SET-COVERING AND EDITING DISCRETE DATA

William E. Winkler*, bwinkler@census.gov

KEYWORDS: integer programming, Set covering, optimization

This paper describes new set covering agorithms associated with the DISCRETE edit system.
DISCRETE is based on the Fellegi-Holt model (JASA 1976) of editing. A new implicit-edit
generation agorithmreplacesalgorithmsof Garfinkel, Kunnathur, and Liepins(OperationsResearch
1986) and Winkler (1995). The new set-covering algorithms correctly generate implicit edits for
large subclasses and reduce computation during implicit-edit generation by as much as two orders
of magnitude.

1. INTRODUCTION

To deal with logical inconsistencies or incorrect datain computer files, we need efficient ways of
developing statistical data edit systems that minimize development time, eliminate most errorsin
code development, and greatly reduce the need to human intervention for manually changing
(correcting) records. Fellegi and Holt (1976), hereafter FH, provided the theoretical basis of such
asystem. Their methods have the virtues that, in one pass through the data, an edit-failing record
can be assured to satisfy all edits and that the logical consistency of the entire set of edits can be
checked prior to the receipt of data. The implementations of the system have had additional
advantages over traditional if-then-else rule edit systems because edits reside in easily modified
tables and computer code needs no modification.

Moving Fellegi-Holt principlesinto survey practice has been slow because of the need to develop
sophisticated software algorithmsfor integer programming and set covering. Early implementations
have shown much promise and flexibility. Because all the edits are contained in straightforward
tables, sets of edits can be developed rapidly by analysts such as statisticians or economists. If the
computer software is well organized, then programmers are not needed. Very large applications
consisting of 300 or more edits have been severely hampered by the need for faster hardware and for
the development of possibly faster algorithms in operations research. With awork-force survey or
a Census long form, the number of edits can range as high as 600.

This paper's main result is an edit-generation algorithm, called the EGE algorithm. It isamuch
faster adternative to Algorithm 1 of GKL and the EG algorithm of Winkler (1995). For data
situationsin which no skip patterns are present in the survey form and the edits, the EGE algorithm
appears to generate all implicit edits. For other situations, it generates most of the implicit edits.
The main present virtue of the EGE algorithm is that it demonstrates that it is possible to generate
implicit edits much faster (possibly by severa orders of magnitude) in very large data situations.
These situations were previously considered computational intractable.

The outline of this paper isasfollows. In the second section, we give notation and background
material that describe edit generation via set covering algorithms. The third section presents the
EGE algorithm for generating implicit edits and some of the heuristics that are associated with it.
Inthefourth section, we provide someempirical resultsfrom acomputer system (Winkler 1997) that
Is based on the new theory and algorithms. The fifth section consists of discussion and the final
section isa summary.

2. NOTATION AND BACKGROUND

A record y=(y,,...,y,) in acomputer file can have n fields subject to edits. For discrete edits, y
takesvaluesin] Z", the product space of integers. Eachfieldy;, i=1,...,n, correspondsto avariable
that is coded. For instance, y, might take values 1=male and 2=female. y, might take values
1=single, 2=divorced, and 3=married. y, might correspond to age and take values 0 thru 99 or 1 thru
99. We st R, equal to the set of valuesthat field y, can assumeand D = [[R,. For convenience,
we always assume that valuesin a R, take values 1 thru k, where the k,, integers are recodes of the
k, value states associated with fieldy,. Aneditisasetin D. An anayst might specify that being
12 years or younger is incompatible with being married. Then the corresponding edit E* would
consist of points having y, = 3, y, < 12, and the remaining y;s taking any values. FH showed that
an arbitrary edit E can be expressed as a union of edits E' of a particular form. Each E' can be
expressed as [| E;, where E,, is the set of values assumed by the nth component of the pointsy,, in
edit E'. Thisform of E' is caled the normal form. If E, isaproper subset of R, then field nissaid
to enter edit E' and edit E' isinvolved with field n.

We now make two restrictions that can be made without loss of generality in terms of the theory
and practical application in software. Thefirst isthat every edit E' has at |east two entering fields.
If an edit E' had only one entering field, then onefield, say j, would have at | east one val ue-state that
would always result in an error regardless of the values that other fields assumed. For instance, if
thejthfield consisted of apostal code correspondingtoaU.S. State, then wewould not consider any
such codes that assumed invalid values. Such single-field edits are best dealt with by lookup tables
associated with pre-editsin the keypunch software. Thus, while State codes can take any value, we
restrict the State codes passed to the edit system of this paper to valid ones. Thesevalid State codes
may still be used in multi-field edits because different combinations of edits may be associated with
different edits in, say, different States of a national agricultural survey. Our second restriction is
that, foreachn, R, =u {E€ E°|E, * R,} where E’ isthe original set of explicit edits defined by
analysts. If the union were a proper subset of R, for some n, then any record y with a component
Yy, in R, but not in the union would necessarily passall edits. Thefirst restriction meansthat weonly
consider value-states of fieldsthat enter at |east one edit and the second that there are no val ue-states
of individual fieldsthat do not enter at least onefield in one edit. In practice, theserestrictionscould
easily be checked viastraightforward combinatorial routines. Thiswould aleviatetedious, possibly
error-prone checking by analysts. The restrictionsfacilitate our theoretical development but do not
affect software development.

Thefollowing lemmaof FH isthe basis of generating editsin the normal form. For the remainder
of the paper, wewill only consider editsin the normal form because any system of discrete edits can
equivalently be expressed in normal form. FH proved (1976, Theorem 2) that all implicit edits can
be generated by successive application the generation procedure givenin Lemma 1.

Lemmal. Let S={F,j=1,...k} bean arbitrary set of normal form edits such that for some field |,
E; isaproper subset of R. Let E" bethe edit defined by:

E.= nE fori=l (2.19)
j

(2.1b)

E,=u g
j

If E,, # o fori # I, then E isanimplied edit in the normal form.

If arecord r failsanimplied edit E™ of the form givenin Lemma 1, then r necessarily fails one of
the edits used in generating E'. The set Siis called the contributing set of edits used in generating
edit E. Field | is called the generating field or node of E. Field | necessarily enters each edit
involved in the generation procedure of thelemma. If E., = R, then edit E iscalled essentially new.
In the partial ordering of set inclusion, a normal-form edit is said to be maximal if it is properly
included in no other normal-form edit. A normal form edit is redundant if it is properly included
in another normal-form edit. The set of explicit edits plus the set of maximal, normal-form editsis
called the complete set of edits. The set of original explicit edits is denoted by E° and the set of
complete editsis denoted by E°. FH had originally defined the set of complete edits as the explicit
edits plus the set of essentially new, normal-form edits. GKL noted that the proof of FH for the
error-localization problem holds for the complete set as defined in this paper. Our definition of
complete isthe one due to GKL rather than the one dueto FH. A set of editsis consistent if there
Is at least one record that fails no edit.

Using notation similar to GKL, we denote the set of edits generated on node i by (i), those
generated on node i and then node j by (ij), and so on. The ordering of the indicesin the nodes is
important. It isinvariant under permutation. The set of implicit editsin anode (ijk) will havei, j,
and k asnonentering fields. Additional fieldsmay be nonentering. (ij) and (ijk) are successor nodes
of node (i). (ij) istheimmediate successor of (i). The set of edits used in generating animplied edit
will becalled itsgenerating set. Generating setsarenot unique. Nodesof theform (i) arefirst-level
nodes and implicit editsin first-level nodes are first-level implicit edits. For the remainder of the
paper, we will assume that the set of editsis consistent.

3. IMPLICIT-EDIT GENERATION THEORY

In this section, we present results and an algorithm for generating the set of implicit edits needed
for the complete set of edits E°. The main result, the EGE algorithm, follows from results of FH,
GKL, and Winkler (1995) and the characterizations given in this paper. With most real world data
that we have encountered that are not associated with skip patterns, the EGE algorithm generatesall
implicit edits much more rapidly than previous algorithms. In situations where skip patterns are
present, we propose a heuristic that can be used to generate implicit edits that are not generated by
the basic form of the EGE algorithm.

The main advantage of this approach is that the basic EGE algorithm is far faster than previous
algorithms. At a minimum, it allows us to compute all implicit edits when skip patterns are not
present in very large edit situations. The proposed follow-on step may require significantly more
computation that the basic EGE step. The follow-on step, however, can be decomposed into
subcomponents that allow us to evaluate the total amount of computation needed. Each of the
subcomponents will have computation of the same order as the basic EGE algorithm that has
successfully completed. With previous a gorithms there was no way to evaluate how long implicit
edit-generation would take. For instance, there was no way to determineif computation would take
one extraday or 1000 extra days.

Aswe observed earlier, if anon-maximal (i.e., redundant) edit E' is part of agenerating set of edits
E®, then the generated implicit edit will be dominated by (redundant to) the implicit edit that is
generated by E" = E9 \{ E'} J{E'} where E' is an edit that dominates E.. Thus, if we are able to
restrict edit-generation to subsets containing non-redundant (possibly maximal) edits, then we can
reduce computation.

Lemma 2 (Winkler 1995). In generating the complete edits E°, E° can be replaced by E*", where
each edit in E°" is maximal and dominates at least one edit in E°.

The set E°" is said to be equivalent to E° because it generates the same set of maximal implicit
edits. Thefollowing lemmaisdueto FH. In practice, maximal implicit edits that can replaced by
explicit edits are identified by a heuristic. We run the main algorithm through the generation of
implicit edits at 2nd-level nonroot nodes (i.e., nodes of form (ij)). If explicit edits are overwritten
by maximal explicit edits, we restart the edit-generation process with the new set of edits (which
we also call explicit). Ultimately, after running afull edit-generation procedure to conclusion, we
need to check whether any explicit edits have been overwritten. If they have, then we need to restart
the edit-generation process.

Lemma3. Let E' bean edit that is generated by set E° on nodej. Let E” be an edit that is generated
by a proper subset of E® on nodej. Then E” dominates E'.

In the following, we make use of the partial ordering of nodes. We make use of two types of node
orderings that are similar. First, we use the node orderings as used by GKL and Winkler (1995).
That is, node (1,2,3) isthe successor to node (1,2) and an edit in node (1,2,3) can be generated from
animplicit editin node (1,2) and other edits according to the procedures of GKL (or FH or Winkler
1995). Unlike GKL, inthispaper and in Winkler (1995), we must account for ordering in the nodes.
Winkler (1995) provided acounterexampleto the main theorem of GKL showing that node ordering
isimportant. That is, node (1,2,3) isnot necessarily equal to node (1,3,2) as GKL believed. Second,
we use the same notation for the node ordering of this paper which isvery similar to the previously
used node ordering. The difference will be that in this paper (1,2,3), say, will denote edits that are
generated according to the procedure of this paper. Both the previous type of ordering and the
ordering of this paper are partial orders. In Lemma4, we show that alarge classof implicit edits
can be generated from an implicit edit at a previous node and a set of explicit edits. The advantage
of Lemma 4 isthat it yields an implicit-edit generation algorithm that is far faster than previous
algorithms. With virtually all real world datathat we have encountered, the algorithm generates all
implicit edits. We can also develop an auxiliary algorithm and code to determine when the
algorithm of this paper does not generate all implicit edits and then to generate the balance of the
implicit edits.

The node ordering of this paper (denoted by W97) refersto the nodes that consist of editsthat are
generated according to the procedure of Lemma 4. It does not contradict, the ordering of GKL
which isaconvenient way of tracking their edit-generation procedures just asthe W97 ordering is
aconvenient way of tracking edit-generation according to the methods of this paper. Theorem 2 of
FH showed that all implicit edits could be generated by the procedure that they introduced. Lemma
4 (below) will show that every implicit edit of FH (or equivalently of GKL) is contained in a
maximal implicit edit generated according to Lemma4. For convenience, wewill assumethat each
implicit edit is generated by two edits. Later, we will show that this assumption can be made
without loss of generality.

Thelemmais proved in the situation when skip patterns and similar types of datastructures cannot
occur. To assure this we make needs the following condition which we impose in edit-generation
using pairs of edits. It can be generalized if necessary.

(Ag) Let E beany implicit edit at level n (n>=2) of the node-generation tree, let E, and E, be

implicit edits at level n-1that generate E. Let E,, and E,. be editsat level n-2 that generate implicit
edit E, onfieldj, and E,, and E,, be edits at level n-2 that generate implicit edit E, onfield j,. Then
either both E,, and E,. have nonnull intersection with E, on field j, or E,, and E,. have nonnull
intersection with E, on field j,.

Lemma4. Let condition (Ag) hold. Each maximal implicit edit generated at a nonroot node can be
generated by amaximal edit from the immediate predecessor node and a subset of explicit editsthat
were used in generating an implicit edit at a root node.

Proof. If thelemmawere not true, then there would exist an edit E that is generated by editsE, and
E, that are implicit edits and that cannot be generated by an implicit edit E; and an explicit edit.
Using the W97 partia ordering of nodes, let E be the first such implicit edit. Then E; and E, are
each generated by apair of edits, one of which isexplicit. Assumethat E, isgenerated by edit E,,
and E,. on field j, where E,_ isan explicit edit. Assumethat E, isgenerated by edit E,, and E,. on
field j, where E,, is an explicit edit. Assume E is generated by E, and E, on field j. We now
consider various cases. Assumej, #j,. If fieldj, does not enter E,, then generate E, on field j using
E, and E,.. E, contains E and E, is generated from an implicit and an explicit edit. By symmetry
we can do the reverse direction when field j, does not enter E,.

Assumefield j, enters E, and field j, enters E;. If we were able to generate an edit E; on field |
using E,, and E,,, then we must necessarily be able to generate E; from an explicit edit and an
implicit edit because E isthefirst that can only be generated from two implicit edits. Then generate
E,, onj, using E,. and E; and generate E.. on j, using E,. and E,. Since E.. = E, we have generated
E using the desired method. If we cannot generate an edit E; onj using E,, and E,,, then necessarily
thevaluesthat entering field j, from edit E,, assumes are digoint from the valuesthat entering field
], from edit E,, assumes. Consequently, the values that entering field j, from edit E,, assumes are
asubset of the valuesthat entering field j, from edit E,, assumes. Generate E;onj using E; and E,..
Then E; contains E and E; is generated according to our desired procedure. By symmetry, we can
deal with the reverse direction.

Assumej, =j,. Theonly situation that we need deal with iswhen noimplicit edit can be generated
onfieldjusing E,, and E,,. All other situations use the same arguments asthe casewhenj, #j,. The
valuesthat entering field j, from edit E,, assumes are asubset of the valuesthat entering field j, from
edit E,. assumes. GenerateE, onj using E,, and E,.. GenerateE,, onj,usingE,andE,.. ThenE,,
containsE. W

If we replace each explicit edit by aspecific set of explicit editsin the proof of Lemma4, then we
can easily show that eachimplicit edit iscontained inamaximal implicit edit that is generated using
amaximal implicit edit from the predecessor level and a set of explicit edits. From FH and GKL,
we know that the set of maximal implicit edits are sufficient for solving the error localization
problem. Asin FH, showing that each implicit edit is contained in amaximal implicit edit shows
that we can generate all implicit edits needed for error localization according to the implicit-edit
generation procedure of this paper. The following is the edit-generation algorithm.

With many real world data situations that we have encountered, the EGE a gorithm generates al
implicit edits. We can also develop an auxiliary agorithm and code to determine when the
algorithm of this paper does not generate all implicit edits and then to generate the balance of the
implicit edits.

The following is the edit-generation algorithm.

EGE Algorithm:

1. Replace, if necessary, the original set of explicit
edits by an equivalent set of maximal explicit edits.
2. Traversethetree of nodesin all orders.

3. Keep track of all the maximal implicit edits
generated at each root node and each set of explicit
edits that were used in generating individual
maximal implicit edits.

4. At each nonroot node, for each newly implied edit
in the immediate predecessor node, collect the set of
potentially edit-generating edits to be passed on to
the actual edit-generation step for the successor
node.

5. Within each nonroot node, for each new implicit
edit in the existing node, systematically generate
new, maximal implicit edits as follows. For each,
combineit with one of the subsets of explicit edits
used in generating on the appropriate field at aroot
node. Look at all the subsets consisting of n-1
explicit edits and the implicit edit where the set of
explicit edits has n edits. Successively use all of the
appropriate sets of explicit edits.

In many problems, most of the computation takes place at the root nodes. At root nodes, itis
necessary to use brute-force algorithms to look at all possible combinations of explicit edits and
determine the exceedingly small set of subsets of them that actually generate new maximal implicit
edits. At present, there appearsto be no way of eliminating most of the wasted computation at root
nodes. The problem is still NP-Complete as shown by GKL. At nonroot nodes, for each implicit
edit from the predecessor node and in an efficient manner, we successively combine each small
subset of explicit editsthat were used in generating on the appropriatefield. At nonroot nodes, GKL
used all subsets of the set all implicit editsand all explicit edits. At nonroot nodes, Winkler (1995)
used a set of subsets where each subset consisted of an implicit edit from the predecessor node and
the entire set of explicit edits that could be used in generating implicit editswith it. If therearean
very large number of nonroot nodes in which new implicit edits can be generated, then overall
computation can increase significantly over the root node computation.

4. IMPLICIT-EDIT GENERATION RESULTS

In this section, we directly compare three different algorithms and indicate how to compare them
withthel STAT-IBM system, the fastest known predecessor system (e.g., Barcaroli et al 1997). For
convenience, we use the names of the programsto denote the three different setsof algorithms. The
three programs, gen_ed3ebk, gen ed3f.f and gen_ed4.f, each have additional speedups that were
developed earlier (Winkler 1995) and some that were devel oped the current versions of the code.
Each traversesroot nodes in the same manner and in amanner similar to GKL. Although we do not
yet have details of the ISTAT-IBM system, we assume it traverses root and nonroot nodes in a
manner similar to the algorithms of thispaper. The programsgen_ed3ebk.f and gen_ed3f.f traverse
root nodes in a conventional manner like GKL (GKL'’s codeisavailable). The program gen_ed4.f

traverses nonroot nodes according to the EGE agorithm.

Thetest deck has 252 explicit edits, 33 fields, and 96 value statesfor the fields. Threefields have
12 value states and the remaining 30 have 2 value states. The upper bound on computation is of the
order M N exp(M) where M are the number of explicit edits and N is the number of value states.
ISTAT-IBM has asystem with more than 550 explicit edits and 400 value states. In converting the
ISTAT-IBM editsto the form used by DISCRETE, we drop several explicit edits that can never be
used in generating new implicit edits and we combine several value states in situations were the
valuestatesare never used separately inexplicit edits. Theresultant converted set has531 editswith
442 value states. We compare a gorithms by considering the entire sets of explicit editsand selected
subsets. Thel STAT-IBM subset numbers (Barcaroli et al 1997) are based on a partitioning method
that further reduces computation from merely taking subsets (the method used in this paper). Inthe
following, we take subsets of the 252 to get afeeling for the computational growth rates using the
different algorithms and use an additional deck of 1560 edits that has the same 96 value states.
Computationa rate numbers are based on a Sun UltraSparc workstation and the largest IBM
mainframe.

Table 4.1. CPU tines
Subsets of 252 explicit
Ver sions of Al gorithns

explicit - computation tine (cpu)
---- genedit version ---
3ebk 3f 4
60 0.7m 1.5m 0.1 m
160 11.7 m 16.0 m 0.8 m
252 5.5 h 3.3 h 1.8 m
1560* NA NA 70 h

NA - not applicable, mmnutes, h-hours.
*/ Nunber of inplicit edits used in checking run of 70 hours.

Table 4.2. CPU tines on D fferent Subsets
Al gorithns and Software
| BM | STAT vs EGE

explicit --- conputation tinme (cpu) --
| STAT-1 BM EGE

*/
163 ?6-24 hrs 394 sec
290 ?12-24 hrs 5700 sec
24 ?l ess than 10 hrs 14 sec
54 ?l ess than 10 hrs 1 sec
531 did not conplete 27.5 hr

in 8 days on | argest
| BM mainfrane

*[With the subset of 290 and the entire set of 531, the EGE algorithm
only generates a very large subset of the implicit edits.

5. DISCUSSION

In this section we describe differencesin the EGE algorithm, the EG algorithm of Winkler (1995),
and Algorithm 1 of GKL. Wealso discusslimitations of the empirical comparison of section4. The
purpose of the discussion isto giveinsight into the drastically reduced computation that occursin
many real world data situations in which skip patterns do not occur.

5.1. Differencesin Algorithms

The main difference between the EGE agorithm and the EG Algorithm of Winkler (1995) isthe
drastically reduced amount on computation at nonroot nodes. Computation at root nodesinthe EG
algorithm, the EGE algorithm, and Algorithm 1 of GKL isidentical (and still NP-complete) as
shown by GKL. Inthefollowing we describe the computational differences between thealgorithms
at nonroot nodes. Theonly edits (both implicit and explicit) that are considered are those that enter
the current field on which generation is taking place. In the EGE algorithm, we successively use
maximal implicit edits from the immediate predecessor node and, for each, we successively usethe
known small subsets of explicit editsthat were successful in generating implicit edits at root nodes.
In the EG agorithm, we successively used each maximal implicit edit and all associated explicit
edits smultaneously. We, thus, consider far fewer subsets of edits in each generating cycle at
nonroot nodes with the EGE than we consider withthe EG. In Algorithm 1 of GKL, al implicit and
explicit edits were considered simultaneously. With the GKL algorithm, far more subsets of edits
are considered at each generating cycle than with the EG or EGE agorithms.

The amount of redundant computation in the EG and GKL a gorithmsincreases at an exponential
multiple of the amount of computation at the root nodes. With the EGE algorithm, computation at
each nonroot node can be asmall subset of the computation at the root nodes. Overall computation
can still besubstantial if there are asignificant number of nonroot nodesat whichimplicit edits must
be generated.

5.2. Limitations of Empirical Results

The program gen_ed4.f may contain some minor errors. At present | have only run it with one
additional problem of the same computational complexity as the ISTAT-IBM problem. Severa
minor errorsin the code were corrected. There are undoubtedly some errorsin the transcription of

the ISTAT-IBM edits into the form used by DISCRETE. | do not believe that the transcription
errors serioudly affect the comparative timing results given in this paper.
5.3. Further Enhancement to the EGE Algorithm

At present, the EGE algorithm can be enhanced by adding an additional step in which root node
implicit edits are used in generating further implicit edits and the sets of implicit edits used in
generatingimplicit editsaretracked with the samedatastructuresasin the current code. Thisshould
allow generation of implicit editsassociated with simple skip patternsand edit situations anal ogous
to skip patterns. It will likely not allow dealing with skip patterns that occur within skip patterns.
We have not yet encountered the skip-pattern within-skip-pattern situation with real data.

6. SUMMARY

This paper presents theory and algorithms that facilitate generation of implicit edits for discrete
data under the edit model of Fellegi and Holt (1976). The main algorithm is presently valid for
situations in which skip patterns are not present. It holds for many survey situations such as most
demographic surveys and the decennia census short form. The advantage of the new implicit-edit-
generationagorithmthat isfar faster (1-2 ordersof magnitude) than previousalgorithms. Combined
with previous methods (Winkler 1995) that reduce computation during the error localization phase
(1-2 orders of magnitude), the new set of algorithms allows the development of larger Fellegi-Holt
edit systems that can be used in practice.

*This paper represents views of the author and are not necessarily those of the Bureau of the Census.
Theauthor thanks Dr. Bor-Chung Chen for identifying an error in the proof of Lemma4 and helpful
conversations The author is especialy thankful to Dr. Guilio Barcaroli of the Italian National
Statistical Institute (ISTAT) for timely adviceand for providing large, exceedingly difficult datasets
that were used for testing and for debugging the computer code.

REFERENCES

Barcaroli, G., and Venturi, M. (1997), "DAISY (Design, Analysis and Imputation System):
Structure, Methodology, and First Applications,” in J. Kovar and L. Granquist, (eds.) Satistical
Data Editing, Volume 11, U.N. Economic Commission for Europe, 40-51.

Fellegi, I. P. and Holt, D. (1976), "A Systematic Approach to Automatic Edit and Imputation,”
Journal of the American Satistical Association, 71, 17-35.

Garfinkel, R. S., Kunnathur, A. S. and Liepins, G. E., (1986), "Optimal Imputation of
Erroneous Data: Categorical Data, General Edits," Operations Research, 34, 744-751.

Little, R. A., and Rubin, D. B., (1987), Satistical Analysis with Missing Data, John
Wiley: New York.

Nemhauser, G. L. and Wolsey, L. A., (1988), Integer and Combinatorial Optimization, John
Wiley: New Y ork.

Winkler, W.E. (1997), "DISCRETE 97," Undocumented computer system, Statistical
Research Division, U.S. Bureau of the Census.

