R, can extend to 0.900
and lower. The theory holds. Is implementing such a swap feasible?

Feasibility of Implementation. The procedure is not difficult to program. For testing
purposes, the author wrote and executed a SAS modular program by which the procedure was
tested. All information in Tables 1 through 4 was generated by this program. The modules and
the SAS procedures used are listed below.

Module 1: Determine the bottom- and top-codes for CONTINUOUS VARIABLE #1.
(Use PROC MEANS.)

Module 2: Create a data set by stripping off the IDNUM and the value for
CONT_VAR_#1. Exclude records where the value for CONT_VAR_#1 is missing,
bottom-, or top-coded (Use DATA STEP with KEEP= option).

Module 3: Calculate the record count, mean, and standard deviation of the new set. (Use
PROC MEANS).
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Module 4: Sort the data set by CONT_VAR_#1. (Use PROC SORT.)

Module 5: Swap the data. (Use aDATA step.) Thisisthe only module which requires
some involved programming. It also requires the most Central Processing Unit (CPU)
time to execute. In this program, the user sets the following parameters:

(1) Record Count of the set,

(2) Target Factors, R, and K,

(3) Mean of CONT_VAR_#1,

(4) Standard Deviation of CONT_VAR_#1,

(5) Bottom-code of CONT_VAR_#1, and

(6) Top-code of CONT_VAR_#1.

The program
(1) calculates P(a), by use of a programmed formula,
(2) chooses an appropriate random number,
(3) randomly swaps the data in the prescribed manner, and
(4) setsthe swap flags.

Module 6: Sort the output set of the previous module by IDNUM. (Use PROC SORT.)
Repeat Modules 1 through 6 for CONT_VAR_#2, CONT_VAR _#3, ....

Module 7: Combine all information from the output sets of Module 6. (Use DATA step
withaMERGE BY IDNUM.)

Module 8: Analyze the correlation coefficients of the continuous variables after the
swap. (Use PROC CORR on the set produced in Module 7.)

Module 9: Produce the correlation coefficients for the origina set (Use PROC CORR on
the original set.) Manually compare the two. (For files with alarge number of
continuous variables, use PROC COMPARE.)

If the user is satisfied with the results of the swap, invoke Module 10.

Module 10: Update the values of continuous variables. (Use a DATA step with
UPDATE statement

Even though the code for Module 5 is the most difficult to write, it is extremely easy to
modify. The user can easily change any combination of the following.

(1) To execute for adifferent value of the Diminishing Factor, R, (or K,), reset
the value of the parameter R, and re-execute the program.

(2) To execute for adifferent continuous variable, change the parmeters: set
count, mean, standard deviation, bottom-, and top-code. Re-execute.
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(3) To change the method by which P(a) is calculated, modify the line of code
with the formula, then re-execute. Use this when some users desire P(@) as a
function of K, others as afunction of R,.

Module 5 is easy to modify. Even anovice SAS programmer can maintain and execute this
procedure. Before implementation, thereis still work to be done. At present the parameters
must be hard-coded from the output of Module 3 to Module 5. An experienced SAS
programmer can code the routine so that this update is automatically executed. The user must
also restart the program for each continuous variable. Through the clever use of macro-variables
and macro-programs, a user should be able to pre-specify all continuous variables, then start the
execution. The program would not stop until the completion of Module 9. After verifying the
acceptability of the swap, the user could then invoke Module 10. It is also probable that more
efficient code could be written in another environment (Unix, C, etc.).

The programming code exists which is easy to use and modify. Does this code executein a
relatively short amount of time? Table 4 shows the CPU time required to execute the swap
(Module 5). For example, aK, = 0.10 swap for INCOME took 2 minutes and 17 seconds. The
K, =0.10 swap for al variables took 18 minutes and 26 seconds (3:07 + 5:56 + 1:59 + 0:48 +
6:36). A multivariate regression of the ratio CPU time/Total Record Count (CPU/N(a) to P(a)
yielded the following formulas.

(a;) L1

CPU for a,(sec.) = N(a,) =( i

7 3000
K P(a.) 1
CPU for Total S ) =2 N(a, : '
or Total Swap(sec.) =), N(a;) *(—"—+3555)

The CPU time required is afunction of (1) k, the number of continuous variables swapped, (2)
N(a), the number of values that have to be swapped for each continuous variable, and (3) P(a),
the percentage of the total number of records in each swapping interval. Users may find this
formula very useful. If either k or some of the N(a) are extremely large, the process could
require a substantial amount of CPU time.

Masking the Data. Testing indicates that an ordinal rank swap masks the microdatafile as well
as the technique of adding independent randomly-generated noise of Paas (1988) and Kim
(1986). The testing technique assumed the following.

D An intruder could construct atarget file of relatively unique individuals, some of
whom he was "almost certain" would be contained in the universefile. This
target file would contain 600 to 1,000 individuals.

2 For each record in the target file, the intruder would have non-sensitive
information (e.g., the physical location of the housing unit, the number of

18



bathrooms and bedrooms which it contained, and the year in which it was built),
which he believed to be very reliable. The intruder is slightly skeptical about
certain values in some of these non-sensitive fields.

3 For each targeted observation, the intruder was also able to make reasonably
accurate guesses (within 10 percent of the true value for five sensitive items
(household income, home value, mortgage payment, annual maintenance, and
property taxes).

4 Because the intruder has accurate information on non-sensitive items, he can
restrict the universe to less than 20,000 observations.

(5) The intruder has a very sophisticated matching software program. The software
will link each record from the target file to the "most likely" match in the
restricted universe. The intruder has a pre-defined criteria for which linkages are
definitely re-identifications, which are suspect, and which are not re-
identifications. For definite re-identifications, it isimportant to the intruder that
he obtain accurate information for all five of the sensitive values. The intruder
may realize that the values in the restricted universe have been perturbed, but he
does not know to what extent.

(6) The intruder has sufficient knowledge of the software, and the target, and
restricted universe files to accurately set the required matching parameters.

The Restricted Universe. The intruder first constructs the restricted universe by blocking the
observations into equivalence classes. Two observations are in the same equivalence class if
they contain the same values for BATHS, BEDROOMS, YR_BUILT, and REGION. Restrict
the universe to only those classes with less than 100 observations. This would produce afile of
18,557 observations.

The Target File. Theintruder'starget file contains all observations in the equivalence classes
with 2 or less observations. Thisfile contained 771 observations.

Introduction of Some Intruder Skepticism. After the construction of the target and restricted
universe files, the intruder becomes skeptical of certain values in the non-sensitive variables.
Without reconstructing either file, he decides to collapse certain equivalence classes. For
(programming) simplicity, assume the region code was inaccurate. Collapse these files
accordingly. Two records are now equivalent, if they contain the same values for BATHS,
BEDROOMS, and YR_BLT. Thetarget file now has equivalence class blocks containing 7 or
less observations. The restricted universe has blocks containing 213 (as compared to 100) or
fewer records.
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The Matching Software. The intruder has software which utilizes the matching algorithm
developed by Fellegi and Sunter (1969). He also posesses software similar to that of Winkler
(1988), he can calculate a reasonably matching and non-matching "weights' for the sensitive
variables.

The Expectation-Maximization (EM) software of Winkler (1988) obtains good estimates for a
set of weights, which would do the best job re-identifying the true corresponding record in the
restricted universe. This software independently compares values of each variable in the target
file to the corresponding variable in the universe.

If the typical value of that variable has alarge number of possible matches in the universe, the
EM algorithm assigns a variable alow positive weight for matching cases. If thetypical valuein
that field has alimited number of possible matches, it assigns a large positive value. Negative
weights are assigned for mismatch weights. Large negative numbers indicate that there are a
limited number of possible mismatches for the typical value. Small negative weights, indicate
that the typical value has many possible mismatches.

In our testing, we have access to a unique identifier, which is attached to each record in the
target and universe files. Thus, we are able to positively determine whether the weights were the
optimal for discrimination. In actuality, the intruder would not have this information available
to him. He would derive aless optimal set of weights, this would cause more "definite” re-
identifications, which were incorrect. Weights will differ between the perturbed versions of the
universe. Fortunately, for the intruder, the optimal weights did not differ significantly from the
form of perturbation used. Table 5 gives the approximate optimal weights.

The Fellegi-Sunter routine independently matches each field on the target file to records on the
restricted universe file. This match is restricted to those records in the universe which have the
same values as the key variables (BATHS, BEDROOM, YR_BLT) of the target file. The
appropriate positive/negative weight from Table 5 is obtained for each variable. Each record in
the universe is assigned a value equal to the sum of the 5 weights (one weight for each sensitive
field). The record in the universe with the largest aggregate weight is linked to the target.

Table 5 shows that HOME VALUE is agood discriminator of true re-identification. For the
typical value of HOME VALUE, there are alimited number of cases which are possible matches
and non-matches. INCOME, on the other hand, is a less adequate discriminator. For the typical
INCOME value, there are many possible matches and mismatches.

Criteria for Definite, Suspect, and Erroneous Re-identifications. The intruder isinterested in
accurately identifying all five sensitive values. If one of the five is suspect, he questions the re-
identification. In addition, if two or more of the values are suspect, he dismisses the linkage as a
case for which no suitable match is found.

If the sum is greater than +10.0, then all five fields match within 10 percent of the intruder's
expectation. In this case, he assumes that he has a positive re-identification.
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Table5. Optimal Matching/Non-Matching Weights For the EM Procedure
For the Rank-Based Proximity Swap Version of the 1993 AHS Microdata File

Field If values agree If values disagree
within 10 Percent by more than 10 percent
INCOME +1.8 -0.6
HOME VALUE +3.0 -3.6
MORTGAGE +1.2 -5.4
MAINTAIN +1.9 -3.2
TAXES +3.0 -4.0

If the weight isless than 0.0, then at least 2 of the latter 4 variables (INCOME is excluded, since
it isapoor discriminator) do not match within 10 percent of the intruder's expectation. He
therefore assumes the linkage to be incorrect.

Any case with aweight between 0.0 and 9.9 is assumed to be a " Questionable Linkage."

It is possible for the algorithm to assign a weight greater than 10.0 to an incorrect linkage. Here,
there exists arecord in the restricted universe on which all five of the values lie within 10
percent of the intruder's expectations for the target. When this occurs, the intruder will
incorrectly believe that he has re-identified histarget. Refer to these as "Incorrect Re-

| dentifications.”

Table 6 below displays the masking effect of each of the rank swap (i.e., K, = 0.10, R, = 0.975,
R, = 0.950, and R, = 0.900). Sincethe K, =0.10 generally gives smaller swapping intervals
than R, = 0.975, the value of R, = 0.990 is used as an approximation for the corresponding
correlation coefficient.

Analysis of Masking Results. Refer to Table 6. The rank swap appears to effectively mask the
microdatafile. When R, = 0.975, only 100 (or 13 percent) of the 771 target records were able to
be correctly re-identified. This compares favorably with the results from the Paas (1988)
simulation, in which he correctly re-identified 20 percent of histarget file. The intruder "re-
identifies" 152 records, but 52 (or about 1 out of every 3) are incorrect. Only marginal gains are
achieved by reducing the factor below 0.950. The decrease is slight (142 "re-identifications’, 89
correct, 53 incorrect), as the target level of R, is decreased to 0.900.

To the layman analyst, 13 percent re-identification may seem unsatisfactorily high. However,
keep in mind the specia circumstances under which the simulation is conducted.

(1) Theintruder is certain that each target respondent exists on the microdata file.
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Table 6. Ability of an Intruder to Re-identify Microdata
Masked by a Rank-Based Proximity Swapping Routine
10 Per cent Difference Allowed
Between Valueson Target and Masked Files

Swapping ~0.990 0.975 0.950 0.900
Method
Target R, (K,=0.10)
Correct 124 100 90 89
Re-lds
I ncorrect 54 52 51 53
Re-lds
Questionable 378 266 236 204
Linkages
False 215 353 394 405
Linkages

(2) Thetarget fileis an offspring of the file used to create the perturbed universe.
Values were not generated as the result of two independent surveys. Asaresult,
respondents do not give inconsistent answers (e.g., respondent gives gross income figure
for one survey and take-home income for another), there are no keying errors, and no
user interpretation errors (e.g., one survey gives (current) home value, the other gives the
price at which the house was purchased several years ago).

(3) The software used is as sophisticated as any possessed by the intruder.

(4) The set of weights calculated are optimal for discrimination. If an intruder had to
"guess' weights, his matching accuracy would diminish.

Muller, et a (1995) discuss Points (1) and (2) in detail. For these reasons, they are not surprised
by the high re-identification rate which Paas achieved. Point (3) can be challenged. Winkler's
software is available on the internet. Also, the methodology, from which the program was
constructed, exists in the professional literature. Some intruders may have better software. Note
that Winkler's software is extremely thorough and effective. It required severa years of intense
research, combining the results of many noted matching professionals. The validity of Point (4)
is hard to evaluate. For this simulation, the weights were not very sensitive to the valuesin the
perturbed file. If an intruder uses Winkler's program, he will do no better than the results given
in Table 6.
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Comparison With the Addition of Random Noise. Kim (1986) suggested a method of adding
random noise to sensitive data. Like the rank swap, it has the ability to predict the amount by
which bivariate covariances are diminished. Kim's theorem is as follows.

Suppose (g, b) is multivariate normal distribution with standard deviations STD(a) and
STD(b). Suppose aso that the correlation coefficiecnt of ato bisR(a, b). Suppose we
have a multivariate noise distribution (na, nb) where the means of na and nb are 0,
STD(na) = ¢ * STD(a), STD(nb) = ¢ * STD(b), and R(na, nb) = R(a, b). For each
element (g, b) in (g, b) randomly choose avalue (na, nb) in (na, nb). Leta; =a + na
and b, =b, + nb in (4, b'), then

VAR(@) =VAR (a) * (1 +¢),
VAR(D) = VAR (b) * (1 + ¢?, and
COV(a, b) =COV(a b) * (1+c?).

Kim is using noise to expand the variance-covariance structure. The regression coefficients are
unaltered by the noise. The approach of this paper preserves the variance structure, but contracts
the covariance structure by afactor of 1/ (1+c?). Oneis able to calculate variance-covariance
structures for the five variables in question. By using the SUN-UNIX subroutine RNMVN, he
can generate values for random noise, (n;, Ny, ..., Ng), from a distribution with the desired
variance-covariance structure. Add these values to the original values to produce a distribution
with COV (&, b) =S, * COV (g, b).

Note that S, (for Kim’s method) like R, (for the method presented here) is the expected value of
the ratio of the largest covariance to the smallest. Whereas Kim’'s method expands the perturbed
covariances, this method diminishes them. Never the less, this appears to be a logical measure
by which the masking power of the two methods can be compared.

Let R,=S,". To compare the protection afforded by this masking technique to that afforded by
the rank swap technique, arandom noise approach is used to construct masked versions of the
universe for values of R, = 0.990, 0.975, 0.950, and 0.900. These sets were then subjected to the
EM and Fellegi-Sunter routines. Table 7 shows the masking ability of random noise.

At al levels of R, the rank swap and the addition of random noise provide about the same
amount of protection. Look at the R, = 0.975 level. Both swaps re-identify about 100
observations correctly and about 50 incorrectly. When the rank swap is used, there are less
guestionable linkages (266 to 328) and more false (353 to 286) linkages. Similar comparisons
can be made at the other levels of R,. Like the rank swap, little extra protection is gained by
using values of R, below 0.950. These results re-enforce the conjecture, "For this microdata
fileavalue of R, near 0.950 is the optimal level of distortion."
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Table 7. Ability of an Intruder to Re-identify Microdata
Masked by Kim's Random Noise Procedure
10 Per cent Difference Allowed
Between Valueson Target and Masked Files

Target R, 0.990 0.975 0.950 0.900
Correct 126 103 96 92
Re-lds
Incorrect 52 54 54 55
Re-lds
Questionable 411 328 280 230
Linkages
False 191 286 342 394
Linkages

XII. Future Research Topics
Below arelisted afew areas which the author feels may be fruitful for future research.

1. Development of a Better Estimator for P(a), the Percentage of Observations in the
Swapping Interval. In Appendix B, we estimated the relationship between P(a) and
R(a @), the target correlation of each value in field a after swapping to its pre-swap
value. Assuming ato be uniformly distributed, we achieved arelatively accurate
estimate for P(a). Can we do better? Isit possible to derive a more exact estimate by
using the higher moments (e.g., the third moment which measures the skewness)?

2. Examination of P(a) for Non-Monotonic Decreasing Distributions. All five continuous
distributions in this rank test were monotonic decreasing. Does this method of estimation
give more exact results with uni-modal distributions that are less skewed (e.g., normally
distributed fields)? How do we handle multi-modal distributions?

3. Examination of Alternative Constructions of the Swapping Interval. The interval used in
this research was constructed by using the results of Corollary B.2. in Appendix B. It
assumes that if R(a, &) isthe target correlation and Var(a) isthe variance of a, and if g is
the difference between the i-th swapped value and R(a, &) times the original value, then
Var(e) = (1- R*(a a)) * Var(a).

The variance of the g are estimated by assuming the a are uniformly distributed. Are
there other methods of calculating or estimating the variance of the e? Should we use an
iterative process which calculates the Var(e) directly? Should we stratify and swap
within each stratum? Should we stratify and permute within each stratum?
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4, Development of a Rank Swap for Categorical Variables. The rank swap works well for
continuous variables because they can be sorted in ascending or descending order. |Is
there some analogous method to rank categorical variables? Should we attempt to
develop ametric from R" to RY; use this metric on the n sensitive continuous variables to
stratify the microdata file; then swap categorical variables within stratum? Should we
first block al categorical variables, then swap entire blocks?

5. Analysis of a Rank Swap on Statistics of Sub-Domains. This research shows that thereis
a"predictable” relationship between R, and K. In Section V111, it was hypothesized that
bias of the mean of a subset was directly proportional to K,. No simulations were done
to prove or disprove this conjecture. The author's "gut" feeling is that the conjectureis
true for random subsets. It probably does not hold for non-randomly constructed subsets
(e.g., houses with more than 8 bathrooms, or units valued over $250,000). Can we
quantify the bias as afunction of K, and the frequency with which each observation (in
the subset in question) appears in the universe?

6. Development of Intruder Simulation Software. Paas (1985), Winkler (1988, 1995), and
Fienberg, et a. (1995) have developed matching software. All used the software to re-
identify individual respondentsin "masked" data sets. We used Winkler's software to
simulate an intruder in this project. Isour model reasonable? Should we set up some
guidelines and devel op the software to simulate a sophisticated intruder? What
constitutes a reasonable target set? What constitutes a re-identification? What
percentage of re-identifications are tolerable for a public use file?

XI1I1. Conclusions

The technological revolution of the 1980s has allowed data-users to handle larger and more
detailed data sets than ever before. This has been accompanied by the public's easy accessto
very sophisticated matching software. Asaresult, government agencies have been compelled to
release only microdata files with very limited detail. Severe restrictions have been placed on the
sampling fraction of the universe, the amount of geographic detail, and the range of values for
continuous data released. Users have found this extremely irritating and unacceptable.

Data swapping appears to be a feasible alternative to severe top- and bottom-codes. This
technique was first suggested by Reissin the early 1980s, and has evolved significantly. Inthe
past, the Bureau has shied away from its use. It has been argued that it not only masks the file,
but also diminishes its multivariate analytical utility. This paper illustrates that an effective
version of the data swap exists which controls the amount of distortion induced.

The Bureau has used the addition of random noise to mask microdata files. This also distorts the
datain a"controlled" manner. Both techniques measure the amount of distortion by comparing
the bivariate covariances of the data after the swap to the corresponding values before the swap.
For a pre-specified amount of distortion, this research shows that data-swapping protects
individuals identities as well as (if not better than) the addition of random noise.
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In addition, the data-swapping technique suggested here should be relatively quick to code and
easy to modify and enhance. Testing has shown that, under reasonable circumstances, it does
not take along time to execute. For files with many sensitive continuous fields, or those with a
large number of observations, this routine may require too much computer resources. However,
aformula has been provided from which a reasonable estimate of the expected number of CPU
seconds (on aVAX cluster) can be obtained.

Should the Bureau consider rank swapping a potentially feasible method to mask microdata files,
there is a plethora of directions in which the research can proceed. These range from improving
our estimates for the appropriate swapping interval to the development of an intruder model.

This method is quick, has the ability to control the distortion, and masks the datawell. 1
strongly urge the Bureau to consider implementation of this technique to limit the risk of
disclosure in future public use microdatafiles.
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Appendix A. BiasIntroduced On the Correlation Coefficient by Independent Ordinal
Swaps

Summary. Assume the value of g is swapped with a. and that of b, with b.. Suppose the
method used to swap {a} isindependent of that used to swap {b}. Moreover, assume the
correlation coefficient between the pairs (a, a) isR(a, &) and that between the pairs (b, b,) is
R(b, b), if R(a, &) and R(b, b') are approximately 1 ,then
E[COV (@,b')] =R(a &) * R(b, b") * R(a, b).
For R(X) + R(Y) > 1.5, agood approximation of thisis
E[ COV (@, b)] =COV(a b) * (R(a &)+ R(b, b) - 1).

LemmaA.l. Letb,=m* a +c+ e, wherem and c are chosen to minimize

Yel

then
(1) Z €; *( ai_a) =0,
(2)) e,-=0.

Proof. Let

z=) e?=) (b,-mxa,-c)2

Take the partial derivative of z with respect to m, then take the partia derivative of z with
respect to c. Set both partialsto 0. Solving simultaneously gives the desired results.

Note : Throughout the remainder of this appendix theline, b, =m* a + c + e, refersto the line-
of-best-fit (i.e., the one which minimizes the sum of the squares of the e).
Theorem A.2. Assume g, is swapped with g,
Let (3 -a) =m* (a-a) +C+e, then
(1) m=R(a &) the correlation coefficient of awith &, and

(2) c=0.
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Proof. Let
z=) [(a,-a) -m+(a,-a) -c-e,] 2.

Take the partial with respect to ¢ and divide by -2.

(25X (3,3
-m+)_(a,-a

-C
The first two summations on the right-hand side are 0. Since z, = 0, thisforcesc = 0.

Take the partial of z with respect to m, then divide by 2n.

z —
(52 (3 X (a,-3 (a,8)
me(2) <X (8,
C
()2 (a3
Thelast term in the summationis0. Sincez,, = 0 and c = 0, the first and second terms on the
right-hand side are equal. Thisimplies COV (g, &) = m VAR(a). Divide both of these terms by
VAR(a) to get the desired result of R(a, &) = m.
Therefore the line-of-best-fit is (a, - 5) =R(a @) * (a- 5) +e.
Theorem A.3. Suppose a. is the value swapped for g and that each b, is not swapped, then
R(a’,b) -R(a, &) «R(a, b) +( =) «X e, +(b,B)

Appendix A, Page 2 of 4



Proof.

R(a’, b) =(1) +X (a,-8) «(b; B)

(2)+Y[R(a a) «(a,-3) +e;] «(b,B)

n
=R(a, a’) *R(a, b) +( %) +)_e;*(b;-b)

Theorem A.4. Suppose a. isthe value swapped for g and b, is the value swapped for b,.
Suppose

(a;-a) =R(a, a’) *(a,-a) +e,
(b, -B) =R(b, b’) x(b,-b) +F,

Then
R(a’,b’) =R(a, a’) *R(b, b’) *R(a, b)
(2) L ey+(byB) +(2) + X Fyx(a,-8) (1) X (e +F)

Proof. Use Theorem A.3 twice asfollows.
R(a’,b’) =s[R(a, a’) *R(a, b")]
(2) *X e, (b, -B)

=[R(a, a’) *R(b, b’) *R(a, b)
+( —R(ari]a) ) *Zfi*(ai_a)]
() X e;+(by ).

Setting R(a, a') (a,-a) =(a,,-a) -e,
gives the desired result.

Note that the swapping of the a is done independently of the swapping of the b,. Thus,

E(e) = 0, independent of the value of b,; and E(f;) = 0, independent of the value of a.

Therefore, the last 3 terms in Theorem A.4 have an expected value of 0 and we get the following
result.
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Theorem A.5. If the values of aand b are swapped independently, and if R(a, &) isthe
correlation coefficient of awith & and R(b, b') that of b with b', then

E[R(@, b)]=R(a &) * R(b, b) * R(a b).

Note that R(a, &) * R(b, b) =[ R(a, &) + R(b, b) - 1+ (1 - R(a. &))*(1 - R(b. b)) ]. The
underlined product is small when R(a, &) + R(b, b") > 1.5, hence a reasonable approximation
(when one does not have a calculator handy and when both correlation coefficients are assumed
to be approximately 1) for (R(a, &) * R(b, b)) is[ R(a, &) +R(b, b) - 1].

When R(a, &) and R(b, b') are approximately 1, the bias on the correlation introduced by two
independent ordinal swapsis approximately [ R(a, &) + R(b, b") - 2] times the original
correlation. Note that the bracketed term is always non-positive.
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Appendix B. Construction of a Swapping Interval for a Given Value for the Correlation
Coefficient Between the Swapped and Unswapped Values of a Field

Summary. This appendix gives a method for constructing an appropriate set of values from
which avalue for a can be swapped to approximately yield R(a, &), the correlation coefficient
between the set of swapped and unswapped values. It assumes the swapping set for a isthe
subset of al valuesfrom{a,,, a, ... a,}, which were not used in a previous swap.

Throughout the section,

Bopc = thetop-coded vaue;

A, = the bottom-coded value; and

N = the number of observationsin the range, a,,. < & < -
The Method. Let | bethe length of the swapping interval.
Then

j = Ntotal * 2112 *(1 - RZ(Q’ g))ﬂz * STD(Q') /(atopc - a)otc)'

Theorem B.1 Assume a. isthe value swapped with a. Let R(a, &) be the correlation coefficient
betweenaand a. Let

(a -_a) =m*(a - 25 + ¢ + e be the line-of-best-fit for the pairs (a, a).
Then VAR(e) = (1-R*(a &)) * VAR(a).

Proof. By Theorem A.2., m = R(a, &) and ¢ = 0. Assume the error ¢ isindependent of a.
Therefore,

VAR(@) = VAR [(R(a a)*g + &)] = R¥(a a)*VAR(@) + VAR(e) = VAR().

Solving we find
VAR(e) = (1-R*(a, d)) * VAR().

Corollary B.2. Assume a,. is the value swapped for each a, since E(e) = 0, then

E(e) = VAR(e) = (1 - R¥@)) * VAR().

Appendix B, Page 1 of 4



Theorem B.3. An Estimate of s (dueto Jim Fagan). Assume that the swapping length is N(a)
and the typical swapping set has s elements. Thens~0.75* N(a).

Proof. Consider the element gy, It will be swapped with exactly 1 of 2*N(a) elementsin the
set S below.

S=S US={a,au - an@d YU {&ag - an@ww Sn@ees - Bn@ek ) -
Theset S, has N(a) - k elements, and the set S, has N(a) + k elements.

Assume after each swap of a, the elements are replaced. Then Sfor the swap of a,, will always
have 2*N(a) elements. Therefore, the probability that ay ., Will be swapped from an element in

S is
p(k) =(N(8) + k)/ (2* N(&)).
Now calculate the average P(k) for k =1, 2, ..., N(@). With replacement this averageis
p=23/4+1/(4* N@)).

Conclusion. With replacement, about 0.75 of the elementsinthe set {a,,,, ..., 8.y } Would be
swapped with values whose indices are greater than or equal to k.

Therefore, 5, ~ 0.75* N(a). Wethen assume s, ~ S,

Table B.4 shows the results for a Monte-Carlo test on the ratio of sto N(a). From this, one may
conclude that s~ 0.72* N(a).

TableB.4 Monte Carlo Testing for the Expected Swapping Set Size, s

N(@ S s/IN(a)
100 73 0.730
250 180 0.720
500 361 0.722

1000 721 0.721

1500 1082 0.721

2000 1444 0.722

2500 1806 0.722
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Theorem B.4 (dueto Moore and Fagan). Assumethe set a={a} isuniformly distributed
between the range, g, to a,,.. Suppose the desired coefficient between the swapped and
unswapped valuesis R(a, &). Then areasonable estimation for a p-percent rank swapping
interval is

(P(a) / 100) = (18/7) * (1-R¥(, &))"** STD(@)/(Bpe = Boto)-

Proof. D Let N(a) = the maximum number of observations in the swapping interval
of fixed length, then
P(2)/100 = N(8)/Nq-

2 Uniform distribution implies
a. = a +d*k, whered=a,, - a.

(©)) The swapping set for g isthe set of all unswapped valuesin{ a.,, a.,, ...,
6¥+N(@)} '

4 Now a., may have already been swapped with one of the N(a)-1 members
of the set {a yg41s - B2 B4}

Now a., may have already been swapped with one of the N(a)-2 members
of the set {a yigezr - B2 B4}

Now a,, may have already been swapped with one of the N(a)-k members
of the set {X; .y -1 B2 B}

Let p(k) be the probability that a,, isstill in the swap set. From the proof
of Theorem B.3, we see, that

p(k) =(N(8) + k)/ (2* N(&)).
Let g(k) = the probability that the value of a,, is swapped for the value of
a. Then q(k) can be estimated by the probability a,, is still in the swap
set times the probability that it is selected (i.e., p(K) / E(s)).

From Theorem 3, E(s) ~ (3/4) * N(a), so

2 (N() +K)
K) = = « 2~~~ 7 |
L A TOE
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5) Recall that the a's are uniformly distributed, so that (a., - &) = (k * d).
Therefore,

N(a
VAR(e) L (2, ;-2) ] = 3, 0, 1(2, ,-2y)°
2 (N(a) +K) k2?2
D2k Reaveor i Gl

(Z*d) * *k2+k3
3N )2 Y [N(a) ]

=d2+[ 5*(N( a) +1) x(2N(a) -1) + %*(N( a) +1)?].

This shows that under "ideal" conditions ( with N(a) large,
so (N(g) + 1) ~N(a) and (2*N(a) - 1) = 2*N(a) ),
then

VAR(e) = (7/18) * (N(a) * d)*.
(6) From Theorem B.1, VAR(e) = (1-R*(a, &)) * VAR(a).

Equating the variance terms in Steps (5) and (6), we get our
estimate for N(a) as

N(@ ={ (18/7)* (1- R’(a &)) * VAR(a) } "** (1/d).

@) But the N, &'s are assumed to be uniformly distributed in the interval
(Byer Bope)- Therefore,

d= (atopc 'a)otc)/ Ntotal'

Substituting this expression for d in Step (6) and dividing both sides by N, we
get the desired result, namely,

(P(a) / 200) ={ (18/7) * (1-R*(a, &)}"* * STD(@)/ (Ao ~ Ano):

Conjecture B.5 (For a Slightly Skewed Distribution). Theorem B.3 was proven for uniform
distributions on the interval (G, aq). FOr non-uniform distributions, the value of P(a) should
be smaller. Empirical testing seems to indicate that rounding 18/7 down to 2 gives reasonable
results. Namely,

(P(Q-) / 100) = 2112 * (1'R2(§’ g))ﬂz * STD(Q-)/(atopc - a)otc)'
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Appendix C. Determination of an Appropriate Fixed Interval Length To Givea" K"
Per cent Average Absolute Difference

Summary. In Appendix B, we have shown that in order to obtain a given R(a, &), the
correlation coefficient between the swapped and unswapped values for a, a reasonable estimate
for theinterval lengthis
N(Q’ R(Q, QI)) =N~ 2112 * (1 - RZ(Q’ g))ﬂz * STD(Q-) / (atopc - a)otc)'
Here
N isthe number of non-missing, non-top-coded, or non-bottom-coded observations for
thefield &
STD(a) isthe standard deviation for the set of these N observations; and
Bpc AN 3, are the top- and bottom-codes, respectively.
In this appendix, we will show that if, for some fixed value of K,, you desire the condition
E(la-al/a) =K,
then a reasonable approximation for the interval length is
N(Q’ KO) =N~ (8/3)112 K _a/ (atopc - Q)otc)’

where aiis the mean of the N observations.

Appendix B Results. Let d, = (a - &), where the value g is switched with that of g'. Theorem
B.1 shows that

E(d?) = (1- R * STD*a).

Assumptions on the Distribution of d;. Assume d, is uniformly distributed on the interval
[-z, z] for eachii.

Thisimplies
(1) E(d?)=2?/3,and
(2 E(|d]) = z/2; therefore
(3) E(d?) = (4/3) * EX([d]).
Note that these results hold even though z may vary withii.
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An Appropriate Expression for E(|d]|). Letd; =4 - g, for every possible value of g that can
be switched with g. Then define

ki =d;|/ a.
Now take expected values over j with i held constant, to get

ki = E( kij)
=E(|dy|)/a

=[d|/a.
Here the bar was used to indicate the expected value was taken over a second index "j". We can
just as easily write this as
E(ld]), so
E(ld]) =k * a.
Ideally, k; will be independent of a, so
E(E(Jd|)=k* a
Again, in anidea world, E( |[d]) is constant with respect to i, so that
E(E(|d|) =E(|d|) =K * a withK = k.
Conclusion. Putting everything together one realizes,
N(a R(a &)) =N * 2¥2*(1 - R¥(a, &))"** STD(@) / (op; - Btc)
=N* 2% EP(d?) / (Bope - ard)
=N* (8/3)"* E(Id]) / (Bopc = Bd
=N* (813 K * &/ (B - o)
Results. When implemented on 1993 Annua Housing Survey data, the above estimate proved

amazingly accurate in spite of all the ideal assumptions (uniform distributions, independent
variables, and constants instead of expectations). Table 4 shows the results.
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