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Use of multiple administrative lists for statistical purposes has wide-spread appeal due to the cost-
savings from not collecting data and to possible increased accuracy because analyses are not based 
on relatively small samples.  Producing accurate analyses when quantitative data reside in multiple 
files has previously been virtually impossible if unique common identifiers are not present.  This 
paper demonstrates a methodology for analyzing two or more files when the only common 
information is name and address that is subject to significant error and each source file contains 
quantitative data.  Such a situation might arise with lists of businesses.  We assume that a small 
proportion of records can be accurately matched using name and address information.  The matched 
pairs are used to build an edit/imputation model that is then used to add predicted quantitative values 
to each file.  Matching is then repeated with common quantitative data and with name and address 
information.  If necessary, the edit/impute and matching steps can be repeated in a recursive fashion. 
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 1.  INTRODUCTION 
   To model the energy economy properly, an economist might need company-specific microdata on 
the fuel and feedstocks used by companies that are only available from Agency A and corresponding 
microdata on the goods produced for companies that is only available from Agency B.  To model the 
health of individuals in society, a demographer or health sciences policy worker might need 
individual-specific information on those receiving social benefits from Agencies B1, B2, and B3, 
corresponding income information from Agency I, and information on health services from Agencies 
H1 and H2.  Such modeling is possible if analysts have access to the microdata and if unique, 
common identifiers are available (e.g., Oh and Scheuren 1975; Jabine and Scheuren 1986).  If the 
only common identifiers are error-prone, nonunique name and address information, then 
probabilistic matching techniques (e.g., Newcombe et al. 1959, Fellegi and Sunter 1969) are needed.  
   In earlier work (Scheuren and Winkler 1993), we provided theory showing that elementary 
regression analyses could be accurately adjusted for matching error.  For applications where name 
and address information was of sufficiently high quality, we applied an error-rate estimation 
procedure of Belin and Rubin (1995).  In later work (Winkler and Scheuren 1995, 1996), we showed 
that we could actually use noncommon quantitative data from the two files to improve matching and 
adjust statistical analyses for matching error.  The main requirements -- even in heretofore seemingly 
impossible situations -- was that there exist a very small subset of pairs that could be accurately 
matched using name and address information only and that the noncommon quantitative data be 
highly or moderately correlated.   
   The intuitive underpinnings of our methods are based on record linkage (RL) and edit/imputation 
(EI).  The ideas of modern RL were introduced by Newcombe (Newcombe et al. 1959) and 
mathematically formalized by Fellegi and Sunter (1969).  Recent methods are described in Winkler 
(1994, 1995).  EI has traditionally been used to clean up erroneous data in files.  The most pertinent 



methods are based on the EI model of Fellegi and Holt (1976).   
   To adjust a statistical analysis for matching error, we employ a four-step recursive approach that is 
very powerful.  We begin with an enhanced RL approach (e.g., Winkler 1994, Belin and Rubin 
1995) to delineate a subset of pairs of records in which the matching error rate is estimated to be very 
low.  We perform a regression analysis, RA, on the low-error-rate linked records and partially adjust 
the regression model on the remainder of the pairs by applying previous methods (Scheuren and 
Winkler 1993).  Then, we refine the EI model using traditional outlier-detection methods to edit and 
impute outliers in the remainder of the linked pairs.  Another regression analysis (RA) is done and 
this time the results are fed back into the linkage step so that the RL step can be improved (and so 
on).  The cycle continues until the analytic results desired cease to change.  Schematically, we have 
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   Beginning with the introduction, this paper is divided into five sections.  In the second section, we 
provide background on edit/imputation and record linkage.  Section 3 describes the empirical data 
files constructed and the regression analyses undertaken.  In the fourth section, we present results.  
The final section consists of some conclusions and areas for future study. 
 
 2. EI AND RL METHODS REVIEWED 
   In this section, we undertake a short review of Edit/Imputation (EI) and Record Linkage (RL) 
methods.  Our purpose is not to describe them in detail but simply to set the stage for the present 
application.  Because Regression Analysis (RA) is so well known, our treatment of it is covered only 
in the particular application (Section 3).  
2.1.  Edit/Imputation  
   Methods of editing microdata have traditionally dealt with logical inconsistencies in data bases.  
Soft- ware consisted of if-then-else rules that were data- base-specific and very difficult to maintain 
or modify.  Imputation methods were part of the set of if-then-else rules and could yield revised 
records that still failed edits.  In a major theoretical advance that broke with prior statistical methods, 
Fellegi and Holt (1976) introduced operations-research-based methods that both provided a means of 
checking the logical consistency of an edit system and assured that an edit-failing record could 
always be updated with imputed values so that the revised record satisfies all edits.  An additional 
advantage of Fellegi-Holt systems is that their edit methods tie directly with current methods of 
imputing microdata (e.g., Little and Rubin 1987).   
   Although we will only consider continuous data in this paper, EI techniques also hold for discrete 
data and combinations of discrete and continuous data. In any event, suppose we have continuous 
data.  In this case a collection of edits might consist of rules for each record of the form 
 

c1X ð Y  c2X          
 
In words, 
 



If Y less than c1X and greater than c2X,  then the data record should be 
reviewed. 

 
Here Y may be total wages, X the number of employees, and c1 and c2 constants such that c1 < c2.     
While Fellegi-Holt systems have theoretical advantages, implementation has been very slow because 
of the difficulty in developing general set covering routines needed for implicit-edit generation and 
integer programming routines for error localization (i.e., determining the minimum number of fields 
to impute).   
2.2.  Record Linkage 
   A record linkage process attempts to classify pairs in a product space  A H B  from two files  A  
and  B  into  M, the set of true links, and  U, the set of true nonlinks.  Making rigorous concepts 
introduced by Newcombe (e.g., Newcombe et al., 1959; Newcombe et al 1992), Fellegi and Sunter 
(1969) considered ratios R of probabilities of the form 
 

 5� ��3U�� �0� �_�0����3U�� �0� �_�8��������      
where  � is an arbitrary agreement pattern in a comparison space � .  For instance,   might consist 
of eight patterns representing simple agreement or not on surname, first name, and age.  
Alternatively, each� �0� �might additionally account for the relative frequency with which specific 
surnames, such as Scheuren  or Winkler, occur.  The fields compared (surname, first name, age) are 
called matching variables. 
   The decision rule is given by 
 

If  R  >  Upper, then designate pair as a link. 
 

If  Lower # R # Upper, then designate pair as a possible link and hold for clerical review.   
   

If  R < Lower, then designate pair as a nonlink. 
 
   Fellegi and Sunter (1969) showed that this decision rule is optimal in the sense that for any pair of 
fixed bounds on R, the middle region is minimized over all decision rules on the same comparison 
space � .  The cutoff thresholds, Upper and Lower, are determined by the error bounds.  We call the 
ratio  R  or any monotonely increasing transformation of it (typically a logarithm) a matching weight 
or total agreement weight.  
   With the availability of inexpensive computing power, there has been an outpouring of new work 
on record linkage techniques (e.g., Jaro 1989, Newcombe, Fair, Lalonde 1992, Winkler 1994, 1995). 
 The new computer-intensive methods reduce, or even sometimes eliminate, the need for clerical 
review.   
 
 3. SIMULATION SETTING 
   The intent of our simulations is to use matching scenarios that are worse than what some users will 
encounter and to use quantitative data that is both easy to understand and difficult to use in matching.  
3.1 Matching Scenarios 
   For our simulations, we considered one matching scenario in which matches are virtually 
indistinguishable from nonmatches and three levels of file overlap.  In our earlier work (Scheuren 
and Winkler 1993), we considered three matching scenarios in which matches are more easily 



distinguished from nonmatches than in the scenario of this paper and only the high-file-overlap 
situation of this paper.  The basic idea was to generate data having known distributional properties, 
adjoin the data to two files that would be matched, and then to evaluate the effect of increasing 
amounts of matching error on analyses.  Because the methods of this paper work better, we only 
consider a match- ing scenario that we label 2nd poor because it is more difficult than the poor (most 
difficult) scenario we considered previously. 
   We started with two files (sizes 12,000 and 15,000) having good matching information and for 
which true match status was known.  In the high overlap situation, about 10,000 of these were true 
matches (before introducing errors) --  for a rate on the smaller or base file of about 83%.  In the 
medium overlap situation, we took a sample of one file so that the overlap of the two files being 
matched was approximately 25%.  In the low overlap situation, we took samples of both files so that 
the overlap of the files being matched was approximately 5%. 
   We then generated quantitative data with known distributional properties and adjoined the data to 
the files.  These variations are described below and shown in figure 1 where we show the poor 
scenario (labeled 1st poor) of the previous paper and the 2nd poor scenario of this paper.  In the 
figure, the match weight, the logarithm of R, is plotted on the horizontal axis with the frequency, 
also expressed in logs, plotted on the vertical axis.  Matches (or true links) appear as asterisks (*), 

while nonmatches (or true nonlinks) appear as small circles (o): 
 

First Poor Scenario (figure 1a). -- The first poor matching scenario consisted of using last name, 
first name, one address variation, and age.  Minor typographical errors were introduced 
independently into one fifth of the last names and one third of the first names.  Moderately severe 
typographical errors were made in one fourth of the addresses.  Matching probabilities were 
chosen that deviated substantially from optimal.  The intent was for them to be selected in a 
manner that a practitioner might choose after gaining only a little experience.  The true mismatch 
rate here was 10.1%. 

 
Second poor Scenario (figure 1b). --The second poor matching scenario consisted of using last 
name, first name, and one address variation.  Minor typographical errors were introduced 
independently into one third of the last names and one third of the first names.  Severe 
typographical errors were made in one fourth of the addresses.  Matching probabilities were 
chosen that deviated substantially from optimal.  The intent was to represent situations that often 
occur with lists of businesses in which the linker has little control over the quality of the lists.  
The true mismatch rate was 14.6%. 

 
   With the various scenarios, our ability to distinguish between true links and true nonlinks differs 
significantly.  With the first poor scenario, the overlap is substantial (figure 1a); and, with the second 
poor scheme, the overlap is almost total (figure 1b).  In the earlier work, we showed that our 
theoretical adjustment procedure worked well using the known true match rates in our data sets.  For 
situations where the curves of true links and true nonlinks were reasonably well separated, we 
accurately estimated error rates via a procedure of Belin and Rubin (1995) and our procedure could 
be used in practice.  In the poor matching scenario of that paper (1st poor scenario of this paper), the 
Belin-Rubin procedure was unable to provide accurate estimates of error rates but our theoretical 
adjustment procedure still worked well.  This indicated that we either had to find an enhancement to 
the Belin-Rubin procedures or to develop methods that used more of the available data. 



   A crucial practical assumption for the work of this paper is that the analyst be able to separate out a 
low-error-rate set of pairs on which to do matching.  Although neither the procedure of Belin and 
Rubin (1995) nor an alternative procedure of Winkler (1994) that requires an ad hoc intervention 
could be used to estimate error rates, we believe it is possible for an experienced matcher to pick out 
a low-error-rate set of pairs even in the 2nd poor scenario.  A naive matcher might not easily do so.  
Until now an analysis based on the 2nd poor scenario would not have seemed even remotely 
sensible.  As we will see in Section 4, something of value can be done. 
3.2. Quantitative Scenarios 
   Having specified the above linkage situations, we used SAS to generate ordinary least squares data 
under the model <� ���;��� .  The X values were chosen to be uniformly distributed between 1 and 
101 and the error terms�  are normal and homoscedastic with variances 13000, 36000, and 125000, 
respectively -- all such that the regressions of Y on X has an R2 value in the true matched population 
of 70%, 47%, and 20%, respectively.  Matching with quantitative data is difficult because, for each 
record in one file, there are hundreds of records having quantitative values that are close to the record 
that is a true match.  Additionally, to make modeling and analysis much more difficult in the high 
overlap scenario, we used all false matches and only 5% of the true matches; in the medium overlap 
scenario, we used all false matches and only 25% of true matches.  
   See figure 2a for the actual true regression relationship and related scatterplot, as they would 
appear if there were no matching errors.  Note all of the mismatches are plotted but only 5% of the 
true matches are used.  This has been done to keep the true matches from dominating the results so 
much that no movement can be seen.  Second, in this figure and the remaining ones, the true 
regression line is always given for reference.  Finally, the true population slope or beta coefficient (at 
5.85) and the R2 value (at 43%) are provided for the data being displayed. 
 
 4.  SIMULATION RESULTS 
   We begin by presenting graphs and results of the recursive process for the second poor scenario, R2 

 value of 47%, and the high overlap situation.  These results best illustrate the procedures of this 
paper.  Later in the paper, we summarize results over all R2 -situations and all overlaps.  The 
regression results for two cycles are given in the first two subsections.  In the third section, we 
present results that help explain why such a dramatic improvement can occur. 
4.1. First Cycle Results 
4.1.1. Regression after Initial RL YRA Step. -- In figure 2b, we are looking at the regression on the 
actual observed links -- not what should have happened in a perfect world but what did happen in a 
very imperfect one.  Unsurprisingly, we see only a weak regression relationship between Y and X.  
The observed slope or beta coefficient differs greatly from its true value (2.47 v. 5.85).  The fit 
measure is similarly affected, falling to 7% from 43%. 
4.1.2. Regression after Combined RLYRAYEI YRA Step. -- Figure 2c completes our display of the 
first cycle of our recursive process.  Here we have edited the data in the plot displayed as follows.  
First, using just the 99 cases with a match weight of 3.00+, an attempt was made to improve the poor 
results given in figure 2b.  Using this provisional fit, predicted values were obtained for all the 
matched cases~ then outliers with residuals of 460 or more were removed and the regression refit on 
the remaining pairs.  This new equation was essentially Y = 4.5X +  with a variance of 40000.  
Using our earlier approach (Scheuren and Winkler 1993), a further adjustment was made in the beta 
coefficient from 4.5 to 5.4.  If a pair of matched records yielded an outlier, then predicted values 



using the equation Y = 5.4X  were imputed.  If a pair does not yield an outlier, then the observed 
value was used as the predicted value. 
4.2. Second Cycle Results 
4.2.1. True regression (for reference). -- Figure 3a displays a scatterplot of X and Y as they would ap-
pear if they could be true matches based on a second RL step.  The second RL step employed the 
predicted Y values as determined above; hence it had more information on which to base a linkage.  
This meant that a different group of linked records was available after the second RL step.  Since a 
considerably better link was obtained, there were fewer false matches; hence our sample of all false 
matches and 5% of the true matches dropped from 1104 in figures 2a thru 2c to 650 for figures 3a 
thru 3c.  In this second iteration, the true slope or beta coefficient and the R2 values remained, 
though, virtually identical for the slope (5.85 v. 5.91) and fit (43% v. 48%). 
4.2.2. Regression after second RLYRA Step. -- In figure 3b, we see a considerable improvement in 
the relationship between Y and X using the actual observed links after the second RL step.  The 
slope has risen from 2.47 initially to 4.75 here.  Still too small but much improved.  The fit has been 
similarly affected, rising from 7% to 33%. 
4.2.3. Regression after Combined RLYRAYEI YRA Step. -- Figure 3c completes the display of the 
second cycle of our recursive process.  Here we have edited the data as follows.  Using this fit, 
another set of predicted values was obtained for all the matched cases.  This new equation was 
essentially  Y = 5.5X +  with a variance of about 35000.  If a pair of matched records yields an 
outlier, then predicted val- ues using the equation Y = 5.5X  were imputed.  If a pair does not yield 
an outlier, then the observed value was used as the predicted value.  The plot in figure 3c gives the 
adjusted values which have slope 5.26 and fit 47% which improves over first cycle results. 
4.3.  Further Results 
   We do not show results for the medium- and low-overlap situations because the matching was 
some- what easier.  The reason it was easier is that there were significantly fewer false-match 
candidates and we could more easily separate true matches from false matches.  For the high R2  
scenarios, the modeling and matching were more straightforward than there were for the medium R2  
scenario in section 4.2.  For the low R2  scenario we were unable to distinguish true matches from 
false matches.  This is understandable because there are so many outliers associated with the true 
matches.  We can no longer assume that a moderately higher percentage of outliers in the regression 
modeling are due to false matches. 
 
 5. FUTURE STUDY 
   In principle, the recursive process of matching and modeling could have continued.  Indeed, while 
we did not show it in this paper, the beta coefficient of our example did not change much during a 
third matching pass.   
   At first it would seem that we should be happy with the results.  They take a seemingly hopeless 
situation and give us a fairly sensible answer.  A closer examination, though, shows a number of 
places where the approach taken is weaker than it needs to be or simply unfinished. 
   We have looked at a simple regression of one variable from one file with another variable from 
another.  What happens when this is generalized to the multiple regression case?  We are working on 
this now and sensible results are starting to emerge which have given us insight into where further 
research is required.  There is also the case of multivariate regression.  Here the problem is harder 
and will be more of a challenge. 



   First, to make use of multivariate data, we need to have better ways of modeling it than the simple 
method of this paper.  The likely best methods will be variants and extensions of Little and Rubin 
(1987, Chapters 6 and 8) in which predicted multivariate data has important correlations accounted 
for.  If we take two variables from one file and two from another, then can we make use of the fact 
the two variables taken from one file have the correct two-variable distribution but may be falsely 
matched.   
   Second, we have not yet developed effective ways of utilizing the predicted and unpredicted 
quantitative data.  Simple multivariate extensions of the univariate comparison of Y values in this 
paper do not seem to work.   
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