BUREAU OF THE CENSUS
STATISTICAL RESEARCH DIVISION
Statistical Research Report Series
No. RR96/01

Design of Moving-Average Trend Filters using
Fidelity, Smoothness and Minimum Revisions Criteria

Alistair Gray and Peter Thomson

Institute of Statistics and Operations Research
Victoria University of Wellington
PO Box 600, Wellington, New Zealand

Report Issued: 2/7/97

This series contains research reports, written by or in cooperation with, staff members of
the Statistical Research Division, whose content may be of interest to the general statistical
research community. The views reflected in these reports are not necessarily those of the
Census Bureau nor do they necessarily represent Census Bureau statistical policy or prac-
tice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator,
Statistical Research Division, Bureau of the Census, Washington DC 20233.



Abstract

Many seasonal adjustment procedures decompose time series into trend, seasonal, irregular
and other components using simple non-seasonal finite moving-average trend filters. This
report considers the design of such filters, both in the body and at the ends of series, based
on specified criteria and simple dynamic models operating locally within the span of the

filter.

In the body of the series a flexible family of finite moving-average trend filters is developed
from specified smoothness and fidelity criteria. These filters are based on local dynamic
models and generalise the standard Macaulay and Henderson filters used in practice. The
properties of these central filters are determined and evaluated both in theory and in
practice.

At the ends of the series the central moving-average trend filter used in the body needs to
be extended to handle missing observations. A family of end filters is constructed using
a minimum revisions criterion and based on the local dynamic model operating within
the span of the central filter. These end filters are equivalent to evaluating the central
filter with unknown observations replaced by constrained optimal linear predictors. Two
prediction methods are considered; best linear unbiased prediction (BLUP) and best linear
biased prediction where the bias is time invariant (BLIP). The BLIP end filters generalise
those developed by Musgrave for the central X-11 Henderson filters and include the BLUP
end filters as a special case.

The properties of these end filters are determined both in theory and practice. In particular,
they are compared to the Musgrave end filters used by X-11 and to the case where the
central filter is evaluated with unknown observations predicted by global ARIMA models.
The latter parallels the forecast extension method used in X-11-ARIMA.

Keywords: Moving-average filters; local trend estimation; dynamic models; fidelity; smooth-
ness; minimum revisions; best linear unbiased prediction; best linear biased prediction;
X-11; seasonal time series; seasonal adjustment.



Preface

The origins of this research project began in the early 1990’s having been stimulated to a
large extent by our contribution to the discussion of Cleveland et al. (1990) (see Gray and
Thomson (1990)). Following some prior development work, the project benefited in 1993
from two research grants. An application to the New Zealand Foundation for Research
Science and Technology made in 1992 was successful and the second author was awarded a
Research Fellowship at the US Bureau of the Census which he held for six months during
1993 and 1994. Both forms of research support were important, but the period spent at the
US Bureau of the Census with their Time Series Group proved particularly invaluable. Our
ongoing interactions with that group and with staff within Statistics New Zealand continue
to provide us with an important source of research support and guidance for which we are
most grateful.

To a large extent the title reflects the emphasis of our initial ideas. We had thought that
once we developed better central filters, end filter design would be straightforward using
best linear unbiased prediction and the resulting BLUP end filters would be an improvement
on X-11 end filters. To our surprise X-11 end filters often had smaller revisions than the
BLUP end filters. This lead us to study Musgrave’s work more closely (see Musgrave (1964)
and Doherty (1991)) and develop BLIP end filters based on best linear biased prediction
where the bias is time invariant. The investigation of BLIP end filters took more time than
we had anticipated and was a contributing factor to the delay in the publication of this
report.

The work reported here constitutes a beginning and much remains to be done including
more comprehensive case studies and further analytical development. An ultimate objective
is the construction of a robust semi-parametric seasonal decomposition procedure which
might better handle the more volatile time series experienced by countries such as New
Zealand. This is unlikely to be straightforward. Indeed, our preliminary experience suggests
that embedding these filters within a seasonal adjustment framework such as X-11 will be
a challenging exercise if significant gains are to be realised.

This research project was partially supported by the New Zealand Foundation for Research
Science and Technology (Project Number VIC-93-36-039). The second author also grate-
fully acknowledges support provided by an ASA/NSF/Census Research Fellowship which
he held at the US Bureau of the Census. In particular, both authors wish to record their
gratitude to Dr David Findley of that organisation for the very helpful advice and en-
couragement he has provided throughout the project. The data was kindly provided by
Statistics New Zealand and the US Bureau of the Census.
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1 Introduction

This report is concerned with the design of local trend estimation filters for non-seasonal
time series using finite moving-averages. A particular objective is to try and improve
current methods of trend estimation within seasonal adjustment procedures where non-
seasonal trend filters play a key role, especially at the ends of series. For example, the
seasonal adjustment procedure X-11 (see Shiskin et al. (1967)) uses trend filters originally
developed by Henderson (1916) whereas the seasonal-trend decomposition procedure STL
uses loess filters (see Cleveland et al. (1990)). However local trend estimation is also
important in its own right and is routinely used, for example, in the analysis of financial
and other time series.

The design and use of finite moving-averages for local trend estimation has a long history,
particularly within the actuarial literature where it is referred to as graduation. The
seminal work of Henderson (1916) and Macaulay (1931) is an example of the latter. Useful
background material on this topic from a time series perspective is also given in Kendall
(1973) and the references contained therein. Much of this development has been posited
on simple structural models of the form

o(y) =Ty + 51 + & (1)

where y; denotes the observed time series, ¢(x) denotes some appropriate transformation,
T; denotes the trend, S5; the seasonal and ¢, the irregular or noise. Typically the unobserved
trend and seasonal components are assumed to evolve slowly with more abrupt changes,
including calendar effects, handled via simple adjustments. Recently, after somewhat of a
lull, more attention has been focused on both structural models of the form (1) and the
need for improved finite moving-average trend filters.

Structural models have been exploited in a number of global parametric seasonal adjust-
ment procedures. These include BAYSEA (Akaike (1980)) and other related model-based
methods (see Gersch and Kitagawa (1983), Harvey (1989) and Schlicht (1981) for exam-
ple). Bell and Hillmer (1984) also provide a useful review and discussion of unobserved
component seasonal ARIMA models. An explicit and important feature of much of this

work is the use of criteria that optimally weight specific measures of fidelity and trend
smoothness. The latter is in the spirit of Henderson (1924) and Whittaker (1923).

Impetus to the design of finite moving-average filters has recently come from work in scat-
terplot smoothing and local regression models. In particular the work of Cleveland (1979)
has led to the development of lowess and loess which, in the time series context, constitute
finite moving-average trend filters. The seasonal decomposition procedures SABL (Cleve-
land et al. (1978)) and more recently STL, are built around the non-seasonal lowess and
loess filters respectively. See also the discussion following Cleveland et al. (1990) and, in
particular, Gray and Thomson (1990). Other work on finite moving-average filter design
has been motivated by the need to control the revision of trend estimates at the ends of
series as new data comes to hand (see Dagum and Laniel (1987), Dagum (1996), Doherty
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(1991), Kenny and Durbin (1982), Laniel (1986) and Wallis (1983) for example). The work
of Cholette (1981) and Leser (1963) is also of interest. They build finite moving-average
trend filters for seasonal time series using a criterion based approach that involves explicit
measures of both fidelity and smoothness.

In practice the use of finite moving-average trend filters in seasonal adjustment and trend
estimation remains the dominant technology. This emphasis needs some justification and
explanation. Firstly, the use of moving data windows forms the basis for simple non-
parametric models that apply locally and whose assumptions can, in many cases, be justified
by simple graphical analysis. As a consequence, they have served official statisticians
and many others well over a long period of time. Secondly, they directly control and
limit the revisions to historical trend values as additional data is obtained. This is an
important and over-riding requirement for most official statisticians. Finally, moving local
non-parametric models have the potential to capture both evolutionary change and non-
evolutionary structural change in time series in a more direct and transparent way than
global parametric models. However the two technologies should not be seen as competing.
The non-parametric local procedures are frequently used as exploratory tools prior to the
fitting of a more sophisticated parametric global model.

In the case of economic and official time series it is important to identify trends and
their turning points accurately and so filter design at the ends of the series is particularly
important. The construction of end filters from the ones that apply in the body and the
principles by which they should be designed have been discussed by a number of authors
including Cleveland (1979), Doherty (1991), Kenny and Durbin (1982), Geweke (1978),
Greville (1979), Kendall (1973), Lane (1972), Laniel (1986), Musgrave (1964), Pierce (1980)
and Wallis (1983). In the case of X-11 the basis of the Henderson filters that apply in the
body of the series is relatively well understood, but the derivation of the filters that apply
at the ends of the series is less clear and has been the subject of some debate in the
literature (see Kenny and Durbin (1982) and Doherty (1991) for example). Because of
known defects such as failure to pass linear trends at the ends of series, the X-11 end filters
are often avoided in practice by using the original series augmented by predictions, and
then filtering using the central filters. In the absence of this device, the X-11 end filters
continue to be used in X-11 despite their apparent shortcomings.

The principle of using prediction at the ends of series seems a key one which goes back to
DeForest (1877). The review article by Cleveland (1983) provides a useful discussion on this
and other issues in seasonal adjustment. See also Geweke (1978), Greville (1979) and Pierce
(1980). The X-11-ARIMA method, for example, uses relatively sophisticated ARIMA
models to provide predictions (see Dagum (1980)). This sophistication is in contrast to
the relatively unsophisticated local trend smoothing that goes on in the body of the series.
Moreover, by virtue of the order of differencing used, many of the ARIMA based models
effectively assume only evolving local linearity for the trend whereas the Henderson filters,
for example, are based on local quadratic or cubic models. In the body of the series this
mismatch does not seem to have been a major cause for concern. However, at the ends,



the use of higher order local polynomial trends appears to be one of the primary sources
of difficulty in terms of controlling revisions. These difficulties are typically alleviated in
practice by the use of prediction augmented methods such as X-11-ARIMA.

This report attempts to combine some of the virtues of the global parametric models
within the framework of a finite moving-average trend estimation procedure. In particular
a consistent and flexible family of filters is developed which are derived from local dynamic
models that employ lower order polynomial trends and have stochastic error structures
that enhance short-term prediction at the ends of series. A major thrust of the paper is the
design of variants of standard moving-average trend filters that are derived from specified
fidelity and smoothness criteria.



2 Trend filter design

We follow the conventional paradigm and consider a moving window of n = 2r 4+ 1 consec-
utive observations within which an estimate of the trend is to be calculated for the central
time point. This central reference point is chosen presumably because of symmetry and
because that is typically where the trend can be determined with greatest precision. At the
ends of the series the window will, by necessity, be truncated due to missing observations.
We first describe the form of the local dynamic model adopted and then consider filter
design both in the body and at the ends.

2.1 Local dynamic model

Within the finite window, model the observations as

Y = gr + & (2)

where ¢; is white noise with variance o and the trend g; is given by

gr = Zﬁjt‘i + & (3)

i=0

The zero mean stochastic process & is assumed to be correlated, but uncorrelated with ¢,
and &, 0% are assumed to be not both zero. In particular we consider the situation where the
3; and o? are parameters local to the window, but p, n and the model for £ /o involve global
parameters which are constant across windows. Thus, although the parameters involved
with the mean and variance of y, vary across windows, the autocorrelation structure of y,
will be a function of time invariant parameters in addition to time itself.

Loosely speaking, the finite polynomial is intended to capture deterministic low order
polynomial trend whereas & is intended to capture smooth deviations from the polynomial
trend. Note that it is the incorporation of & which distinguishes this local model from
the standard situation where it is zero. Among the anticipated benefits of including &; are
lower values of p and improved performance at the ends of series.

Because the window is not likely to be large the model will need to involve as few parameters
as possible on the one hand, while allowing for a sufficiently flexible family of forms for ¢;
on the other. With these points in mind we choose to model £ as a (possibly integrated)
random walk with initial value zero. In particular, if A denotes the backwards difference
operator satisfying AX; = X;— X;_;, we have in mind the situation where APTlg, = APT1E,
is a zero mean stationary process. In keeping with this rationale, we shall always assume
that the levels of integration of the random walk components that make up & do not exceed

p+1.

This seems an appropriate and parsimonious model which should account for smooth de-
viations from the deterministic polynomial trend component. It also provides a dynamic
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trend model for g; which is essentially of the same form as that used in the ARIMA struc-
tural models that have been successfully applied to economic and official data. (See Bell
(1993) and Kenny and Durbin (1982) for example.) Note that the conventional model is
recovered by eliminating the random walk component & which is achieved by setting its
innovation variance to zero.

In the local linear case p = 1 a simple dynamic model for ¢; is given by

Agi = B+ 1 (4)

where 3 and go are constants, and €, 1; are mutually uncorrelated white noise processes
with different variances. In terms of (3) the 3; (j= 0, 1) are given by go, 3 respectively and
& = Z§‘:1 nj. The local constant case p = 0 is the same as (4), but with § constrained to
be zero. For the local quadratic case p = 2 a suitable dynamic model for ¢; is

Ag = hy + 14, Ahy = B+ (5)

where 3, go and hg are constants, and e€;, vy, 1, are mutually uncorrelated white noise
processes all with different variances. Again this can be represented in the form (3) with
the 3; involving go, ho, 8 and & = Z;Zl vi + Z;Zl 71 k. In this case & comprises two
components, one a simple random walk and the other a doubly integrated random walk.

Clearly many other dynamic specifications for g; and hence & are possible. For example,
the constant 3 in both (4) and (5) could be allowed to depend on ¢ and evolve as a simple
random walk without drift. However this leads to an additional random walk component
being incorporated in & and with a further level of integration. Given the typically modest
number of observations in the window and the need to determine the variances of the
various random walk components in &, it is important to keep the models as parsimonious
as possible. As a consequence we have focused our attention on models for & which involve
one or at most two variance parameters. Furthermore, we have chosen to keep the level of
integration of these components as low as possible. This is in keeping with the empirical
evidence for ARIMA structural models where the variances of the higher-order random
walk innovations are typically very small by comparison to the simple random walk term.
Thus, for example, setting the variance of n; equal to zero in (5) yields a simpler version
of this model which may prove to be more useful in practice.

Since the global parametric ARIMA structural models can be viewed as generalisations
of exponential smoothing models (see Harvey (1989)), the models proposed here can be
regarded as variants of exponential smoothing models tailored to a finite window. Note
that simple truncated exponential smoothing models were considered for g; in Kenny and
Durbin (1982) and met with some success, especially for current trend estimates.
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2.2 1In the body

Given a finite window of width n = 2r 4+ 1 points centred at time point ¢ in the body of
the time series, we now choose to estimate g; by the finite moving-average

Ge= D Wlirs (6)

s=—r

where the wy are constrained by the requirement that
E{Ggi —gi} =0

and y; follows the local dynamic model given by (2) and (3). Thus ¢ is an unconditionally
unbiased predictor of g;. Note that this condition is equivalent to the requirement that the
w; satisfy

Y=l Y sw =0 (0<j<p) (1)

s=—r s=—r

so that the moving average filter passes polynomials of degree p.

To assist in the choice of filter weights w; we consider the criteria

F=E{(g—a)}.  S=E{(&"g)) (8)

where F' measures the fidelity of §; as an estimator of g; and S measures its smoothness. Here
the expectation operator is with respect to the particular local dynamic model adopted.

The smaller F' is the better g; is as an estimator of ¢; whereas the smaller S is the closer the
APFTLE, are to zero and the closer ¢ is to a smooth polynomial of degree p in ¢. In particular,
the measure of smoothness S has been explicitly tailored to the degree of curvature (the
degree of the underlying deterministic polynomial local trend) present in the data. Note
that F' is the familiar mean squared error criterion whereas S, appropriately normalised,
is referred to as the R2,, criterion in the actuarial graduation literature. See London
(1985) for example and also Ramsay (1991) who considered minimising S in the presence
of correlated ;.

In the spirit of Henderson (1924) and Whittaker (1923) we further define the compromise
criterion

Q=0F+(1-6)S (9)
where 0 < # < 1 and 6 is some user specified value. Note that ¢) includes both F' and 5

as special cases. We shall adopt the principle that the smaller these three criteria are the
better and determine the filter weights that optimise ().

While minimising F' is clearly a reasonable criterion to adopt, it is not so clear that this is
appropriate for S. It could be argued that the aim should be to simply control the level
of S rather than minimise it. However this approach again leads to ) as will be shown in

Theorem 3.
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Each local dynamic model describes data with its own intrinsic fidelity and smoothness.
Thus the measures defined in (8) are model specific and would not normally be used to
compare across different, possibly competing, models. Alternative measures that can be
used to compare across models and which will be used later are now defined. First note
that the identity filter with coefficients wg = 1 and w; = 0 (s # 0) satisfies (7) whatever
the choice of p in the local dynamic model. Thus, for any given window, the fidelity of the
data y; to the trend ¢; is given by

ko= E{(yt - 975)2} =o’

and the smoothness of y; as an estimate of the trend is given by

So = E{(A" y)} = E{(A"6)"} + E{(Ae)’}

= E{(APTE) + P00

The normalised quantities

F S
measure the gains in fidelity and smoothness of ¢ relative to the fidelity and smoothness
of the data and can be used to compare across models. If & = 0 then F* and S* are

identical to the R§ and R2,, criteria respectively that are used in the actuarial graduation
literature. Note also that replacing F' by F'* and S by S* introduces no essential change in
() apart from a simple one-to-one transformation of 4.

A primary advantage of defined measures of fidelity and smoothness is that we can now
begin to quantify and classify the effects of competing moving-average trend filters and to
consider trade-offs between fidelity and smoothness. In particular we can determine the
values of w; that satisfy (7) and minimise either F, S or ). Before establishing these
general results we first consider some special cases.

Consider minimising F' in the case where ¢; is the conventional model given by (3) with &
equal to zero. From the Gauss-Markov theorem, minimising F' subject to (7) is equivalent
to estimating g; by

P
f]t = Zﬁjt]
=0
where the estimates Bj are obtained from fitting the local polynomial model
p .
Yivs = Y Bi(t 4+ 5) + g (-r<s<r)
=0

by ordinary least squares. The latter procedure was initially advocated by Macaulay (1931)
and forms the basis of many trend estimation filters. (See Kendall (1973) and Cleveland
(1979) for example.) Thus minimising F' with & equal to zero yields the Macaulay filters
many of which are tabulated in Kendall (1973). The case where & is not equal to zero
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leads to local polynomial fitting using generalised least squares. An example of the latter
is loess (see Cleveland et al. (1990)) which uses the tricube function for least squares
weights. In general we shall refer to trend filters obtained by minimising F' as Macaulay
filters irrespective of the choice of local dynamic model.

Again assume that the model is given by (3) with £ equal to zero and consider the case
p = 2. Then minimising S gives the central Henderson filters tabulated, for example,
in Dagum (1980). Our proof that this is so follows the treatment given in Kenny and
Durbin (1982) with some key differences, the most important of which is that the w;, are
not assumed to be symmetric a priori. Given these more general assumptions (7) and S

become ) ) )
Z w, = 1, Z sw, =0, Z s2ws =0 (11)
and
r4+3
S = o? Z (A%w,)? (12)

respectively. Here o? is the variance of ¢, and the w;, satisfy the boundary conditions
w, =0 (s=%(r+1),(r+2),£(r+3)). (13)

The criterion S can now be minimised with respect to the w, (—r < s < r) using Lagrange
multipliers to account for the constraints given by (11). This yields

ASwyis = ay + ays + ass® (—r<s<r) (14)

where the a; denote the Lagrange multipliers and these equations must now be solved
subject to the boundary conditions (13). As in Kenny and Durbin (1982) the solution to
(14) is a polynomial in s of order 8 with roots +(r + 1), +(r 4+ 2), £(r + 3) and so

w, = ((r+1)° = s*)(r +2)° = s*)(r +3)* — 5*)(by + bys + bys?) (15)

with the b; determined from (11). The w; obtained are the central Henderson filters used
in X-11.

Note that the Henderson filters derived above follow directly from a simple measure of
smoothness and the assumption that the local model is quadratic (rather than cubic).
No symmetry has been assumed, this property being a consequence of the optimisation
process. The fact that the filter also passes a cubic is to be regarded as serendipitous and
arising from the fact that this optimal central filter is symmetric. This latter property will
not hold at the ends of the series where the filters are asymmetric. In general we refer
to trend filters obtained by minimising S as Henderson filters irrespective of the choice of
local dynamic model.

We now determine the filter weights w, that optimise F', S and () in the case where & is
not necessarily zero. Clearly it is sufficient to consider the compromise criterion () since F'
and S can be recovered from () by setting § = 0 or § = 1 respectively.

14



Further notation is needed to establish and present the results. For the local dynamic
model specified by (2) and (3) define covariance matrices  and I' with typical elements

Qi = cov(&eqj — &, Seqr — &), L) = cov(APHIE L AP ) (16)

where —r < 5,k < r and t indexes the central time point of the window concerned.
Furthermore, define the n x (p+1) dimensional matrix C and the p+ 1 dimensional vector
c by

1 —r (—r)P 1
I —r4+1 ... (=r4+1)y
C: 7 c = . (17)
L r—=1 ... (r—=1)p 0
1 T rP 0

and let ¢2B}, denote the covariance matrix of a sequence of n observations from the sta-
tionary moving average process Afe¢;. Observe that By, does not involve % the variance
of ;. Finally, let T denote the n-dimensional identity matrix. We now have the following

result.
Theorem 1 Let y; follow the local dynamic model specified by (2) and (3). Then the values
of w, that minimise ) subject to (7) are given by w = (w_,,...,w,)" where
w = E;'C(C"E;'C)™!
and
Es = 0(c’14+ Q) + (1 - 0)(c’B,41 + T).
Proof

First note that (7) is equivalent to the requirement that w satisfy
C'w =c. (18)

Given this condition,

r

Z WsYt+s — Gt = Z Wy §t+s - ft Z Ws€tts

s=—r s=—r s=—r
and
r r r
1 1 1
Z wsAp+ Yigrs = Z wsAp+ ft-l—s + Z wsAp+ €4
s=—r s=—r s=—r

These yield the quadratic forms

F=wl(oc T+ Q)w, S =wl(o?B,y1 +T)w (19)

15



and
Q = w'Egw. (20)

We now seek to minimise ) subject to (18).

Using Lagrange multipliers and differentiating with respect to the w; yields
w=E;'Cu
where y is the vector of Lagrange multipliers. The constraint (18) yields
p=(C'E;'C) e
and the result follows. O

Given a local dynamic model, it is of interest to consider the nature of the variation of
the optimal F' and S with §. The following result shows, in particular, that the optimal
measures of fidelity [’ and smoothness S decrease and increase respectively as 6§ increases.
Thus the filter with the best smoothness measure S has the worst fidelity measure F' and
vice-versa.

Theorem 2 Let y; follow the local dynamic model specified by (2) and (3). If w is given
by Theorem 1 and F, S given by (8) then

dF ds dF ds
Yot =% st =
where 0 < 0 < 1. In particular F' and S have zero gradients at § = 1 and § = 0 respectively.

Proof

0

Let
A =0T+Q, B=0'B,,; +T
so that
F=wlAw, S =w!Bw
and w is given by Theorem 1. Differentiating F' and S with respect to 6 we obtain
Cfl—]; = —2u’(I - P)K/AK,v, % = —2ul(I - P)K/BK,v

where
u = KJ(A-B)Kyv
K/ C(CTE;'C) 'c
P = K!/C(C'E;'C)'C"K,

<
I

and E;' = KoKJ. Thus
dr ds
Gﬁ—l—(l—@)@—() (21)
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and s dF
— ——=2u"I-P)u> 22
g~ ap 2 P20 (22)
since P is a projection matrix. From (21) we observe that F' has gradient zero at § = 1
and S has gradient zero at § = 0. Moreover, from (21) and (22), we obtain

dS  dF  dS
-y = = <
<) = (0<b0<1)
and dF  dS.  dF
>(1—0)(—_22y= = <
0= (1-0)("5 -0 =" (0<6<1)
as required. a

As mentioned before, if the aim is to control or impose smoothness on the trend estimate
g, then an alternative strategy might be to minimise F' subject to (7) and a given level of
smoothness S = s. This is equivalent to minimising () as we shall see in Theorem 3.

First, however, note that minimising F' subject to (7) alone determines the best linear
unbiased predictor (BLUP) of ¢; from the observations y; in the window. Thus, minimising
F subject to (7) and S = s gives a constrained BLUP for ¢;. This estimator will have the
desired smoothness property, but at the cost of a higher value of F' than before. Now let
sg denote the smoothness of the optimum smoothness filter and s; denote the smoothness
of the optimum fidelity filter so that

Sg = Wg(O'zBp+1 + F)Wo, S1 = W?(O'QB]HJ + F)Wl

where wg and wy are the values of w given by Theorem 1 for § = 0 and 8 = 1 respectively.
If a trend estimator g; is sought with better smoothness properties then the user will need
to constrain the smoothness S to lie in the interval [sq, s1].

Theorem 3 Let y; follow the local dynamic model specified by (2) and (3). Then minimising
F subject to both (7) and S = s in [so, $1] is equivalent to minimising () subject to (7) alone
where 6 is a solution of

cI(CTE;'C)'CTE; (0"B,y1 + TE;'C(CTE;'C) e = s,

Eq is given by Theorem 1 and 0 lies in [0,1]. The minimisations are with respect to the
filter weights ws,.

Proof

We seek to minimise

Q =F+¢(5S—s) —QMT(CTW —c)

where the scalar ¢ and the vector p are Lagrange multipliers. Differentiating and solving
the resulting equations yields

w =E;'C(CTE;'C) ¢
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where ¢ is a solution of
"(CTE;'C)'CTE; (0"B,y1 + TE;'C(CTE;'C) e = 5 (23)

and )
B, = (*1+ Q) + §(c*Byy, +T).

In almost exactly the same way as was done in Theorem 2, it can be shown that the left
hand side of (23) is a non-increasing function of ¢ whose limit, as ¢ — oo, is so. Moreover
¢ =0 yields s = s1. Since s9 < s < s1 we conclude that a solution of (23) can be found for
¢ > 0. The result of Theorem 1 is now retrieved by setting § = 1/(1 + ¢). O

In fact, in much the same way as for Theorem 3, it can be shown that minimising smooth-
ness subject to (7) and a given level of fidelity F' = f is also equivalent to minimising Q.
However this seems a less relevant criterion to adopt in practice.

In }Dractice & will comprise one or other or possibly the sum of the random walk components
f,fl and 5,52) where

t t g
&= & =33 m (24)

and vy, 1¢ are mutually uncorrelated white noise processes with E(v}) = o2, E(n}) = 0.
If & is a linear combination of random walk components such as the above whose levels of
integration do not exceed p+ 1, then I' will be a linear combination of covariance matrices

B where k£ is a nonnegative integer such that k£ < p.

The matrix £ can be constructed directly from the covariance matrices of the random walk
components that make up &. However some simplification is possible as we now show for
the two cases of primary interest.

In the case of model (4) or (5) with o7 set to zero, {; is just f,fl). Then we have

Is
Zj:l Viys (S >0
G — € =00 (s =0

— 2 v (s <0)

P

and © = QM has typical element

Q) = olmin(jl, |k} (—r<jk<-L1<Gk<r) (25)

J
and zero otherwise.

Now suppose that & = 5,52) as would be the case for model (5) with o2 set to zero and
consider the quadratic form

r

wliQw = E{(Z ws(fﬁ)s - ft(z)))Z}-

—-r
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For s > 0

s t+7

Gn =67 = 3w
7=1 k=1
t s—=1 g
= s Z Nk + SNey1 + Z Z Nit1+k (26)
k=1 7=1k=1
and for s < 0
) ESES
§t+s —& = - Z Nk
7=0 k=1
t ls[=1 J
= s> m+ > M-k (27)
k=1 7=1 k=1
where the last term on the right hand side of (26) and (27) is interpreted as zero when
|s| = 1. The first term on the right hand side of (26) and (27) is eliminated by the filter
since 3.0 sws = 0 and the remaining terms of (26) and (27) are uncorrelated. Since the

weights w; satisfy (18) we obtain

wiQw = (> sw,) +w Uw

s=1
2 r r
= S sw)? (D sw-)) + W' Bw

s=1 s=1
where W has typical element
ming;|,[x)

Ujp=o, 2. (il=9)(kl=9)  (r<ik<-LI<jk<r) (28
s=1

and zero otherwise. Thus, when & = 5752), the matrix € is given by Q) which has typical
element

Q) = L2kl + @y (—r<jk<-11< k<) (29)
and zero otherwise.

Note, in particular, that Q1) and ©® do not depend on ¢, the absolute value of time
indexing the origin of the window. This natural and important invariance property holds
for general © and is a consequence of (7) and the assumption that the levels of integration
of the random walk components that make up ¢ do not exceed p + 1.

So far no requirement has been made that the filters we consider have symmetric weights.
The following result shows that the filter with weights given by Theorem 1 is symmetric.

Theorem 4 The values of w, given by Theorem 1 correspond to a symmetric filter of length
n=2r4+1.
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Proof

Let u= (w_y,...,w_)T, v=(w,...,w)" and d; = (1/,27,...,77) for j an integer such
that 0 <5 < p.

Consider first the fidelity measure F' and the particular case where & = 5,52). Let the matrix
(? (1 <4,k <r). Then the constraints (18) become

Qf) have typical element €2}
wo+diu+div = 1
T . _ T -
dju = djv (0<j<p)

and [ can be written as
02(w(2) +ulu+ VTV) + aﬁ(%(leu)2 + %(leV)2 + uTQf)u + VTQS_Z)V).

Note that both the constraints and F' are symmetric in the vectors u and v. A similar
argument holds for more general forms of & involving sums of integrated random walks of
any finite order.

Now consider the smoothness measure S. Note that S is of the form
S=wlAw
where A is a Toeplitz matrix with spectral density f(w) and typical element

A= /7r =R £(w)dw (—r <73,k <r).

Thus ) )
S = |w0—|—Z:uje_ijA —I—ZUjeijAPf(w)dw.
- 7=1 7=1

is also symmetric in the vectors u and v. Since = 0F + (1 — 6)S inherits the same
symmetry property we conclude that the value of w minimising () satisfies u = v and
corresponds to a symmetric filter. a

The properties of these filters are considered and discussed in Section 3.1.

2.3 At the ends

Consider now the ends of the series and, in particular, the most recent time points. Here
the need for high quality estimates of the trend and hence the seasonal is of dominating
and over-riding importance.

Various strategies have been adopted at the ends of series. For example Macaulay advocates
using a best-fitting polynomial determined for the last complete window to provide the
required trend values at the ends of the series. This approach is also adopted by Kendall
(1973) and by Cleveland (1979) for the loess and lowess smoothers. Thus the moving
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window paradigm used in the body of the series is supplanted by a static window paradigm
at the ends. This inconsistency can lead to smoothness problems at the ends of the series
(see Gray and Thomson (1990)). The alleviation of these difficulties no doubt lies behind
Macaulay’s suggestion (Macaulay (1931), Chapter VIII) that the fitted polynomial for the
last complete window should share a common slope with the most recent trend estimates.
However this suggestion is not adopted by either Kendall (1973) or Cleveland (1979) for
their end filters.

An alternative strategy is to maintain the same moving window paradigm at the ends
of the series as was adopted in the body. This consistency comes at a price since the
windows adopted at the ends now include future unknown observations. How these missing
observations should be treated is open to question.

A common and natural approach involves forecasting the missing values, either implicitly
or explicitly, and then applying the desired central filter. The forecasting methods used
range from simple extrapolation to model based methods, some based on the local trend
model adopted, others based on global models for the series as a whole. The latter include
the fitting of ARIMA models to produce forecasts (see Dagum (1980) in particular). As
noted in Section 1, the principle of using prediction at the ends of series seems a key one
which goes back to DeForest (1877). See also the discussion in Cleveland (1983), Greville
(1979) and Wallis (1983).

Yet another way to handle the missing values in the window is to employ additional criteria
specific to the ends of the series. An important requirement, especially among official
statisticians, is to keep seasonal adjustment revisions and therefore trend revisions to a
minimum as more data comes to hand. Thus, at the ends of series, a natural criterion to
consider is )

E{(g: — 3"} = E{( Z wsYers — )} (30)
where ¢; is a predictor of ¢ based on past data and the w; are the weights of the central
filter that applies once all the data is to hand. In general, given a history of observations

Y1, .., yr, it is evident that (30) is minimised when
Gt =Y Wsltts (31)
and §iys = F(Yt4s|Y1,- .., yr) denotes the best predictor of y;1, in the usual mean squared

error sense. Thus there is a close relationship between the minimum revisions approach
and that of forecasting the missing values in the window.

The minimum revisions strategy appears to have been originally proposed by Musgrave
(1964) for the case where ¢ is restricted to be linear in the observations within the window.
(See the discussion in Doherty (1991).) This approach has also been adopted by Lane
(1972), Laniel (1986) and will also be adopted here. Geweke (1978) and Pierce (1980)
established the result (31) for the case where g is linear in past values of the time series
(not just those within the window) and where the time series follows an appropriate global
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model. However the argument leading to (31) shows that in general g;;s, and hence g,
need not necessarily be linear in the observations.

The expectation operator applying in (33) is with respect to the global or local model
adopted for the time series concerned. In this regard note that a local model is implicitly
used by the X-11-ARIMA procedure (Dagum (1980)) to determine trends from forecast
augmented data where the forecasts are based on a global parametric model. Although this
mismatch does not seem to matter in practice, in principle one would like to be consistent
and work within the same model framework. This is our objective here.

In this paper we adopt the minimum revisions strategy based on the moving window
paradigm and the local dynamic trend model of Section 2.1. At the ends of the series we
choose to predict ¢ = 30 wsy:ts by the linear predictor

q

g = Z UsYi+s (32)

s=—r

which minimises

Ry = B{(4 — 3.)"} (33)
where ¢ = T'—t with 0 < ¢ < r, T denotes the time point of the last observation and
the u; are dependent on g. We shall consider two cases. The first imposes the condition
that ¢; be an unbiased predictor of >°0__ w,y;45. The second weakens this requirement by

considering biased predictors such as those developed by Musgrave (1964) for X-11 (see in
particular Doherty (1991)).

2.3.1 Unbiased predictors

If ¢, is to be an unbiased predictor of 3 wsYrys then the u; must satisfy

g '
> u, =1, > sluy, =0 (0 <7 <p). (34)

Thus the asymmetric moving average filter implied by (32) passes polynomials of degree p.
Moreover R, is now given by

R, =Vv'Ev (35)
where v has typical element
Jows—us (-7 <s<yq)

and the central filter weights w, that apply in the body of the series satisfy (7).

For each ¢, appropriate values of the u; can now be determined by minimising R, subject
to (34). As we show below, this results in an end filter that satisfies a particular form of
(31) involving optimal prediction.
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First consider predicting

Y = Z 5syt—|—s
from yi—r, ... Y44 by a linear predictor of the form

X g

Y = Z UsYt+s

where ¢ < r and the d§; are arbitrary known values. Then, in terms of the local dynamic
model that applies in the window, YV is the best linear unbiased predictor (BLUP) of Y if
the us are chosen so that E(Y — Y) = 0 (unbiased prediction error) and the mean squared
error criterion E{(Y — Y)2} is a minimum.

Furthermore, define the n x (¢ 4+ r + 1) matrix Ly and the n x (r — ¢) matrix Ls by the
relation

I - []—_117 Lz] (37)
where I denotes the n-dimensional identity matrix. We now establish the following result.

Theorem 5 Let y; follow the local dynamic model specified by (2) and (3). Given § =
(0_r, ..., 0,)T and observations yi_,,...,Yiry for 0 < q < 7, the BLUP of S__ O.yiys is
S UsYirs where u = (u_,,...,u,)T is given by

u = LI(I - GLy(LIGL,) ' LI)s.
Here
G =E[' - E['C(CTE{'C)"'CTE[",
E, is Eg defined in Theorem 1 evaluated at § =1 and C is given by (17).
In particular the BLUP of 3" 0syi4s 15 given by >0 6s0iys where Giys is the BLUP

s=—r

of yirs for g < s <r and y;s otherwise.
Proof
For Y = S Usyrrs to be an unbiased predictor of Y =377 dsYrys the uy must satisfy

S==r s=—r

Zsju5:ZSj5s (0 <j<p). (38)

Given (38)
Y-y = Zr: Vs (Erys — & + €rgs)
where _
wo{a G &
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Corollary 6 Let y, follow the local dynamic model specified by (2), (3) and let w denote
the vector of weights w, for the central filter used in the body of the series with the w,
satisfying (7). Furthermore let gy = 3 1__ usyits be an unbiased predictor of 3°0_  wyiys
with the us satisfying (34). Then, for 0 < g < r, the values of us that minimise R, subject
to (34) are given by Theorem 5 with § = w and

q r

Z UslYt4+s = Z ws:gt—l—s-

s=—r s=—r

Here 4,45 ts the BLUP of yiys for ¢ < s <r and y;1s otherwise.

Proof
Since § = w it follows from (34) that the u, satisfy (38) and R, = E{(Y — Y)z} The
result follows. a

Because of their dependence on BLUP predictors we shall henceforth refer to the end
filters specified by Corollary 6 as BLUP end filters. Their properties are investigated in
Section 3.2.

Theorem 5 and Corollary 6 establish a direct relationship between optimal linear prediction
and minimum revisions. However the nature of these results suggests that there may be
a special link between these two criteria and optimal fidelity where § = 1. The following
result makes this connection more precise.

Theorem 7 Let y; follow the local dynamic model specified by (2), (3) and let w specify
the vector of weights for the optimum fidelity central filter given by Theorem 1 with § = 1.
Then, for 0 < g < r and §; given by (32), minimising the revisions R, subject to (34) is
equivalent to optimising the fidelity

q

F=E{(G—9)"} = E{( Y. usyers — 9:)*}

s=—r

subject to (34) where both optimisations are with respect to the end filter weights us. In
this case the BLUP of >'_ _ wgyirs equals the BLUP of g;.

Proof
Note that

—-r

F=v'E,v

and
Ry=(w—Vv)'Ei/(w—-v)=w E;w+ Vv E;v-2vE,w

where E; is given by Theorem 1 and v has typical element

Jous (—r<s<ygq)
ST 0 (g<s<r) -

Moreover §; is an unbiased predictor of ¢ since the wu satisfy (34) or, equivalently, v

satisfies (18).

25






for estimating the parametric quantities involved. By virtue of the local dynamic models
adopted, the end filters derived generalise and extend the current X-11 end filters which
were developed by Musgrave (1964) and placed in a prediction context by Doherty (1991).

Following the development in Section 2.3.1 we first consider predicting

Y = Z 5syt—|—s

using a linear predictor of the form

. q

Y = Z UsYt+s

s=—r

where ¢ < r is given and the §, are arbitrary known values. In general, the mean squared
error criterion F{(Y — Y)?} is given by

A~

BY =V = (3 0By + Var{ Y vogie) (13)

s=—r s=—r

where v is given by (39) with typical element v, = d; — us; when —r < s < ¢ and J
otherwise. The bias term in (43) can be written as

Z v By = Z USZ[?] t+s) I = Z Zﬁ-l-k anien Z vssj)tk (44)

s=—r s=—r k=0 ;5=0 s=—r

and this will be invariant to the location of the window’s time origin ¢ if p = 0 or if

i sv, =0 (0< 35 <p). (45)

s=—r

when p > 0. Note that (45) is equivalent to

r

Zq: su, = Z $7 5, (0<j<p). (46)

s=—r s=—r

If p > 0 and the u, satisfy (46) then

Var{ Zr: VsYrgs b = E{( Zr: Vs(Etps — &+ €4s))’}

s=—r s=—r

and (43) becomes

r

E{Y =Y} =82 s"0,)  + v Ev (47)

s=—r

with v given by (39) and E; = %I 4+ Q given by Theorem 5. As before, it is desirable for

the mean squared error E{(Y —Y)?} as well as the bias to be time invariant. However, as
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indicated in the discussions following Theorems 3 and 5, this will only be the case if (40)
holds and the levels of integration of the random walk components that make up & do not
exceed p + 1. Here the v, satisfy (45) rather than (40). Thus, to ensure that the mean
squared error for the biased predictors is time invariant, we need to impose the stronger
condition that the levels of integration of the random walk components that make up & do
not exceed p. In the case where p = 0 this necessarily leads to the requirement that & = 0
and so (47) continues to hold for p = 0 with E; = ¢*1L.

These observations lead us to consider a restricted local dynamic model for the window
centred at ¢t where the levels of integration of the random walk components that make up
& do not exceed p. For such a model we define V to be the best linear time invariant
predictor (BLIP) of Y if the wus are chosen to satisfy (46) and the mean squared error
criterion E{(Y — Y)?} is a minimum. Thus the expected prediction error (Y — Y) and
the mean squared error F{(Y — Y)z} do not depend on ¢ whatever the parameters of the
local dynamic model concerned.

Theorem 8

Let y; follow the restricted local dynamic model specified above and let Y = 3 dsyiys
where § = (8_,,...,68,)T is known. Given observations yi_,,...,yir, and q satisfying 0 <
q<r,the BLIP of Y is Y = Y0 w,yiss where u = (u_,,...,u,)T is given by

u = LI - GLy(LIGL,)'LL)s

with

1_1Cp—1(CT 1E1_lcp—1)_ICT 1E1_1-

p—

)
Il
5
|
esk

Here
E o E1 + ﬁchcg (p > 0)
T oL+ Bieocd (p=0)

and Eq is as given by Theorem 5. The n x p matriz C,_y and the n dimensional vector c,
are defined implicitly by the partitioned matriz

C=[C,1,¢,)

where C is given by (17) and C,—y is null when p = 0.

In particular the BLIP of Y2\__ dsyiys is given by >.0__ 0s0iys where §uys is the BLIP of
Yirs for g < s < r and y;1s otherwise.

Proof

The proof of this result proceeds in much the same way as Theorem 5. Consider first the
case p > 0. Using Lagrange multipliers we optimise (47) subject to (46) and obtain

v = E7'C,_ip+E] Ly
LIE]'C,_ip+ LIE 'Ly = LIS
CLE'Cpip+ Cl_E["Lyy = 0
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where pu, v are the vectors of Lagrange multipliers. Solving these equations together with
(39) yields the stated result. The case p = 0 follows similarly.

Setting ¢ = 0 with the exception of the s-th element which is set to unity, we see that the
BLIP of yys is

s s (<5 <q)
TRy (g<s<r)

where h, is the s-th column of —LlTéLQ(LQTéLg)_lLQT and ¥y = (Yi—r, .-, Yirq) . Thus,

for arbitrary choice of ¢,

q . . 7
37 ugyirs = 6T (I = GLy(L]GLy) 'L Lay = > 6sdigs

s=—r s=—r

as required. a

Note that the BLIP predictor given by Theorem 8 has the form of a shrinkage estimator
since it is exactly the same as the BLUP predictor given by Theorem 5, but with E; replaced
by E; —|—[3§cpcg and C replaced by C,_;. Indeed, when 3, = 0, the BLIP predictor becomes
the BLUP predictor for the reduced model where g; is replaced by

_ { SP B+ & (p>0)
70 (p=0) "

but & and ¢; remain the same.

We now return to the minimisation of the revisions criterion R, given by (33) where the
w, are the known central filter weights that apply in the body of the series and the wy
satisfy (7). Given a restricted local dynamic model, we consider predicting >0_ | wsyrys
by a linear predictor g of the form (32) subject to the requirement that the bias of g is
time invariant. The latter quantity is given by (44) with ws; = §; (—r < s < r). Thus,
from (46) and (47), ¢ is a linear time invariant predictor of Y0_  wsysqs if

q q ]
dooug =1, > su, =0 (0<j<p) (48)

s=—r s=—r

when p > 0 and, for p > 0,

q

Ry = 32> sPve)* + vIEv (49)

with

2 o Py )2 — 5;( o=y STug)? (p>0)
S s ={ G )

Here v is given by (36) and R, is also time invariant. This leads to the following result.

s=—r
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Corollary 9 Let y; follow the restricted local dynamic model specified in Theorem 8 and let
w denote the vector of weights wy for the central filter used in the body of the series with the
ws satisfying (7). Furthermore, let §: = 31— _, usyiqs be a linear predictor of Y\ wsyiys
with time invariant bias so that the ug satisfy (48) when p > 0. Then, for 0 < ¢ < r,
the values of us that minimise R, subject to these conditions are given by Theorem § with

6 =w and
q 7

Z UslYt4+s = Z ws:gt—l—s-

s=—r s=—r

Here 4,45 ts the BLIP of yi1s for q < s <r and y;1s otherwise.
Proof

Since the us and w; satisfy (46) when p > 0, the result is a direct application of Theorem 8.
O

Because of their dependence on BLIP predictors we shall henceforth refer to the end filters
specified by Corollary 9 as BLIP end filters. Their properties are investigated in Section 3.2.

Now E;/c? does not depend on ¢? and E; need only be known up to a constant of pro-
portionality. Thus, unlike the BLUP end filters specified by Corollary 6, the BLIP end
filters specified by Corollary 9 can only be made operational when ﬁ;/az is known. Since
this will rarely, if ever, be the case, estimates of ﬁ;/az of one form or another need to be
determined from the data. Such estimates will, necessarily, differ from their true values
and it is therefore important to determine the effects of mis-specification of ﬁ;/az. This
issue is addressed below in Theorem 10 and also Sections 3.2.2 and 4.1 where the properties
of these end filters and the estimation of 32/0? are discussed.

Note that Corollary 9 yields the X-11 end filters derived by Musgrave (1964) and Doherty
(1991) when & =0, p =1, 3} /0 = 4/(n(3.5)?) and w contains the X-11 Henderson central
filter weights. Thus Corollary 9 provides a generalisation and extension of the current X-11
end filters to any of the local dynamic models specified in Section 2.1 provided the levels
of integration of the random walk components that make up & do not exceed p.

The following result considers an alternative form of the BLIP end filters given by Corol-
lary 9 which explicitly builds on the corresponding BLUP end filters given by Corollary 6.
In addition the result provides a means of exploring the effects of mis-specification of ﬁ;/az.

Theorem 10

Let y; follow the restricted local dynamic model specified in Theorem 8 and let w denote
the vector of weights w, for the central filter used in the body of the series with the w,
satisfying (7). Given observations Yi—,,...,Yirq and q satisfying 0 < ¢ < r, let §:(¢) =

e us(D)yirs be a linear predictor of Y wsyiys where ¢ is an arbitrary scalar, u(¢) =

(4 r(B)s--r4g(9))T i given by
u(¢) = L{ (I - GLy(L; GLy) 'L ) (W + ¢7)
and

v =E{'C(CTE['C)~!d.
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Here Ly, Ly, G, Ey and C are as given in Theorem 5, and the p+ 1 dimensional vector d
is zero save for the last element which is unity. Then

(a) G:(@) is a linear time invariant predictor of 3,

e, WeYts with squared bias ﬁquz
and the ugs(¢) satisfy (48) when p > 0;

(b) the revisions criterion R, is given in this case by
Ry(¢) = w Hw + 2¢7"Hw + ¢*(82 + A" (CTE{'C)'d + 7" Hy)

where

H = Ly,(L!GL,)™'LI;

(¢c) the optimal end filters of Corollary 6 and Corollary 9 are given by u(0) and
u(¢g) respectively where

+vTHw

o=  32+d7(CTE;'C)~'d +4THy

minimises Ry().

Proof

First observe from Theorem 5 that §;(¢) is the BLUP of 3/__ (w,+ ¢7s)yirs and CTy = d

so that
q q

> st =1, > =0 (0<j<p)

s=—r s=—r

Thus, from (38),

q 4 r 4 1 (j:())
> sus(d) =) sf<w5+ms>{ 0 (0<j<p)

s=—r s=—r Qb (] — p)
when p > 0 and Y7__ us(¢) =1 + ¢ when p = 0. Moreover

BLY wagers — 3(6)} = —6 3 1aBlyis) = —65,

s=—r s=—r

since CTy = d. This establishes (a).

Now, from (49) and (36),
Ry(¢) = 5;952 +v'Ev

where

v =w — Lyju(¢).
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Noting that LI(I — GH) = 0 we can write v as

v = w— (I- GH)(w + ¢)

= GHw — ¢(I- GH)y (50)

and R,(¢) becomes
R,(¢) = w'HGE,GHw — 247" (1 - HG)E,GHw (51)
+0(8) + 7" (1~ HG)E(I- GH)Y'). (52)

Since GE1G = G, HGH = H and v"E;G = 0, the above now reduces to the expression
for R,(¢) given by (b).

From the form of u(¢) it follows directly that u(0) is the optimal end filter given by
Corollary 6. All that remains to prove is that u(¢g) is the optimal end filter given by
Corollary 9. Consider again minimising (49) with respect to the u; where now v is defined
by (36) and the wu; satisfy (48) if p > 0. This is equivalent to optimising

Ry, = 326" +vIEv — 247 (CTv + ¢d) — 207 LI (v — w)

with respect to v, ¢ and the Lagrange multipliers i, v. Here ¢ is a function of v defined

by

s=—p Us — 1 (p = 0)

where the latter equality follows from (7) and (36). Optimising fx’q first with respect to v,
i and v we obtain the equations

s=—r

v = E['Cu+E['Ly
L'Ef'Cu + LIET'Lyy = Llw
CTE['Cu +CTE['Lyr = —¢d

and these, together with (36), yield u = u(¢). Substituting this solution back into fx’q gives
R,(¢) which must now be optimised with respect to ¢. Since R,(¢) is a quadratic in ¢ and
takes its minimum value when ¢ = ¢q result (c¢) follows. O

An immediate consequence of Theorem 10 is that end filters based on BLIP predictors
will generally have smaller mean squared revisions than those based on the corresponding

BLUP predictors since R,(¢o) < R,(0). Moreover

(v'Hw)? _
B2+ d7(CTET'C)~'d +9"Hy

Ry(¢o) = w' Hw — Ry(0) — [60) |17 Hw|

so that R,(¢o) is a monotonically increasing function of ﬁ;/az and a linearly decreasing

function in |¢g|. In particular

lim  Ry(¢0) = R,(0), lim ¢ =0

52/02—>oo 52/02——>oo
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In practice this choice should lead to values for B;/&z that, if anything, over-estimate
ﬁ;/az thus controlling the mis-specification error by shrinking the BLIP end filter towards

its BLUP counterpart. Note that if B;/&z > [32/o* then

(o) = (1 — 2250 + %@(%) (0 < j— <1)

so that LE]t(qAbo) is a convex combination of the two optimal end filters.

Further discussion on the properties of these end filters is given in Section 3.2.
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3 Properties of the filters

In this section we focus attention on two particular local dynamic models likely to be used
in practice. Preliminary analysis indicates that these models have properties that can be
regarded as representative of other more general models of the type discussed in Section 2.1.
The models considered for the window are the local linear model (p =1) given by

Y=gt =0+ Git+&+ & (55)
and the local quadratic model (p =2) given by

Yi = gi + ¢ = Bo+ Bit + ot + & + . (56)

In both cases & i1s a simple random walk satisfying

=61+

with & = 0 and ¢, n; are mutually uncorrelated white noise processes with variances o2,

02 = A\o? respectively.

Unless otherwise stated, we also restrict attention to the case where the window is of length
13 so that r = 6.

3.1 1In the body

The impulse response functions of the filters given by Theorem 1 for the local linear model
(55) and the local quadratic model (56) are plotted in Figure 1 for selected values of 6
and A. Note that the 13 point X-11 Henderson filter corresponds to the case where § = 0,
A =0, p=2 and is shown in the top right hand plot of Figure 1.

As ) varies the Henderson filters that optimise smoothness S (8 = 0) differ only slightly
whereas the Macaulay filters that optimise fidelity /' (6 = 1) show much greater variation.
In particular the Macaulay filters become more adaptive as A increases with the weights
at central lags being progressively increased at the expense of those for extreme lags. The
mixture of smoothness and fidelity corresponding to # = 0.5 yields a compromise between
the Henderson and Macaulay filters as expected.

The optimal impulse response function given by Theorem 1 converges to a limit w as A
increases where w is given by Theorem A2 in Appendix A.2. This limit corresponds to
the case where 0% = 0 or, in practice, where 02 is very much larger than o?. In such cases
the model has no noise component so that y; is just the trend ¢;. The limiting impulse

response functions are plotted in Figure 2.

Thus, as A increases and for given 8, the impulse response functions of the filters given by
Theorem 1 smoothly vary from a mixture of Henderson and Macaulay filters through to
the impulse response functions of the filters specified by Theorem A?2.
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Figure 1: Plots of the impulse response functions of the 13 point filters given by Theorem 1
for the specified local linear and quadratic models and selected values of  and A. The solid
lines correspond to # = 0 (smoothness criterion only), the dashed lines to § = 1 (fidelity
criterion only) and the dotted lines to # = 0.5 which gives a comprise between smoothness
and fidelity. The 13 point X-11 Henderson filter corresponds to the case where § = 0,
A =0, p =2 and is shown in the top right hand plot.
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Figure 2: Plots of the limiting (A = co) impulse response functions of the 13 point filters
given by Theorem 1 for the specified local linear and quadratic models and selected values
of 0. The solid lines correspond to # = 0 (smoothness criterion only), the dashed lines
to § = 1 (fidelity criterion only) and the dotted lines to § = 0.5 which gives a comprise
between smoothness and fidelity.

Figure 3 shows the gain functions of the filters given by Theorem 1 for the local linear
model (55) and the local quadratic model (56) for selected values of # and A. The gain
function of the 13 point X-11 Henderson is shown in the top right hand plot of Figure 3
and corresponds to the case where § =0, A =0 and p = 2.

The broader pass band in the case of p = 2 follows from the fact that any linear filter
constrained to pass a polynomial of degree p has a gain function whose first p derivatives
are zero at the origin. (See Brillinger (1965).) This leads to greater restrictions on the
curvature of the gain function at the origin as p increases.

Note that the Henderson filters that optimise smoothness S (8 = 0) show little leakage
over the frequency band [0.1,0.5] when p = 1 and [0.2,0.5] when p = 2. By comparison the
Macaulay filters that optimise fidelity F' (6 = 1) have significant side lobes in these fre-
quency bands. Clearly optimal fidelity comes at a price. Again the mixture corresponding
to 8 = 0.5 has the expected compromise effect.

The phase functions of the filters were also examined for a variety of values of A. It would
appear that the Henderson and mixture filters in general together with the Macaulay filters
for A = 0 are not positive definite. However, for A > 0, the Macaulay filters are frequently
positive definite and this improvement in phase characteristics carries through in part to
the mixture filters.

For the purposes of graphical display we now consider alternative measures of smoothness
and fidelity based on F* and S* given by (8), (19) and (10). Recall that F* and S* measure
the gains in fidelity and smoothness of the trend estimate ¢ relative to the fidelity and
smoothness of the data. Thus, given a vector of central filter weights w and a local dynamic
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Figure 3: Plots of the gain functions of the 13 point filters given by Theorem 1 for the
specified local linear and quadratic models and selected values of # and A. The solid
lines correspond to # = 0 (smoothness criterion only), the dashed lines to § = 1 (fidelity
criterion only) and the dotted lines to # = 0.5 which gives a comprise between smoothness
and fidelity. The gain function of the 13 point X-11 Henderson filter is shown in the top
right hand plot of Figure 3 and corresponds to the case where § =0, A =0 and p = 2.
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model, F* and S* are given by the quadratic forms
*=wl(o T+ Q)w/o? S* =wl(0"By +T)w/So (57)

where So = E{(AP*'y;)?}. Since the local models considered in this section have fixed
window length n = 13 and are specified by p and A, we denote the values of F* and
S* evaluated at the filter specified by Theorem 1 as F*(8|p, A) and S*(0|p, A) respectively
where the notation reflects the fact that € is user specified.

To compare gains in fidelity and smoothness across different values of § and different models
indexed by A, we consider the efficiency measures

~(1]p,0)

S*(0[p, 0)
*(0p, M)’

Fepr(Olp, A) = )

Ser(Olp, A) = (58)
Here F,;; measures the efficiency of the trend estimate ¢ in terms of its fidelity gains
relative to those of the Macaulay filter with = 1, A = 0. Similarly S.;; measures the
efficiency of ¢; in terms of its smoothness gains relative to those of the Henderson filter with

6 =0, A = 0. The reference Macaulay (§ = 1, A = 0) and Henderson filters (6 = 0, A = 0)

are used as convenient, but somewhat arbitrary, benchmarks.

In practice we will typically have only one model available. Thus we also consider the
following relative efficiency measures which compare gains in fidelity and smoothness across
different values of # for the same model. These measures are defined as

_ Fr(dip, A) _ 57(0[p, )

Foa(0lp, A) = =) _ .
Olp-2) = Tl S (0p. )

Srel(0|p7 )\) (59)
In this case F,. measures the efficiency of the trend estimate ¢; in terms of its fidelity
gains relative to those of the optimal fidelity or Macaulay filter for the model indexed by
A. Similarly S, measures the efficiency of g; in terms of its smoothness gains relative to

the optimal smoothness or Henderson filter for the same model.

Perspective plots of F.s; and S5 are given in Figure 4. For given 0 greater than 0.1
(p=1) or 0.3 (p = 2) smoothness efficiency improves as A increases from 0 to around 0.1
(p=1)or 0.2 (p =2), and then deteriorates thereafter as A increases. Thus a modest
amount of positive correlation in y; allows for greater gains in the smoothness of the trend
estimate. However fidelity efficiency appears to uniformly deteriorate as A increases.

Perspective plots of F,.; and S, are given in Figure 5. For both p =1 and p = 2 relative
fidelity efficiency is less variable than relative smoothness efficiency. In particular, relative
fidelity efficiency exceeds 90%, approximately, for # > 0.3. In general relative smoothness
efficiency decreases more rapidly than relative fidelity efficiency as # increases with the
effect more marked for p = 1 than p = 2. For § < 0.3 relative smoothness efficiency
exceeds 80% when A is near 0.1 (p = 1) and for all values of A considered (p = 2). A more
detailed picture of the trade-off between relative fidelity efficiency and relative smoothness
efficiency for given § and selected values of X is illustrated in Figure 6.
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Figure 6: Plots of the fidelity relative efficiency F,. and the smoothness relative efficiency
Syer of the 13 point filters given by Theorem 1 for the specified local linear and quadratic
models, and selected values of § and A. Here F,. (dashed lines) measures the efficiency of
the trend estimate §; in terms of its fidelity gains relative to those of the optimal fidelity
or Macaulay filter for the model indexed by A. Similarly S, (solid lines) measures the
efficiency of g; in terms of its smoothness gains relative to the optimal smoothness or
Henderson filter for the same model. The plots illustrate the trade-off between relative
fidelity efficiency and relative smoothness efficiency for given 6.
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Finally, we consider the performance of the X-11 Henderson filter (A = 0, p = 2) in terms
of both fidelity and smoothness. The fidelity F* and smoothness 5* of the X-11 Henderson
filter are given by (57) for each of the local models p = 1 and p = 2 considered and with
w containing the vector of X-11 Henderson filter weights. Plots of these measures relative
to the optimal S*(0|p, A) and F*(1|p,A) are given in Figure 7. Note that S*(0|p, A) gives
the smoothness of the optimal Henderson filter for the particular local dynamic model
concerned and F*(1|p,\) gives the fidelity of the optimal Macaulay filter for the same
model.

In terms of smoothness, it is clear in the case p = 2 that there is little to differentiate the X-
11 Henderson (A = 0) from its generalisation based on the local dynamic model where A > 0.
However, in the case p = 1, the smoothness of the X-11 Henderson filter is substantially less
than that of the Henderson filter tailored for the local linear model concerned. This is not
entirely unexpected since the conventional Henderson filter is designed to accommodate
quadratic rather than linear trends and so its trends exhibit greater variation in curvature.

In terms of fidelity, the X-11 Henderson filter performs poorly when A is less than 0.1 and
p = 1, but otherwise its relative fidelity exceeds 80% for A in excess of around 0.2 (p = 1)
and for all A considered (p = 2).

3.2 At the ends

This section considers the properties of the end filters specified by Corollary 6 and Corol-
lary 9 which are designed to minimise the expected mean squared revisions between the
output of these filters and that of the central filters on which they are based. As stated
previously, these end filters deal with a transition problem that ultimately goes away as
the current time points are subsumed into the body of the series. The minimum revisions
criterion therefore provides a measure of the total cost of this transition.

In parallel with Section 2.3, the following subsections address the two cases where the end
filters are based on unbiased and biased predictors respectively.

3.2.1 Unbiased predictors

Here we consider the properties of the BLUP end filters based on Corollary 6 and specified
central filter weights ws;.

Examples of BLUP end filters based on the central filters given by Theorem 1 and the local
dynamic models (55) and (56) are given in Figures 8 and 9 for the cases ¢ =3, ¢ = 0 and
selected values of A. In much the same way as the central filters that they are based on,
the BLUP end filters for the central Henderson filters that optimise smoothness (6 = 0)
differ only slightly whereas those for the central Macaulay filters that optimise fidelity
(0 = 1) show greater variability especially for the case ¢ = 3. In the latter case note that,
as A increases, progressively more weight is placed on the observation at the origin of the
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Figure 7: Plots of the fidelity and smoothness of the X-11 Henderson 13 point filter relative
to the optimal fidelity and smoothness filters respectively for the specified local dynamic
models considered. The latter are indexed by p and A. Note that the smoothness of the
X-11 Henderson filter is close to 100% in the case of p = 2 as expected, but is far from
being smooth by comparison to the optimal smoothness filter tailored for the local linear
model p = 1. For X in excess of around 0.2 (p = 1) and for all A (p = 2), the relative
fidelity of the X-11 Henderson filter exceeds 80%.
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window so that the end filters become more adaptive.

For any given central filter with weights given by w, the BLUP end filters converge as A
increases to a limit specified by Corollary 6 with G replaced by G. Here

lim A\G = G

is given by (71) of Appendix A.2 where the proof of this result is also given. The limiting
impulse response functions of the BLUP end filters for ¢ = 3 and ¢ = 0 are plotted in Fig-
ure 10. These are based on the limiting central filters of Theorem 1 given by Theorem A2.
Note that, as in the case of the limiting central filters, the pure fidelity case (§ = 1) yields
a limiting end filter with all its weight concentrated at the origin of the window so that

Gt = Ys.
Now consider the mean squared revisions criterion R, given by (35) evaluated for the BLUP
end filters based on specified central filters.

Figure 11 shows R,/o? for the BLUP end filters based on the optimum central filters given
by Theorem 1 and the local dynamic models (55) and (56). For comparative purposes
and because of its central role within X-11, Figure 11 also includes a plot of R,/c? for
the BLUP end filters based on the central X-11 Henderson filter. As expected, the mean
squared revisions are greatest when ¢ is least with ¢ = 0 yielding the greatest revisions
followed by ¢ = 1. The mean squared revisions for the other values of ¢ are typically
negligible by comparison.

Consider the plots of R,/a? for the BLUP end filters based on the optimum central filters
of Theorem 1. Note that individual plots are based on different central filters which are
shown in Figure 1. For local dynamic models with A less than 0.1 (p = 1) and 0.3 (p = 2),
the BLUP end filters based on central Macaulay filters with optimal fidelity (6 = 1) show
higher mean squared revisions than those based on central Henderson filters with optimal
smoothness (6 = 0). Given the comments made in Section 3.1 concerning the properties
of the central filters on which these end filters are based, it would appear that the use of
central Henderson filters is favoured in this case.

For values of A > 0.1 (p = 1) and A > 0.3 (p = 2) the situation is reversed with the
BLUP end filters based on the central Henderson filters (§ = 0) showing higher (in some
cases significantly higher) mean squared revisions than those based on the central Macaulay
filters (8 = 1). Thus, if y; exhibits significant local positive correlation (A sufficiently large),
it would appear that there is a need for more adaptive end filters whose central filters have
good fidelity properties if revisions are to be minimised.

As a general observation, it would appear from Figure 11 that the mean squared revisions
R,/o? increase as A increases for the BLUP end filters based on central Henderson filters
(0 = 0), and decrease as X increases for the BLUP end filters based on central Macaulay
filters (§ = 1). Moreover, although smoothness plays the influential role in the body
(see Figures 5 and 6), it would appear that it is fidelity that plays the dominant role in
minimising expected revisions at the ends.
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Figure 10: Plots of the limiting (A = o) impulse response functions for the end filters given
by Corollary 6 based on the limiting central filters of Theorem 1. Here the cases ¢ = 0 and
g = 3 are given for selected values of # and the local linear and quadratic models specified
by p. The solid lines correspond to § = 0 (smoothness criterion only), the dashed lines to
§ = 1 (fidelity criterion only) and the dotted lines to § = 0.5 which gives a compromise
between smoothness and fidelity.
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Figure 11: Plots of the mean squared revisions criterion R,/c? for the BLUP end filters
based on the optimum central filters given by Theorem 1 and selected values of § and
A. Here the local linear and quadratic models are specified by A and p, the solid lines
correspond to the central filter with # = 0 (smoothness criterion only), the short dashed
lines to the central filter with § = 1 (fidelity criterion only) and the dotted lines to the
central filter with § = 0.5 which gives a compromise between smoothness and fidelity. The
long dashed lines correspond to R,/c? for the BLUP end filters based on the central X-11
Henderson filter. This has been included for comparative purposes.
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A common feature of all the plots is the smaller values of R,/c? for the local quadratic
model (p = 2) when ¢ > 0 by comparison to the local linear model (p = 1). This is a direct
consequence of the central filters involved. To see this note that

r

Ry = E{( Y. wi(yess — Gr45))*}

s=—r

where the w; are the central filter weights and ¢ ; is the BLUP of y;, s based on observations
Yt—ry- -y Yigq. From Figure 1 note that the wy for p = 1 are positive whereas those for p = 2
are typically negative for |s| > 5. In addition, the w; for p = 2 are typically small for |s| =4
and are identically zero in this case for the X-11 Henderson filter. Since the forecast errors
Yirs — Urrs will typically be positively correlated, there is more likely to be a cancellation
of errors when p = 2 and ¢ is 1 or 2 than for the corresponding case when p = 1. This
difference decreases as A increases due to the increasing adaptivity of the p = 1 filters which
place progressively more weight on the observations at the origin of the window. Thus,
although the p = 1 local model may well provide better predictions g1, the mean squared
revisions will typically be better for p = 2 and ¢ > 0 due to the shape of the central filters
involved.

It is clear that the choice of the central filter has a direct bearing on the size of the
expected revisions at the ends of the series. In particular, the choice of a central filter with
an appropriate balance of smoothness and fidelity may well result in lower mean squared
revisions. However care must be exercised since better mean squared revisions obtained by
using high values of § may well lead to central filters with inferior smoothness properties
(see Figure 6 for example). A balance must be struck between the desired smoothness and
fidelity properties in the body of the series and the desire for minimum revisions at the
ends. For example, in practice it may well prove that a local linear model with large A will
provide a comparable explanation of the data by comparison to a local quadratic model
with small A. In this case the plots of R,/o? for p=1,A=0.7,0 =0.5 and p =2, A =0,
0 = 0 suggest that the local linear model is to be preferred since it has better mean squared
revisions.

Now consider the plots of R,/a? for the BLUP end filters based on the same central X-
11 Henderson filter. Examination of these particular plots in Figure 11 reveals that mean
squared revisions increase as p and A increase. This is what one would expect given standard
results from prediction theory with the scale of the increases moderated by the common
central filter adopted.

For p = 2 and all values of A\ it would appear that the BLUP end filters based on the
central X-11 Henderson filter give much the same mean squared revisions as the BLUP
end filters based on the central Henderson filters with optimal smoothness (§ = 0). This
is as expected since the central filters concerned are identical when A = 0 and differ only
slightly when A > 0 (see Figure 1 for example). When p = 1 and A > 0.4 the BLUP end
filters based on the central filters given by Theorem 1 turn out to have better mean squared
revisions than those based on the central X-11 Henderson filter. However, for p = 1 and
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A < 0.4 the reverse is true and the BLUP end filters based on the central X-11 Henderson
filter perform significantly better. Note, however, that this improvement in performance
at the ends comes at the expense of decreased performance in the body of the series as
Figure 7 attests. Once again an appropriate balance must be struck, in this case between
the desired mean squared revisions properties of the BLUP end filters and the fidelity and
smoothness properties of the central filter on which they are based.

3.2.2 Biased predictors

Here we consider the properties of the BLIP end filters based on Corollary 9 and specified
central filter weights w;. To evaluate the BLIP end filters we need to know the parameters
required to specify the BLUP end filters together with the value of ﬁ;/az. Since the latter
is typically unknown, in practice the BLIP end filters are evaluated with ﬁ;/az replaced

by some estimated or target value B;/&Q.

Three end filters are considered: B;/&z = oo (this yields the BLUP end filters), B;/&z =
4/(m(3.5)%) (this value gives the X-11 end filter in the case where p = 1, A = 0 and the
central filter concerned is the X-11 13 point Henderson filter), and ﬁ;/&z = 0. When ﬁ; =0

the latter choice for B;/&z corresponds to the BLUP end filter for the reduced model of
order p — 1. As noted in the discussion following Theorem 10, this particular end filter
yields the best mean squared revisions possible in the sense that the smallest value of R,(¢)
is achieved when ¢ = ¢o and 32/0* = B;/&z = 0. Also, if B;/&z is chosen so that (54) is
satisfied or B;/&z > [32/0?, then the largest value of Rq(qAbo) is R,(0) which is the minimum
revisions for the BLUP end filter. These values serve as useful bounds for Rq(qAbo).

Examples of the three BLIP end filters based on the central filters given by Theorem 1 and
the local dynamic models (55) and (56) are given in Figures 1215 for the cases ¢ = 3,
g = 0 and selected values of § and A. In terms of the general shape of the impulse response
functions, it is clear that § and A are the dominant parameters when ¢ = 3, but B;/&z is
the dominant parameter when ¢ = 0 and prediction within the window is most important.
In general it would appear that B;/&z has greatest effect when A is small. Note also that

the X-11 based value of B;/&z = 4/(7(3.5)?) would seem to be too close to B;/&z = o0 to

make any real difference. In terms of variation with # and X for a given value of B;/&z,
similar comments apply here as were made for the BLUP end filters given in Figures 8 and

9.

In much the same way as before, the limiting impulse response functions when A — oo can
be determined. Details are given in Theorem A4 of Appendix A.2. A key feature of these
end filters is that they do not depend on the choice of B;/&z. The limiting BLIP end filters
are given in Figure 16 for selected values of 8, ¢ and the local linear and quadratic models
specified by p. Although the central filters on which they are based could have been held
fixed, the limiting 13 point central filters given by Theorem 1 have been used. Again, the
pure fidelity case (§ = 1) yields a limiting end filter with all its weight concentrated at the
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Figure 12: Plots of the impulse response functions of the BLIP end filters for ¢ = 3 based
on the local linear model (p = 1) and the 13 point central filters given by Theorem 1.
These end filters are evaluated for selected values of # and A. The solid lines correspond
to B;/&z = oo (this yields the BLUP end filters), the dashed lines to B;/&z = 4/(m(3.5)?)
(this value gives the X-11 end filter in the case where p = 1, A = 0 and the central filter
concerned is the X-11 13 point Henderson filter), and the dotted lines to B;/&z = 0. When

ﬁ; = 0 the latter choice for B;/&z corresponds to the BLUP end filter for the reduced
model of order p — 1 and represents the best mean squared revisions possible.
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Figure 14: Plots of the impulse response functions of the BLIP end filters for ¢ = 3 based
on the local quadratic model (p = 2) and the 13 point central filters given by Theorem 1.
These end filters are evaluated for selected values of # and A. The solid lines correspond
to B;/&z = oo (this yields the BLUP end filters), the dashed lines to B;/&z = 4/(m(3.5)?)
(this value gives the X-11 end filter in the case where p = 1, A = 0 and the central filter
concerned is the X-11 13 point Henderson filter), and the dotted lines to B;/&z = 0. When

ﬁ; = 0 the latter choice for B;/&z corresponds to the BLUP end filter for the reduced
model of order p — 1 and represents the best mean squared revisions possible.

54



lambda = O, theta=0 lambda = O, theta = 0.5 lambda = O, theta=1

Weights
02 06

0.2

Weights
02 06

0.2

lambda = 0.3, theta=0 lambda = 0.3, theta = 0.5 lambda = 0.3 ,theta=1

Weights
0.6

0.2

lambda = 0.7 ,theta=0 lambda = 0.7 , theta = 0.5 lambda = 0.7 ,theta=1

Weights
02 06

Figure 15: Plots of the impulse response functions of the BLIP end filters for ¢ = 0 based
on the local quadratic model (p = 2) and the 13 point central filters given by Theorem 1.
These end filters are evaluated for selected values of # and A. The solid lines correspond
to B;/&z = oo (this yields the BLUP end filters), the dashed lines to B;/&z = 4/(m(3.5)?)
(this value gives the X-11 end filter in the case where p = 1, A = 0 and the central filter
concerned is the X-11 13 point Henderson filter), and the dotted lines to B;/&z = 0. When

ﬁ; = 0 the latter choice for B;/&z corresponds to the BLUP end filter for the reduced
model of order p — 1 and represents the best mean squared revisions possible.
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origin of the window so that ¢ = y;.

We now consider the performance of the BLIP end filters as measured by the mean squared
revisions Rq(qAbo). This is a function of both 32/0* and B;/&z as well as other parameters.
To provide a range of possible values of ﬁ;/az we briefly consider the so-called I/C ratio
used by X-11 to specify the length of the trend moving average adopted. Here [ and C
are the respective averages of the absolute values of the month to month changes in the
(estimated) irregular ¢; and trend g;. Thus the [/C ratio measures the importance of
month to month changes in ¢ relative to those in the trend ¢;. X-11 recommends that the
central 9 point Henderson filter be used when I/C' < 1, the central 13 point Henderson
trend filter when 1 < I/C' < 3.5, and the central 23 point Henderson trend filter when
I/C > 3.5. Following Musgrave (1964) and Doherty (1991) we consider the local linear
model (p =1) and

I F|A¢]

C  F|Ag]

(60)

which can be thought of as the population parameter that I/C is estimating. Under
(Gaussian assumptions

12 Bl |4 2Ax_ﬁ_1
c= TE R A o)

(61)

where 3; = f1/o, ®(x) is the standard normal cumulative distribution function and the
result follows from Theorem A5 given in the Appendix. A plot of 1/C' is given in Figure 17
as a function of |3 for selected values of A. The horizontal lines correspond to the bound-
aries [/C =1 and [/C = 3.5. From the graph and (61) it can be seen that the sets of
feasible values for |3;| lie in [0,2//7].

It would appear (see Musgrave (1964) and Doherty (1991)) that the guidelines given by
X-11’s I/C ratio were based on the local linear model with A = 0. To extend this measure
to higher order models consider

[p . E|Ap6t|

Cp  E|Arg,|
which is identical to [/C when p = 1. It can be thought of as a noise to signal ratio for
the differenced series APy;. For the local quadratic model (p = 2) and under Gaussian

assumptions
Iy 531
o, - @,2 |52|f |52|f GXP -5 (62)

where (3, = B2/a. This result also follows from Theorem A5 in the Appendix. A plot of
I5/C5 is given in Figure 17 as a function of |3;] and for selected values of A. If the same

[/C limits are retained (a possibly dubious presumption) it would seem that the interval
[0,2/y/7] again provides a feasible set of values for |3,].
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Figure 16: Plots of the limiting (A = co) impulse response functions of the BLIP end filters
for selected values of p, 8, ¢ and the limiting 13 point central filters given by Theorem 1.
The solid lines correspond to the limiting BLIP end filters and, for comparison, the dotted
lines to the limiting BLUP end filters.
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Figure 17: Plots of the I/C ratio against |J;|/0 and the [3/C5 ratio against |5y|/o for
the local linear (p = 1) and quadratic (p = 2) models respectively and selected values of
A. The solid line corresponds to A = 0, the dotted line to A = 0.1, the short dashed line
to A = 0.3 and the long dashed line to A = 0.7 The horizontal lines correspond to the

boundaries [/C =1 and [/C = 3.5.
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On the basis of the above analysis we now examine the mean squared revisions of the given
end filters for 32/0% in [0,4/7]. Note that it is sufficient to consider the extremes of this
interval since, from Theorem 10, R,(¢) is linearly increasing in ﬁ; over the interval for
given ¢.

The mean squared revisions criterion Rq(qgo)/az is plotted as a function of ¢ in Figures 18—
19 for each of the three BLIP end filters concerned. These are based on the central filters
given by Theorem 1, the local dynamic models (55) and (56), and selected values of 6
and A. In each case the mean squared revisions are plotted for ﬁ;/az = 0 (a lower limit
representing the best obtainable result for that particular end filter) and 87/0* = 4/7 (a
nominal upper limit based on X-11’s I/C ratio). For each model specified by p and A the
least possible revisions occur when B;/&z = ﬁ;/az = 0. Note also that the mean squared

revisions for the BLIP end filters with B;/&z = oo do not depend on the choice of ﬁ;/az
since they are BLUP end filters which are unbiased.

The same general comments made before concerning Figure 11 and the BLUP end filters
apply here also. Bearing in mind that individual plots are based on different central filters
(see Figure 1), mean squared revisions generally increase as A increases for end filters based
on central Henderson filters (§ = 0), and decrease as X increases for end filters based on
central Macaulay filters (6 = 1). For low values of A, end filters based on central Macaulay
filters with optimal fidelity (# = 1) show higher mean squared revisions than those based
on central Henderson filters with optimal smoothness (# = 0). Again, it would appear that
whereas smoothness plays the influential role in the body of the series, it is fidelity that
plays the dominant role in minimising expected revisions at the ends.

As expected, the mean squared revisions are greatest when ¢ is least with ¢ = 0 yielding
the greatest revisions followed by ¢ = 1. The mean squared revisions for the other values
of g are typically negligible by comparison. Although not entirely apparent on this scale,
Rq(qgo)/az is not necessarily a monotonic function of g. For example the local quadratic
model yields mean squared revisions when ¢ = 2 that are typically smaller than those for
g = 3. This is a consequence of the shape of the central filters adopted.

If B;/&z has been selected appropriately, Rq(qgo)/az will be bounded above by the mean
squared revisions for the BLUP end filter and below by the mean squared revisions for the
BLIP end filter with 32/0% = B;/&z = 0. From Figures 18-19 these bounds show that
there are gains to be had using BLIP end filters in preference to BLUP end filters. When
A is small (say A < 0.1) these gains are likely to be greatest for BLIP end filters based on
central Macaulay filters (§ = 1). For larger values of A (say A > 0.1) the reverse is true
with the greatest gains occurring for BLIP end filters based on central Henderson filters

(0 =0).
If B;/&z has been selected inappropriately then the mean squared revisions Rq(qgo)/az can

become very large indeed. This effect is best seen in the plots of Rq(qgo)/az evaluated at the
upper limit ﬁ;/az = 4/m. Thus a good prior knowledge of ﬁ;/az is necessary if significant
gains are to be made over the BLUP end filters.
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Figure 18: Plots of the mean squared revisions criterion Rq(qAbo) for the BLIP end filters
based on the local linear model (p = 1), the optimum central filters given by Theorem 1
and selected values of § and A. Here the solid line corresponds to ﬁ;/&z = oo (this yields

the BLUP end filters), the dashed lines to B;/&z = 4/(7(3.5)%) (this value gives the X-11
end filter in the case where p = 1, A = 0 and the central filter concerned is the X-11 13
point Henderson filter), and the dotted lines to B;/&z = 0 (this value gives the BLUP end
filter for the reduced model of order p — 1). In each case the mean squared revisions are
plotted for the 37/0* = 0 (lower limit) and 37/0* = 4/7 (upper limit). Since it is unbiased,
the mean squared revisions for the BLUP end filter do not depend on the choice of ﬁ;/az.
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Figure 20: Plots of the impulse response functions of the BLIP end filters for ¢ = 3 based
on the central X-11 Henderson filter and the local linear and quadratic models specified by
A and p. The solid lines correspond to 37/6% = oo (this yields the BLUP end filters), the

dashed lines to B;/&z = 4/(m(3.5)*) (this value gives the X-11 end filter in the case where

p =1, A =0), and the dotted lines to B;/&z = 0 (this value gives the BLUP end filter for
the reduced model of order p — 1).
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Figure 21: Plots of the impulse response functions of the BLIP end filters for ¢ = 0 based
on the central X-11 Henderson filter and the local linear and quadratic models specified by
A and p. The solid lines correspond to 37/6% = oo (this yields the BLUP end filters), the

dashed lines to B;/&z = 4/(m(3.5)*) (this value gives the X-11 end filter in the case where

p =1, A =0), and the dotted lines to B;/&z = 0 (this value gives the BLUP end filter for
the reduced model of order p — 1).
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Figure 22: Plots of the mean squared revisions criterion R, /c? for the BLIP end filters based
on the central X-11 Henderson filter and the local linear and quadratic models specified by
A and p. The solid lines correspond to the BLUP end filters or the BLIP end filters with
B;/&z = 0o. The dashed lines correspond to B;/&z = 4/(m(3.5)?) (this value gives the X-11
end filters when p = 1, A = 0) in the two cases where 37/0* = 0 and (}/0* = 4/7. The

dotted lines correspond to B;/&z = 0 in the case where ﬁ;/az = (. This is the BLUP end
filter for the reduced model of order p — 1 and represents the best mean squared revisions
possible.
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(BZ/&Q,@?/UQ). Plots of the lines

32
@ = \IZ?—]; + (dT(CTET'C)~'d + vTHy) /02
o o
are given in Figure 23 for ¢ = 3, ¢ = 0 and the local dynamic models (55) and (56) based on
the central X-11 Henderson filter and selected values of A. From (54) the BLIP end filters
have better mean squared revisions when (|3,]/5,|8,]/c) lies below the lines. For large

values of |Bp /o the BLIP end filters approach the BLUP end filters and the boundary

becomes |3,|/c = V2|8,]/6. However, for smaller values of |3,|/6 a somewhat greater
range of possibilities is evident, especially for the larger values of A. There is less latitude
when p = 2 as might be expected. Given a range of (time-varying) values of |3,|/o one

would wish to select |3,/ as low as possible in order to maximise the gains in terms of
expected revisions.

Now consider Figure 24 which plots Rq(qAbo)/Rq(O), the mean squared revisions of the BLIP
end filters normalised by the mean squared revisions of the BLUP end filters, as a function
of (|Bp /0,18,|/0). Here only ¢ = 0 is shown and the BLIP end filters are based on the
local dynamic models (55) and (56), the central X-11 Henderson filter and selected values
of A, |B,|/o. From these plots and Theorem 10 a three dimensional picture of Rq(qAbo) can
be visualised. Looking out from the origin along the line |3,|/0 = |3,]/6, R,(¢o) has the
appearance of a rising valley with a sharply increasing left hand side (representing the
unacceptably high mean squared revisions incurred when (|Bp /6,18,|/0) does not satisfy
(54)) and a right hand side that levels out at the BLUP limit R,(0). Note that the optimum
mean squared revisions R,(¢o) occur when |3,|/c = |3,]/6 and, as noted in the discussion
following Theorem 10, R,(¢o) is a monotonically increasing function of |3,|/o. Clearly the

greatest gains are to be had when (37/0® and hence B;/&z are small.

If the BLUP end filters yield results that are comparable to ARIMA forecast extension, then
it would appear that judiciously selected BLIP end filters may offer modest performance
gains in terms of improved revisions. However the price of this improvement is a better
understanding of the time varying values of ﬁ;/UQ.
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Figure 23: Plots of the lines in the (|3,]/6.|3,|/c) plane below which BLIP end filters
have better mean squared revisions than BLUP end filters. Here the BLIP end filters are
based on the central X-11 Henderson filter, and the local linear and quadratic models are
specified by p and A. The solid lines correspond to ¢ = 0, the dotted lines to ¢ = 3 and
the dashed line to the case |3,|/c = |3,]/& when the optimum revisions are achieved for a
given value of |3,|/0.
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Figure 24: Plots of Rq(qAbo)/Rq(O), the mean squared revisions of the BLIP end filters
normalised by the mean squared revisions of the BLUP end filters, as a function of
(|Bp /6,18,|/0). Here ¢ = 0 and the BLIP end filters are based on the local linear (p = 1)
and quadratic (p = 2) models, the central X-11 Henderson filter and selected values of A,
85|/ The solid lines correspond to 32/c* = 0 (this yields the best mean squared revi-

sions possible for any given value of B;/&z), the dotted lines to 32/0* = 4/(m(3.5)?) and
the dashed lines to 37/0® = 4/m. These values of 37/c* are derived from recommendations
made by X-11 concerning I/C ratios.
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4 Practical Study

We briefly report on the outcomes of a study on selected official time series where the central
filters given by Theorem 1 were compared with conventional Macaulay or Henderson filters,
and where the end filters given by Corollary 6 and Corollary 9 were compared with X-11
end filters and ARIMA forecast extension.

All the time series we examined were seasonal and some of them had large outliers. Since
the trend filters under study are for non-seasonal time series and have not yet been modified
to handle outliers, the first task in this analysis was to remove the seasonal component and
large outliers from the time series so that we could examine the relative performance of
these filters. For simplicity we used the modified seasonally adjusted series from the X-11
seasonal adjustment method as the data for this study. For the New Zealand series we
chose a window of the series which we believed would give a good X-11 decomposition.
Other than choosing the commonly used limits of 1.8 and 2.8 for treating outliers we used
the default options of X-11 to produce the seasonally adjusted data.

The resulting non-seasonal times series presented different types of short and long term
trends and their local dynamic models included random walk components with a range of
variances. In this section we shall discuss five monthly series representing this range of
trend behaviour. These are as follows.

Building Permits New Zealand data on the number of Building Permits issued by Local
Authorities for the construction of private houses and flats. A subset of the data has
been taken in an attempt to get a consistent series where for example there was no
Government intervention in Housing Policy.

Merchandise Exports New Zealand data on the value of Merchandise Exports. A subset
of the data has been taken in an attempt to get a consistent series where the economy
has adjusted to the impact of deregulation in the mid 1980s.

NZ Furniture Sales New Zealand data on the value of Retail Sales in Furniture Stores.

Permanent Migration New Zealand data on the Net Permanent and Long Term Migra-
tion.

US Furniture Sales United States of America data on the value of Retail Sales in Fur-
niture Stores in the North West Region.

4.1 Fitting the Local Dynamic Model
To study the filters given by Theorem 1, the window length n = 2r 4 1, the order of the

polynomial p, and a value of A must be determined from the data. These parameters specify
the local dynamic model concerned. Once the local dynamic model has been identified,
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the user will need to decide on a value for #, the balance between fidelity and smoothness.
Although subjective, the choice of § will typically be influenced by the overall objectives
of the smoothing, as is to some extent, the choice of n.

Typically n and p are identified from a simple graphical analysis of the data although
more formal methods could be used. Given n and p, there are a variety of methods for
determining A. These range from trial and error and simple variational arguments based
on quantities like X-11’s [/C ratio, through to likelihood analysis based on fitting the local
dynamic model within non-overlapping windows, etc. Which approach turns out to be
most useful is still very much an open question and the subject of further research.

Consider for example the local dynamic model given by (55). For this model the first
difference of the data is given by

Ay = B + ¢ + Agy, (63)

which is locally an MA(1) process with non-zero mean 3;. Here the local parameters 3,
and o? are regarded as constant within any window, but can evolve slowly across windows,
and A = 02/02 is a fixed global parameter. If there were no evolution in 3; and ¢? across
windows then one could fit a global MA(1) model to the data to estimate A. However, any
significant time evolution in 3; and o2 will bias the estimates of A obtained in this way.

More generally one might write (63) as
Ay, = my + squy, (64)

where the location and scale parameters m; = 31 and s; are evolving slowly over time, but
uy is a a global MA(1) process with time invariant parameters and lag one autocorrelation
—1/(A+2). This suggests recovering A by fitting a global MA(1) model to the standardised
series (Ay; — my)/8; where 1, and §; are simple non-parametric estimates of m; and s;.
Typically, we would expect m; to be highly correlated and the variance of m; to be much
smaller than the variance of Ay;.

To get an idea of the global behaviour of m; and s; we estimated m; non-parametrically by
smoothing Ay, with a standard low pass filter (a 2x 12 moving average) to give 1, and then
estimated s; by smoothing |Ay; —m,| with the same filter to obtain §;. These quantities and
their autocorrelation functions are given in Figures 25-27 for Building Permits, Exports and
Permanent Migration respectively. Of course these plots should be interpreted with care
due to the filtering that has taken place. However, they do provide a good indication of the
potential fit of the local dynamic model in practice. In particular, and as might be expected,
m; is typically smooth with strong positive autocorrelation and the autocorrelation of Ay, is
modified to a greater or lesser degree depending on the relative magnitudes of the variances
of m; and Ay;—m, (i.e. the signal to noise ratio). The Building Permits data (see Figure 25)
is a good example of a highly correlated m,; with low signal to noise ratio. Here the global
ARIMA model proved hard to fit and had poor fit, whereas the local ARIMA structure
is simple and seems appropriate. The Permanent Migration data (Figure 27) again has a
highly correlated m;, but a higher signal to noise ratio and more variable s;.
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Figure 25: Building Permits data. The top graph shows the location estimate m; superim-
posed on the the first differences of the data and the second graph shows the standardised
series (Ay; — 1y)/$;. Here my; and §; are obtained by smoothing Ay, and |Ay; — M| re-
spectively with a standard low pass filter (a 2 X 12 moving average). The remaining graphs
are the autocorrelation functions of Ay, 1y and (Ay, — 1) /8 respectively.
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Figure 26: Merchandise Exports data. The top graph shows the location estimate m;
superimposed on the the first differences of the data and the second graph shows the
standardised series (Ay;—1)/8;. Here m; and §; are obtained by smoothing Ay; and |Ay,;—
my| respectively with a standard low pass filter (a 2 x 12 moving average). The remaining
graphs are the autocorrelation functions of Ay,, 1, and (Ay; — )/ 8 respectively.
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Figure 27: Permanent Migration data. The top graph shows the location estimate 1,
superimposed on the the first differences of the data and the second graph shows the
standardised series (Ay;—1)/8;. Here m; and §; are obtained by smoothing Ay; and |Ay,;—
my| respectively with a standard low pass filter (a 2 x 12 moving average). The remaining
graphs are the autocorrelation functions of Ay,, 1, and (Ay; — )/ 8 respectively.
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However, the fitting of a global ARIMA model to data standardised in this way needs to
be handled with care. Rather than follow this strategy, we adopted a simpler and more
direct method of estimating A that took advantage of the unbiased BLUP predictors.

Consider the family of BLUP end filters based on Corollary 6 for a given central filter and
given values of n and p. Note that since these end filters are unbiased they depend only
on g and A. Applying the end filters to the data yields the revisions

q

rt(Qv )‘) = Z WsYtts — Z us()\)yt+5

—-r

where the w;, are the given central filter weights and the us(A) are the BLUP end filter
weights given by Corollary 6. An appropriate cost function such as

r—1
P =Y art(g.N) (65)
q=0

can now be constructed with the given positive weights o, reflecting the relative costs of
the respective revisions. Finally X is determined by minimising P with respect to A.

For our study n = 13, p = 1 and the central filter chosen was the central X-11 Henderson
filter. Moreover we chose ap = 1 and o, = 0 for ¢ # 0 yielding a cost function which
focused on the case of worst revisions. However, other central filters and other values for
the «, could have been chosen and would lead to different results. Again, more research
is needed, but it is believed that the results presented here are indicative of what might
be achieved more generally. With these caveats, this procedure was applied to Building
Permits, Exports and Permanent Migration, yielding values for A of 0.046, 0.52, and 3.8
respectively.

Finally we consider the estimation of the ratio 3,/0 which involves the local parameters (3,
and o. Again, local smoothing should provide reasonable measures of 3,, o and, in turn,
the ratio (,/0. Consider the local linear model (55) and the approach described earlier
with regard to determining A from the standardised data (Ay; — r)/8:. In this case iy,
should give a reasonable estimate of 3; and §; should estimate

Blay - 41l = o2+ (66)

under (local) Gaussian assumptions. Thus an appropriately scaled form of i /8; should
provide a reasonable measure of 3; /0 and its evolution.

Examples of estimated |3,|/o ratios for the local linear model given by (55) and obtained
in this way are plotted in Figures 28-30 for Building Permits, Exports and Permanent
Migration respectively. It is clear that these ratios undergo considerable evolution relative
to their means with significant variation associated with the inflection points of the original
series (see, for example, Permanent Migration in Figure 30). Clearly the greater one’s
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knowledge of this local variation, the greater the gains using BLIP end filters, especially
at turning points.

Although local estimates of |3,|/o should be explored in order to minimise revisions from
BLIP end filters, this option was left for further study. Instead we adopted the more con-
servative strategy of estimating a common value for |3,|/o for each of the series considered.
A natural first choice would be the mean (or median) of the estimated ratios plotted in
Figures 28-30. However, consideration of the plots in Figures 23 and 24 for given values of
A suggests that this will not, in general, be an optimal choice because of the complex and
non-symmetric nature of the mean squared revisions as a function of |3,|/& and |3,|/c.
Given a range of values for |3,|/o (such as those indicated in Figures 28-30), any increase
in |3,]/6 will involve a trade off between the reduction in the (high) revisions experienced
by large values of |3,|/c with the increase in (low) revisions experienced by the low val-
ues of |3,]/o. Thus an overall choice for |3,|/& requires a complex balancing of marginal
gains and losses. This clearly depends on the value of A as evidenced, for example, by the
nature of the mean square revisions function for p =1, A =0 and p =1, A = 0.7 given in
Figure 24.

To determine a global value for |Bp|/& from the data we adopted a similar approach to
that used for determining A, but now focused on the BLIP end filters given by Corollary 9.
Here we determined the revisions

q

Q7 |ﬁp|/a Zwsyt-l-s Zu5(|ép|/&)yt+s

—-r

where the w, are the known central filter weights, the u5(|[§p 5) are the BLIP end filter
weights given by Corollary 9 and n, p are given. The value of A is set at its previously
estimated value. Now the cost function P given by (65) with r; replaced by 7 can be

evaluated and minimised with respect to |3,

As before we chose a9y = 1, o, = 0 for ¢ # 0 and set n = 13, p = 1 with the central
filter chosen to be the central X-11 Henderson filter. Minimising P in this way for Building
Permits, Exports and Permanent Migration, yielded global values for | Bp
and 0.32 respectively. Note that in the case of Exports we chose between two competing
local minima on the basis of Figure 29; in the other two cases the minima were clearly
delineated. As was noted before in relation to the estimation of A, different central filters

and different values of o, could have been chosen and would give different results. The

3 |/& locally remain topics for further research.

determination of A, |Bp

4.2 1In the body

Here we discuss the behaviour of the central trend filters given by Theorem 1 on the data
sets described in the introduction to Section 4. The effects on the trend estimates for
these series of varying A for given choice of § are displayed in Figure 31-35 for the local
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Figure 28: The top graph is Building Permits data and the smooth solid line is the trend
from the 13 point filter given by Theorem 1 for the local linear model with A = .046 and
6 = 0. The bottom graph is the |Bp|/& ratio where [3, is estimated by 7, a 2 x 12 moving
average of Ay, and o is estimated by a scaled 2x 12 moving average of the absolute residuals

| Ay, — 77| where the scale factor is 1/1/2(A 4 2) (see (66)). The solid line is the mean of
the |3,|/& ratios (0.19) which is well under the default X-11 value of 0.31. These ratios

undergo considerable evolution relative to their mean with significant variation associated
with the inflection points of the original series.
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Figure 29: The top graph is Merchandise Exports data and the smooth solid line is the
trend from the 13 point filter given by Theorem 1 for the local linear model with A = .52
and # = 0. The bottom graph is the |Bp|/& ratio where (3, is estimated by My, a 2 x 12
moving average of Ay;, and o is estimated by a scaled 2 x 12 moving average of the

absolute residuals |Ay, — rivy| where the scale factor is 1/4/2(X + 2) (see (66)). The solid

line is the mean of the |3,|/é ratios (0.12) which is well under the default X-11 value of
0.31. These ratios undergo considerable evolution relative to their mean with significant
variation associated with the inflection points of the original series.
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Figure 30: The top graph is Permanent Migration data and the smooth solid line is the
trend from the 13 point filter given by Theorem 1 for the local linear model with A = 3.8
and # = 0. The bottom graph is the |Bp|/& ratio where (3, is estimated by My, a 2 x 12
moving average of Ay;, and o is estimated by a scaled 2 x 12 moving average of the

absolute residuals |Ay, — rivy| where the scale factor is 1/4/2(X + 2) (see (66)). The solid

line is the mean of the |3,|/é ratios (0.88) which is well under the default X-11 value of
0.31. These ratios undergo considerable evolution relative to their mean with significant
variation associated with the inflection points of the original series.
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linear model given by (55) and for window length n = 13. Two choices of § are displayed;
6 = 0 which maximises smoothness and § = .5 which maximises a compromise between
smoothness and fidelity.

The results obtained are as expected from the discussion given in Section 3. An example
is given in Figure 31. Here, as A varies, the Henderson filters which optimise smoothness
S (6 = 0) differ only slightly. However, the filters based on a mixture of smoothness and
fidelity become more adaptive as A increases with this effect becoming more marked the
closer 8 is to 1.

In particular note that the effect of varying A is greatest at turning points. In Figures 31—
35 the central filters based on a mixture of fidelity and smoothness (§ = 0.5) and large
A were more faithful to the data than those based on § = 0.5 and small A\. Indeed, in
Figure 35, the central filter based on the local linear model (p = 1) with large A and
6 = 0.5 approaches the central X-11 Henderson filter which is based on a local quadratic
model (p = 2) with § = 0 and A = 0. This feature is also evident in Figures 31-34. In this
sense, the local dynamic model is able to explore trend variation in the window that lies
somewhere between the pure linear and pure quadratic case.

4.3 At the ends

In this subsection we consider the comparative performance of the BLIP, BLUP, X-11 and
ARIMA forecast extension filters on the data sets under study. Here, as before, the window
length is n = 13 and only the local liner model (p = 1) is considered with A and a global
value for |Bp|/& determined by the methods described in Section 4.1. As mentioned in that
section, a more appropriate procedure would have been to determine local values for |Bp|/&
and use these in the BLIP end filters. However this was not done and remains a research
topic for further study. It might be expected that the use of local values for |Bp|/& would
lead to BLIP end filters with improved performance over those using a global value for
185l /6.

The following empirical comparison of the competing end filters was undertaken. First, for
each local window we calculated the trend for the central point of that window using the
central filter (6). Next, for each ¢ and for each local window, we calculated the trend using
the appropriate end filter. For the BLUP and BLIP cases, this meant predicting the trend
as in (32), where the u, are the weights of the end filter determined by Corollary 6 and
9 respectively. For the X-11 case the standard X-11 end filters were applied. Recall that
these are given by Corollary 9 using the central X-11 Henderson filter, B;/&z =4/(m(3.5)?)
and the local linear model with A = 0. For the ARIMA forecast extension case this meant
predicting the trend as in (31) with y;45 now predicted using the forecast function of a
global ARIMA model restricted to data up to and including the local window. To obtain
appropriate ARIMA model parameters we fitted global ARIMA models to all the data.
This was done for reasons of simplicity and to provide stable estimates. Using standard
diagnostics we selected ARIMA (0,1,1) models for Building Permits and Permanent Mi-
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Figure 31: The Building Permits data is characterised by many local turning points, with
a general downward drift. In the top graph, the data is filtered by the 13 point X-11
Henderson filter and the 13 point filters given by Theorem 1 for the local linear model and
6 = 0. In the bottom graph, the data is filtered by the 13 point X-11 Henderson filter
and the 13 point filters given by Theorem 1 for the local linear model and § = .5. In both
graphs, the solid line corresponds to the 13 point X-11 Henderson filter, the dotted and
dashed lines to the 13 point filters given by Theorem 1 with A = .1,.2,.3, .4, .5 respectively.
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Figure 32: The Merchandise Exports data is characterised by a few weak local turning
points, with a generally large upward drift. In the top graph, the data is filtered by the
13 point X-11 Henderson filter and the 13 point filters given by Theorem 1 for the local
linear model and = 0. In the bottom graph, the data is filtered by the 13 point X-11
Henderson filter and the 13 point filters given by Theorem 1 for the local linear model and
6 = .5. In both graphs, the solid line corresponds to the 13 point X-11 Henderson filter, the
dotted and dashed lines to the 13 point filters given by Theorem 1 with A = .1,.2,.3,.4,.5
respectively.
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Figure 33: The N7 Furniture Sales data is characterised by a strong turning point with a
large downward drift still continuing. In the top graph, the data is filtered by the 13 point
X-11 Henderson filter and the 13 point filters given by Theorem 1 for the local linear model
and § = 0. In the bottom graph, the data is filtered by the 13 point X-11 Henderson filter
and the 13 point filters given by Theorem 1 for the local linear model and § = .5. In both
graphs, the solid line corresponds to the 13 point X-11 Henderson filter, the dotted and
dashed lines to the 13 point filters given by Theorem 1 with A = .1,.2,.3, .4, .5 respectively.
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Figure 35: The US Furniture Sales data is characterised by many local turning points,
with a general upward drift. In the top graph, the data is filtered by the 13 point X-11
Henderson filter and the 13 point filters given by Theorem 1 for the local linear model and
6 = 0. In the bottom graph, the data is filtered by the 13 point X-11 Henderson filter
and the 13 point filters given by Theorem 1 for the local linear model and § = .5. In both
graphs, the solid line corresponds to the 13 point X-11 Henderson filter, the dotted and
dashed lines to the 13 point filters given by Theorem 1 with A = .1,.2,.3, .4, .5 respectively.
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gration, and an ARIMA (2,1,0) model for Exports. Means were fitted in each case. The
difference between the central filter trend estimates and the end filter trend estimates give
the revisions which occur as predictions of missing data are replaced by their actual values.
Finally we made boxplots of the absolute value of the revisions and these are given in

Figures 36-38.

In accord with the discussion of the theoretical properties of these filters, the greatest
revisions and spread of revisions occurred when g = 0 followed by ¢ = 1. It is not clear in
making comparisons whether one should focus on the median or the lower quartile of the
distribution of the revisions, or the upper quartile or the interquartile range, or even the
outliers. Depending on the cost function associated with revisions, a case can be made for
each of these. Here we focus on the median because that provides a robust estimate of the
square root of the mean squared revisions (up to a scale factor). The mean squared revisions
criterion was used to evaluate the theoretical performance of the filters in Section 3. To
further assist comparison, Table 1 provides the values of the medians for each of the series
for the various values of ¢.

As expected from Theorem 10, the BLIP end filters where |3,|/& is determined from the
data generally have smaller revisions than BLUP end filters and smaller revisions than the
Musgrave end filters used in X-11. (These are BLIP end filters based on the central X-11
Henderson filter, a local linear model with A = 0 and B;/&z set to 4/(m(3.5)?).) For the

Exports and Permanent Migration series, although the choice of |Bp|/& is similar to the
X-11 value, the value of X used in the X-11 end filters is inappropriate and so here, in the
main, the X-11 end filters have larger revisions than the BLUP end filters. For all cases
when ¢ = 0 and for Building permits and Permanent Migration when ¢ = 1, the BLIP end
filter with |Bp|/& determined from the data performed at least as well as if not better than
ARIMA forecast extension. One might hope that that these encouraging results will be
further improved by using local (adaptive) estimates of |Bp|/&.
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Building Exports Permanent
Permits Migration

median | % difference | median | % difference | median | % difference

g=511L 1.8 -7.8 1503 21.0 3.7 -44.6
X 1.9 - 1242 - 6.6 -

H 1.9 -0.6 1562 25.7 4.3 -35.7

A 1.6 -15.0 1247 0.4 3.7 -43.9
g=411L 4.2 -0.6 2804 2.5 104 -37.2
X 4.2 - 2737 - 16.5 -

H 4.5 6.7 2852 4.2 104 -37.0

A 3.3 -21.1 2827 3.3 104 -37.4

g=3 1L 5.7 -4.3 2818 1.6 14.4 -26.3
X 6.0 - 2775 - 19.5 -

H 5.8 -2.1 2889 4.1 15.0 -23.1

A 4.7 -20.8 3299 18.9 13.9 -28.7
g=211L 5.9 -0.5 3931 6.6 13.6 -8.2
X 5.9 - 3688 - 14.8 -

H 5.9 -0.7 3866 4.8 13.3 -10.6

A 5.0 -16.1 5557 50.7 13.6 -8.5
g=1]1L 13.8 -3.1 13459 8.0 29.2 -34.8
X 14.2 - 12570 - 44.8 -

H 13.9 -2.5 13534 7.7 30.7 -31.5

A 14.1 -1.1 11777 -6.3 29.3 -34.5
g=011L 27.5 -9.3 19187 -27.4 71.3 -34.6
X 30.3 - 25472 - 108.9 -

H 32.1 5.7 21201 -16.8 73.2 -32.8

A 27.5 -9.2 20584 -19.2 74.9 -31.3

Table 1: Using the central X-11 Henderson filter in the body and the local linear model,
comparisons are made between the various end filters and for the various values of ¢. The
medians of the absolute value of the revisions are shown, as are the percentage differences
(on unrounded values) between the median for the standard X-11 end filter and the medians
for the other end filters. Here L refers to the BLIP end filter based on the local linear model
and the choices of A and B;/&z given in Section 4.1. Likewise, X refers to the standard
X-11 end filter and H refers to the BLUP end filter based on the local linear model. Note
that the X-11 end filters are BLIP end filters based on the central X-11 Henderson filter,
a local linear model with A = 0 and B;/&z = 4/(7(3.5)%) or .104. Finally A refers to the
filter obtained by using the central filter with unknown observations predicted by a global

ARIMA model.
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Figure 36: Building Permits data. Using the central X-11 Henderson filter in the body
and the local linear model, comparisons are made between the various end filters and for
the various values of ¢q. The choice of A = 0.046 is determined by searching for values
which improve the revisions for the BLUP end filter for the ¢ = 0 case. The choice of
B;/&z = 0.22 is determined by searching for values which improve the revisions given A.
Here L refers to the BLIP end filter based on the local linear model and the choices of A
and B;/&z given above. Likewise, X refers to the standard X-11 end filter and H refers to
the BLUP end filter based on the local linear model. Note that the X-11 end filters are
BLIP end filters based on the central X-11 Henderson filter, a local linear model with A =0
and BZ/&Q =4/(m(3.5)%) or .104. Finally A refers to the filter obtained by using the central
filter with unknown observations predicted by a global ARIMA model.
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Figure 38: Permanent Migration data. Using the central X-11 Henderson filter in the body
and the local linear model, comparisons are made between the various end filters and for
the various values of ¢q. The choice of A = 3.8 is determined by searching for values which
improve the revisions for the BLUP end filter for the ¢ = 0 case. The choice of B;/&z =0.32
is determined by searching for values which improve the revisions given A. Here L refers
to the BLIP end filter based on the local linear model and the choices of A and B;/&z
given above. Likewise, X refers to the standard X-11 end filter and H refers to the BLUP
end filter based on the local linear model. Note that the X-11 end filters are BLIP end
filters based on the central X-11 Henderson filter, a local linear model with A = 0 and
B;/&z = 4/(7(3.5)?) or .104. Finally A refers to the filter obtained by using the central
filter with unknown observations predicted by a global ARIMA model.
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5 Conclusions

A flexible family of semi-parametric, finite, moving-average filters has been developed,
both in the body and at the ends of series, based on suitably chosen local dynamic models
operating within the span of the central filter.

For the body of the series, the central filters are constructed using fidelity and smoothness
criteria with 8, the balance between fidelity and smoothness, specified by the user. Through
6 the analyst can (subjectively) impose an estimate of trend on the data whose smoothness
conforms to other criteria such as the overall objectives of the analysis. Of the two criteria,
it is smoothness that plays the dominant role in terms of its variation with 4.

For the ends of the series, the end filters are constructed using a minimum revisions cri-
terion and optimal linear (biased) prediction. It is shown that a suitable choice of a bias
term related to X-11’s I/C ratio can lead to minimum revisions that are competitive and
sometimes better than those achieved using ARIMA forecast extension. These gains are
dependent on the choice of central filter adopted. In particular, the choice of a central
filter with an appropriate balance of smoothness and fidelity may well result in lower mean
squared revisions. It would appear that whereas smoothness plays the influential role in
the body of the series, it is fidelity that plays the dominant role in minimising expected
revisions at the ends.

This work constitutes a beginning and much remains to be done. The latter include more
case studies, a more thorough analysis of ways to fit local dynamic models to time series,
the incorporation of these non-seasonal trend filters within seasonal adjustment procedures
such as X-11, and the extension of these filters to handle outliers and structural changes.
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A Appendix

A.1 Minimising () at the ends

The following result considers the minimisation of () at the ends of the series where now ()
is defined by (8), (9) with ¢; replaced by ¢ and g is given by (32). In particular it shows
that the minimum revisions end filters specified by Corollary 6 will not be the same as
the end filters obtained from minimising the criterion ). Thus the minimum revisions end
filters will not preserve the same balance of smoothness and fidelity at the ends as in the
body; conversely filters that maintain the same balance of fidelity and smoothness at the
ends as in the body will not minimise the revisions. An important exception to the latter
is the case of the Macaulay filters where # = 1. In this case the minimum revisions end
filters are exactly the same as the optimum fidelity end filters as established in Theorem 7.

Theorem A1 Consider a time point t at the end of the series where ¢ = T —t and
0<qg<r. The value of u = (u_,,...,u,)? that minimises Q subject to (34) is given by
u(t) = L (I - GLy(LIGL,) 'L u® (1)
where
u@(t) = ET'C(CTETIC) e + (1 — 0)G®v (1)

with Eq, C, ¢ and G given by Theorems 1 and 5 respectively. Moreover the (2r 4+ 1)x
(2r + p + 2) matriz ® has typical element Eq;; with —r < i <r,—r—p—1<j <r. and
v(t) has typical element

St k) (r—p=1<s <o

Here us(t—Fk) is the typical element of u(t—k) and v(t) is defined to be zero whent < T'—r.
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A.2 Limiting forms of the filters

From Theorem 1 the optimal central filter that minimises () has weights given by
w =E;'C(CTE;'C) !¢

where

Es=0(c*T+ Q)+ (1 — 0)(¢’B,y1 +T).

We consider the special case where
E@ = 0'2(A9 + )\B@) (67)
with

Ay = 01+ (1—-0)B,

and Q@ = AQy, I' = AI'y. Note that this family includes the local dynamic models (55),
(56) where A = o7 /c? and the cases for & given by (24). It would be a straightforward
exercise to extend the results that follow to handle more general forms for . However
this has not been done, partly for simplicity of presentation and partly because the cases
considered should cover most situations met in practice.

With these qualifications we now consider the limiting forms of the optimal central and
end filters as A increases. In the context of (55) and (56) this limit corresponds to the case

2

where ¢? = 0 or, in practice, where o, is very much larger than o?. In such cases the model

has no noise component so that y; is just the trend g¢;.

Theorem A2 The optimal impulse response function given by Theorem 1 with Eq4 given
by (67) converges as A — oo to

_— { B;'C(C'B;'C)'c (0<0<1) (69)

5 (0=1)

where By is given by (68) and dg has zero elements with the exception of the central element
which is unity.

Proof

For0 <8 <1
lim E@/)\ = 0'2B9
A—00

so that

w = B;'C(C'B;'C)c.
For # = 1 note that By is singular. In this case

E1 = 0'2(1 + )\Qo)
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and g can be partitioned as

Q.0 0
Q=] 0 0 0
0 0 Q

where the r x r dimensional matrices €2_, €2, are both positive definite. Partition C
accordingly as

c,
where C_, C, are r X (p 4 1) matrices and c is given by (17). Then
CTE['C = (D) 4 cc’)/o?

where

D, =CLI+ ) )'C_+CLiI+r)'Cy
and )

lim AD, =D = CIQ~'C_ + C{O7'C.. (70)
In this case the optimal impulse response function is given by
(I+22_)"'C_Dy'c

w = E['C(CTE['C) e = c'Di'e /(1 +c"Dile)
(I—I— )\Q+)_1C+D;1C

and so

Iim w = (SO
A—00

as required.

a

Now consider the BLUP end filters based on Corollary 6 and specified central filter weights
given by w. Define the n x n dimensional partitioned matrix G as

B G g Gy
G=| g & & (71)
G{, 8 G

where the r x r dimensional matrices G, Gi2, G2 are given by
G, = Q' - QI'C_ECTQ!

G, = - Q7'C_ECiQ}!

Gy = Q7' — Q;1C+EC£QI_1

with

E=D"'— (D 'c)(D'c)"/c"D 'c
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and D is defined by (70). Moreover the r dimensional vectors g;, g, are given by

g = —Q7'C_D'¢c/c"D7'c

g, = —Q7'C;D'¢/c"D e
and the scalar g is given by go = 1/c’D~!c. With this notation in place we now establish
the following result.

Theorem A3 The BLUP end filter given by Corollary 6 with central filter weights specified
by w and Eq given by (67) converges as A — oo to a limit specified by Corollary 6 with G
replaced by G where limy_0o AG = G is given by (71).

Proof

Observe that the BLUP end filter specified in Corollary 6 and Theorem 5 does not depend

2

on the scale parameter o°. Thus, for the purposes of determining these end filters, it is

sufficient to consider the case o2 = 1.

Assuming 02 = 1 and the notation of Theorem A2 we further note that
AT+ Q)7 0 0
AE[! = 0 A 0 :
0 0 (A '+

Furthermore AE]'C(CTE['C)'CTE[" is given by

AT+ Q. )lC AT+ Q) o\
AT el (D, + cc’)™! el

(AT +94)7'Cy AT+ Qy)7'Cy
and
(D) +ec’)™ = Dy' — (Dy'e)(D3'e)" /(1 + ¢’ Di'e).
Thus, for example,
AT+ Q) 'Co(Dy+ecH) '+ Q)7 Cy

and
A=A (Dy +cec)le=1/(A7 + T (ADy) te)
converge to Gy and g respectively as A increases. The other elements of G follow similarly.

a

Finally we consider the BLIP end filters based on Theorem 10, a given value for B;/&z and
specified central filter weights w. Once again further notation is necessary. Define

QZIC_Ed :)/TI:IW
7= ¢ID7'd/c'D! h= ——— = 2




where H = Ly(LIGL,)'LI and E, G are given by (71). Then we have the following

result.

Theorem A4 The BLIP end filter given by Theorem 10, a given value for B;/&z, specified
central filter weights w and Eg given by (67) converges as A — oo to a limit specified by
Theorem 10 with G, v, ¢, replaced by G, 7, ¢ respectively. Here limy_oo AG = G is given
by (71) and 5, ¢ are given by (72).

The proof of this result is established in essentially the same way as that for Theorem A3.
Note, in particular, that the limit does not depend on the value chosen for ﬁ;/&z.
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A.3 Evaluating the I/C ratio

We consider evaluating ratios of the form

[p B E|Ap6t|

Cp a E|Apgt|

where y; = ¢g; + ¢ follows the local dynamic model (2) of order p and it is further assumed
that ¢ and ¢; are independent Gaussian processes. Note that when p = 1 this gives the
population analogue of X-11’s 1/C ratio.

Given these assumptions it is evident that APe; and APg, are independent Gaussian random
variables with means zero and p!f3, respectively. Their variances are given by

Var{AP¢,} = 2p0p02 Var{A%¢,} = E{(Apft)z}

where the latter quantity depends on the particular form of the local dynamic model
adopted. In the case of the local linear model (55), E{(A&)?} = Ao? and in the case of
the local quadratic model (56), F{(A%*¢)*} = 2Ao?*. Using the following result the forms
(61) and (62) can now be determined.

Theorem A5 [f X is a Gaussian random variable with mean p and unit variance then

1T = @) — o)+ 2 s 2y

where ®(x) is the standard normal cumulative distribution function.

Proof
Here
o0 1 1 2 0 1 1 2
ElIX| = / —3@=n)? 1y —3(e-n)? g
|.X| ; xme T _Oox\/%e T
o0 1 1.2 R 1
x + e 2" dx + — e 2% dx
[N =
o 1 1.2
= P —P(— + 2 x e 27 dx
00~ o) 42 [ o
2 1,
= |ul(@(lpl) = S(=|ul)) + 1/ —exp(=547)
as required. a
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