
SET-COVERING AND EDITING DISCRETE DATA

William E. Winkler*, bwinkler@census.gov

KEYWORDS: integer programming, set covering, optimization

 This paper describes new set covering algorithms associated with the DISCRETE edit system.
DISCRETE is based on the Fellegi-Holt model (JASA 1976) of editing. A new implicit-edit
generation algorithm replaces algorithms of Garfinkel, Kunnathur, and Liepins (Operations Research
1986) and Winkler (1995). The new set-covering algorithms correctly generate implicit edits for
large subclasses and reduce computation during implicit-edit generation by as much as two orders
of magnitude.

1. INTRODUCTION
 To deal with logical inconsistencies or incorrect data in computer files, we need efficient ways of
developing statistical data edit systems that minimize development time, eliminate most errors in
code development, and greatly reduce the need to human intervention for manually changing
(correcting) records. Fellegi and Holt (1976), hereafter FH, provided the theoretical basis of such
a system. Their methods have the virtues that, in one pass through the data, an edit-failing record
can be assured to satisfy all edits and that the logical consistency of the entire set of edits can be
checked prior to the receipt of data. The implementations of the system have had additional
advantages over traditional if-then-else rule edit systems because edits reside in easily modified
tables and computer code needs no modification.
 Moving Fellegi-Holt principles into survey practice has been slow because of the need to develop
sophisticated software algorithms for integer programming and set covering. Early implementations
have shown much promise and flexibility. Because all the edits are contained in straightforward
tables, sets of edits can be developed rapidly by analysts such as statisticians or economists. If the
computer software is well organized, then programmers are not needed. Very large applications
consisting of 300 or more edits have been severely hampered by the need for faster hardware and for
the development of possibly faster algorithms in operations research. With a work-force survey or
a Census long form, the number of edits can range as high as 600.
 This paper’s main result is an edit-generation algorithm, called the EGE algorithm. It is a much
faster alternative to Algorithm 1 of GKL and the EG algorithm of Winkler (1995). For data
situations in which no skip patterns are present in the survey form and the edits, the EGE algorithm
appears to generate all implicit edits. For other situations, it generates most of the implicit edits.
The main present virtue of the EGE algorithm is that it demonstrates that it is possible to generate
implicit edits much faster (possibly by several orders of magnitude) in very large data situations.
These situations were previously considered computational intractable.
 The outline of this paper is as follows. In the second section, we give notation and background
material that describe edit generation via set covering algorithms. The third section presents the
EGE algorithm for generating implicit edits and some of the heuristics that are associated with it.
In the fourth section, we provide some empirical results from a computer system (Winkler 1997) that
is based on the new theory and algorithms. The fifth section consists of discussion and the final
section is a summary.

2. NOTATION AND BACKGROUND
 A record y=(y1,...,yn) in a computer file can have n fields subject to edits. For discrete edits, y
takes values in J Zn, the product space of integers. Each field yi, i=1,...,n, corresponds to a variable
that is coded. For instance, y1 might take values 1=male and 2=female. y2 might take values
1=single, 2=divorced, and 3=married. y3 might correspond to age and take values 0 thru 99 or 1 thru
99. We set Rn equal to the set of values that field yn can assume and D = J Rn. For convenience,
we always assume that values in a Rn take values 1 thru kn where the kn integers are recodes of the
kn value states associated with field yn. An edit is a set in D. An analyst might specify that being
12 years or younger is incompatible with being married. Then the corresponding edit E1 would
consist of points having y2 = 3, y3 # 12, and the remaining yis taking any values. FH showed that
an arbitrary edit E can be expressed as a union of edits Ei of a particular form. Each Ei can be
expressed as J Ein where Ein is the set of values assumed by the nth component of the points yn in
edit Ei. This form of Ei is called the normal form. If Ein is a proper subset of Rn, then field n is said
to enter edit Ei and edit Ei is involved with field n.
 We now make two restrictions that can be made without loss of generality in terms of the theory
and practical application in software. The first is that every edit Ei has at least two entering fields.
If an edit Ei had only one entering field, then one field, say j, would have at least one value-state that
would always result in an error regardless of the values that other fields assumed. For instance, if
the jth field consisted of a postal code corresponding to a U.S. State, then we would not consider any
such codes that assumed invalid values. Such single-field edits are best dealt with by lookup tables
associated with pre-edits in the keypunch software. Thus, while State codes can take any value, we
restrict the State codes passed to the edit system of this paper to valid ones. These valid State codes
may still be used in multi-field edits because different combinations of edits may be associated with
different edits in, say, different States of a national agricultural survey. Our second restriction is
that, for each n, Rn = c {E 0 Eo | Ein û Rn } where Eo is the original set of explicit edits defined by
analysts. If the union were a proper subset of Rn for some n, then any record y with a component
yn in Rn but not in the union would necessarily pass all edits. The first restriction means that we only
consider value-states of fields that enter at least one edit and the second that there are no value-states
of individual fields that do not enter at least one field in one edit. In practice, these restrictions could
easily be checked via straightforward combinatorial routines. This would alleviate tedious, possibly
error-prone checking by analysts. The restrictions facilitate our theoretical development but do not
affect software development.
 The following lemma of FH is the basis of generating edits in the normal form. For the remainder
of the paper, we will only consider edits in the normal form because any system of discrete edits can
equivalently be expressed in normal form. FH proved (1976, Theorem 2) that all implicit edits can
be generated by successive application the generation procedure given in Lemma 1.

Lemma 1. Let S = {Ej, j=1,...,k} be an arbitrary set of normal form edits such that for some field l,
Ejl is a proper subset of Rj. Let E* be the edit defined by:

 E*i = 1 Eji for i û l (2.1a)
 j

 E*l = c Ejl (2.1b)
 j

If E*i û i for i û l, then E* is an implied edit in the normal form.
 If a record r fails an implied edit E* of the form given in Lemma 1, then r necessarily fails one of
the edits used in generating E*. The set S is called the contributing set of edits used in generating
edit E*. Field l is called the generating field or node of E*. Field l necessarily enters each edit
involved in the generation procedure of the lemma. If E*l = Rl then edit E* is called essentially new.
In the partial ordering of set inclusion, a normal-form edit is said to be maximal if it is properly
included in no other normal-form edit. A normal form edit is redundant if it is properly included
in another normal-form edit. The set of explicit edits plus the set of maximal, normal-form edits is
called the complete set of edits. The set of original explicit edits is denoted by Eo and the set of
complete edits is denoted by Ec. FH had originally defined the set of complete edits as the explicit
edits plus the set of essentially new, normal-form edits. GKL noted that the proof of FH for the
error-localization problem holds for the complete set as defined in this paper. Our definition of
complete is the one due to GKL rather than the one due to FH. A set of edits is consistent if there
is at least one record that fails no edit.
 Using notation similar to GKL, we denote the set of edits generated on node i by (i), those
generated on node i and then node j by (ij), and so on. The ordering of the indices in the nodes is
important. It is invariant under permutation. The set of implicit edits in a node (ijk) will have i, j,
and k as nonentering fields. Additional fields may be nonentering. (ij) and (ijk) are successor nodes
of node (i). (ij) is the immediate successor of (i). The set of edits used in generating an implied edit
will be called its generating set. Generating sets are not unique. Nodes of the form (i) are first-level
nodes and implicit edits in first-level nodes are first-level implicit edits. For the remainder of the
paper, we will assume that the set of edits is consistent.

3. IMPLICIT-EDIT GENERATION THEORY
 In this section, we present results and an algorithm for generating the set of implicit edits needed
for the complete set of edits Ec. The main result, the EGE algorithm, follows from results of FH,
GKL, and Winkler (1995) and the characterizations given in this paper. With most real world data
that we have encountered that are not associated with skip patterns, the EGE algorithm generates all
implicit edits much more rapidly than previous algorithms. In situations where skip patterns are
present, we propose a heuristic that can be used to generate implicit edits that are not generated by
the basic form of the EGE algorithm.
 The main advantage of this approach is that the basic EGE algorithm is far faster than previous
algorithms. At a minimum, it allows us to compute all implicit edits when skip patterns are not
present in very large edit situations. The proposed follow-on step may require significantly more
computation that the basic EGE step. The follow-on step, however, can be decomposed into
subcomponents that allow us to evaluate the total amount of computation needed. Each of the
subcomponents will have computation of the same order as the basic EGE algorithm that has
successfully completed. With previous algorithms there was no way to evaluate how long implicit
edit-generation would take. For instance, there was no way to determine if computation would take
one extra day or 1000 extra days.
 As we observed earlier, if a non-maximal (i.e., redundant) edit Ei is part of a generating set of edits
Eg, then the generated implicit edit will be dominated by (redundant to) the implicit edit that is
generated by Egm = Eg \{Ei}c{Ej} where Ej is an edit that dominates Ei. Thus, if we are able to
restrict edit-generation to subsets containing non-redundant (possibly maximal) edits, then we can
reduce computation.

Lemma 2 (Winkler 1995). In generating the complete edits Ec, Eo can be replaced by Eom, where
each edit in Eom is maximal and dominates at least one edit in Eo.

 The set Eom is said to be equivalent to Eo because it generates the same set of maximal implicit
edits. The following lemma is due to FH. In practice, maximal implicit edits that can replaced by
explicit edits are identified by a heuristic. We run the main algorithm through the generation of
implicit edits at 2nd-level nonroot nodes (i.e., nodes of form (ij)). If explicit edits are overwritten
by maximal explicit edits, we restart the edit-generation process with the new set of edits (which
we also call explicit). Ultimately, after running a full edit-generation procedure to conclusion, we
need to check whether any explicit edits have been overwritten. If they have, then we need to restart
the edit-generation process.

Lemma 3. Let Ei be an edit that is generated by set Eg on node j. Let Ei* be an edit that is generated
by a proper subset of Eg on node j. Then Ei* dominates Ei.

 In the following, we make use of the partial ordering of nodes. We make use of two types of node
orderings that are similar. First, we use the node orderings as used by GKL and Winkler (1995).
That is, node (1,2,3) is the successor to node (1,2) and an edit in node (1,2,3) can be generated from
an implicit edit in node (1,2) and other edits according to the procedures of GKL (or FH or Winkler
1995). Unlike GKL, in this paper and in Winkler (1995), we must account for ordering in the nodes.
Winkler (1995) provided a counterexample to the main theorem of GKL showing that node ordering
is important. That is, node (1,2,3) is not necessarily equal to node (1,3,2) as GKL believed. Second,
we use the same notation for the node ordering of this paper which is very similar to the previously
used node ordering. The difference will be that in this paper (1,2,3), say, will denote edits that are
generated according to the procedure of this paper. Both the previous type of ordering and the
ordering of this paper are partial orders. In Lemma 4, we show that a large class of implicit edits
can be generated from an implicit edit at a previous node and a set of explicit edits. The advantage
of Lemma 4 is that it yields an implicit-edit generation algorithm that is far faster than previous
algorithms. With virtually all real world data that we have encountered, the algorithm generates all
implicit edits. We can also develop an auxiliary algorithm and code to determine when the
algorithm of this paper does not generate all implicit edits and then to generate the balance of the
implicit edits.
 The node ordering of this paper (denoted by W97) refers to the nodes that consist of edits that are
generated according to the procedure of Lemma 4. It does not contradict, the ordering of GKL
which is a convenient way of tracking their edit-generation procedures just as the W97 ordering is
a convenient way of tracking edit-generation according to the methods of this paper. Theorem 2 of
FH showed that all implicit edits could be generated by the procedure that they introduced. Lemma
4 (below) will show that every implicit edit of FH (or equivalently of GKL) is contained in a
maximal implicit edit generated according to Lemma 4. For convenience, we will assume that each
implicit edit is generated by two edits. Later, we will show that this assumption can be made
without loss of generality.
 The lemma is proved in the situation when skip patterns and similar types of data structures cannot
occur. To assure this we make needs the following condition which we impose in edit-generation
using pairs of edits. It can be generalized if necessary.

(Ag) Let E be any implicit edit at level n (n>=2) of the node-generation tree, let E1 and E2 be

implicit edits at level n-1 that generate E. Let E1b and E1c be edits at level n-2 that generate implicit
edit E1 on field j1 and E2b and E2c be edits at level n-2 that generate implicit edit E2 on field j2. Then
either both E1b and E1c have nonnull intersection with E2 on field j1 or E2b and E2c have nonnull
intersection with E1 on field j2.

Lemma 4. Let condition (Ag) hold. Each maximal implicit edit generated at a nonroot node can be
generated by a maximal edit from the immediate predecessor node and a subset of explicit edits that
were used in generating an implicit edit at a root node.
Proof. If the lemma were not true, then there would exist an edit E that is generated by edits E1 and
E2 that are implicit edits and that cannot be generated by an implicit edit E3 and an explicit edit.
Using the W97 partial ordering of nodes, let E be the first such implicit edit. Then E1 and E2 are
each generated by a pair of edits, one of which is explicit. Assume that E1 is generated by edit E1b

and E1c on field j1 where E1c is an explicit edit. Assume that E2 is generated by edit E2b and E2c on
field j2 where E2c is an explicit edit. Assume E is generated by E1 and E2 on field j. We now
consider various cases. Assume j1 ûj2. If field j1 does not enter E2, then generate E4 on field j using
E1 and E2c. E4 contains E and E4 is generated from an implicit and an explicit edit. By symmetry
we can do the reverse direction when field j2 does not enter E1.
 Assume field j1 enters E2 and field j2 enters E1. If we were able to generate an edit E5 on field j
using E1b and E2b, then we must necessarily be able to generate E5 from an explicit edit and an
implicit edit because E is the first that can only be generated from two implicit edits. Then generate
E5b on j1 using E1c and E5 and generate E5c on j2 using E2c and E5b. Since E5c = E, we have generated
E using the desired method. If we cannot generate an edit E5 on j using E1b and E2b, then necessarily
the values that entering field j2 from edit E1b assumes are disjoint from the values that entering field
j2 from edit E2b assumes. Consequently, the values that entering field j2 from edit E1b assumes are
a subset of the values that entering field j2 from edit E2c assumes. Generate E6 on j using E1 and E2c.
Then E6 contains E and E6 is generated according to our desired procedure. By symmetry, we can
deal with the reverse direction.
 Assume j1 = j2. The only situation that we need deal with is when no implicit edit can be generated
on field j using E1b and E2b. All other situations use the same arguments as the case when j1 ûj2. The
values that entering field j1 from edit E1b assumes are a subset of the values that entering field j2 from
edit E2c assumes. Generate E7 on j using E1b and E2c. Generate E7b on j1 using E7 and E1c. Then E7b

contains E. �

 If we replace each explicit edit by a specific set of explicit edits in the proof of Lemma 4, then we
can easily show that each implicit edit is contained in a maximal implicit edit that is generated using
a maximal implicit edit from the predecessor level and a set of explicit edits. From FH and GKL,
we know that the set of maximal implicit edits are sufficient for solving the error localization
problem. As in FH, showing that each implicit edit is contained in a maximal implicit edit shows
that we can generate all implicit edits needed for error localization according to the implicit-edit
generation procedure of this paper. The following is the edit-generation algorithm.
 With many real world data situations that we have encountered, the EGE algorithm generates all
implicit edits. We can also develop an auxiliary algorithm and code to determine when the
algorithm of this paper does not generate all implicit edits and then to generate the balance of the
implicit edits.
 The following is the edit-generation algorithm.

 EGE Algorithm:
 1. Replace, if necessary, the original set of explicit
 edits by an equivalent set of maximal explicit edits.
 2. Traverse the tree of nodes in all orders.
 3. Keep track of all the maximal implicit edits
 generated at each root node and each set of explicit
 edits that were used in generating individual
 maximal implicit edits.
 4. At each nonroot node, for each newly implied edit
 in the immediate predecessor node, collect the set of
 potentially edit-generating edits to be passed on to
 the actual edit-generation step for the successor
 node.
 5. Within each nonroot node, for each new implicit
 edit in the existing node, systematically generate
 new, maximal implicit edits as follows. For each,
 combine it with one of the subsets of explicit edits
 used in generating on the appropriate field at a root
 node. Look at all the subsets consisting of n-1
 explicit edits and the implicit edit where the set of
 explicit edits has n edits. Successively use all of the
 appropriate sets of explicit edits.

 In many problems, most of the computation takes place at the root nodes. At root nodes, it is
necessary to use brute-force algorithms to look at all possible combinations of explicit edits and
determine the exceedingly small set of subsets of them that actually generate new maximal implicit
edits. At present, there appears to be no way of eliminating most of the wasted computation at root
nodes. The problem is still NP-Complete as shown by GKL. At nonroot nodes, for each implicit
edit from the predecessor node and in an efficient manner, we successively combine each small
subset of explicit edits that were used in generating on the appropriate field. At nonroot nodes, GKL
used all subsets of the set all implicit edits and all explicit edits. At nonroot nodes, Winkler (1995)
used a set of subsets where each subset consisted of an implicit edit from the predecessor node and
the entire set of explicit edits that could be used in generating implicit edits with it. If there are an
very large number of nonroot nodes in which new implicit edits can be generated, then overall
computation can increase significantly over the root node computation.

4. IMPLICIT-EDIT GENERATION RESULTS
 In this section, we directly compare three different algorithms and indicate how to compare them
with the ISTAT-IBM system, the fastest known predecessor system (e.g., Barcaroli et al 1997). For
convenience, we use the names of the programs to denote the three different sets of algorithms. The
three programs, gen_ed3ebk, gen_ed3f.f and gen_ed4.f, each have additional speedups that were
developed earlier (Winkler 1995) and some that were developed the current versions of the code.
Each traverses root nodes in the same manner and in a manner similar to GKL. Although we do not
yet have details of the ISTAT-IBM system, we assume it traverses root and nonroot nodes in a
manner similar to the algorithms of this paper. The programs gen_ed3ebk.f and gen_ed3f.f traverse
root nodes in a conventional manner like GKL (GKL’s code is available). The program gen_ed4.f

traverses nonroot nodes according to the EGE algorithm.
 The test deck has 252 explicit edits, 33 fields, and 96 value states for the fields. Three fields have
12 value states and the remaining 30 have 2 value states. The upper bound on computation is of the
order M N exp(M) where M are the number of explicit edits and N is the number of value states.
ISTAT-IBM has a system with more than 550 explicit edits and 400 value states. In converting the
ISTAT-IBM edits to the form used by DISCRETE, we drop several explicit edits that can never be
used in generating new implicit edits and we combine several value states in situations were the
value states are never used separately in explicit edits. The resultant converted set has 531 edits with
442 value states. We compare algorithms by considering the entire sets of explicit edits and selected
subsets. The ISTAT-IBM subset numbers (Barcaroli et al 1997) are based on a partitioning method
that further reduces computation from merely taking subsets (the method used in this paper). In the
following, we take subsets of the 252 to get a feeling for the computational growth rates using the
different algorithms and use an additional deck of 1560 edits that has the same 96 value states.
Computational rate numbers are based on a Sun UltraSparc workstation and the largest IBM
mainframe.

Table 4.1. CPU times
 Subsets of 252 explicit
 Versions of Algorithms

explicit - computation time (cpu)
 ---- genedit version ---
 3ebk 3f 4

 60 0.7 m 1.5 m 0.1 m
 160 11.7 m 16.0 m 0.8 m
 252 5.5 h 3.3 h 1.8 m

1560* NA NA 70 h

NA - not applicable, m-minutes, h-hours.
*/ Number of implicit edits used in checking run of 70 hours.

Table 4.2. CPU times on Different Subsets
 Algorithms and Software
 IBM-ISTAT vs EGE

explicit --- computation time (cpu) --

 ISTAT-IBM EGE
 */
 163 ?6-24 hrs 394 sec
 290 ?12-24 hrs 5700 sec
 24 ?less than 10 hrs 14 sec
 54 ?less than 10 hrs 1 sec

 531 did not complete 27.5 hr
 in 8 days on largest
 IBM mainframe
*/ With the subset of 290 and the entire set of 531, the EGE algorithm
only generates a very large subset of the implicit edits.

5. DISCUSSION
 In this section we describe differences in the EGE algorithm, the EG algorithm of Winkler (1995),
and Algorithm 1 of GKL. We also discuss limitations of the empirical comparison of section 4. The
purpose of the discussion is to give insight into the drastically reduced computation that occurs in
many real world data situations in which skip patterns do not occur.
5.1. Differences in Algorithms
 The main difference between the EGE algorithm and the EG Algorithm of Winkler (1995) is the
drastically reduced amount on computation at nonroot nodes. Computation at root nodes in the EG
algorithm, the EGE algorithm, and Algorithm 1 of GKL is identical (and still NP-complete) as
shown by GKL. In the following we describe the computational differences between the algorithms
at nonroot nodes. The only edits (both implicit and explicit) that are considered are those that enter
the current field on which generation is taking place. In the EGE algorithm, we successively use
maximal implicit edits from the immediate predecessor node and, for each, we successively use the
known small subsets of explicit edits that were successful in generating implicit edits at root nodes.
In the EG algorithm, we successively used each maximal implicit edit and all associated explicit
edits simultaneously. We, thus, consider far fewer subsets of edits in each generating cycle at
nonroot nodes with the EGE than we consider with the EG. In Algorithm 1 of GKL, all implicit and
explicit edits were considered simultaneously. With the GKL algorithm, far more subsets of edits
are considered at each generating cycle than with the EG or EGE algorithms.
 The amount of redundant computation in the EG and GKL algorithms increases at an exponential
multiple of the amount of computation at the root nodes. With the EGE algorithm, computation at
each nonroot node can be a small subset of the computation at the root nodes. Overall computation
can still be substantial if there are a significant number of nonroot nodes at which implicit edits must
be generated.
5.2. Limitations of Empirical Results
 The program gen_ed4.f may contain some minor errors. At present I have only run it with one
additional problem of the same computational complexity as the ISTAT-IBM problem. Several
minor errors in the code were corrected. There are undoubtedly some errors in the transcription of

the ISTAT-IBM edits into the form used by DISCRETE. I do not believe that the transcription
errors seriously affect the comparative timing results given in this paper.
5.3. Further Enhancement to the EGE Algorithm
 At present, the EGE algorithm can be enhanced by adding an additional step in which root node
implicit edits are used in generating further implicit edits and the sets of implicit edits used in
generating implicit edits are tracked with the same data structures as in the current code. This should
allow generation of implicit edits associated with simple skip patterns and edit situations analogous
to skip patterns. It will likely not allow dealing with skip patterns that occur within skip patterns.
We have not yet encountered the skip-pattern within-skip-pattern situation with real data.

6. SUMMARY
 This paper presents theory and algorithms that facilitate generation of implicit edits for discrete
data under the edit model of Fellegi and Holt (1976). The main algorithm is presently valid for
situations in which skip patterns are not present. It holds for many survey situations such as most
demographic surveys and the decennial census short form. The advantage of the new implicit-edit-
generation algorithm that is far faster (1-2 orders of magnitude) than previous algorithms. Combined
with previous methods (Winkler 1995) that reduce computation during the error localization phase
(1-2 orders of magnitude), the new set of algorithms allows the development of larger Fellegi-Holt
edit systems that can be used in practice.

*This paper represents views of the author and are not necessarily those of the Bureau of the Census.
The author thanks Dr. Bor-Chung Chen for identifying an error in the proof of Lemma 4 and helpful
conversations The author is especially thankful to Dr. Guilio Barcaroli of the Italian National
Statistical Institute (ISTAT) for timely advice and for providing large, exceedingly difficult data sets
that were used for testing and for debugging the computer code.

REFERENCES
Barcaroli, G., and Venturi, M. (1997), "DAISY (Design, Analysis and Imputation System):
 Structure, Methodology, and First Applications," in J. Kovar and L. Granquist, (eds.) Statistical
 Data Editing, Volume II, U.N. Economic Commission for Europe, 40-51.
Fellegi, I. P. and Holt, D. (1976), "A Systematic Approach to Automatic Edit and Imputation,"
 Journal of the American Statistical Association, 71, 17-35.
Garfinkel, R. S., Kunnathur, A. S. and Liepins, G. E., (1986), "Optimal Imputation of
 Erroneous Data: Categorical Data, General Edits," Operations Research, 34, 744-751.
Little, R. A., and Rubin, D. B., (1987), Statistical Analysis with Missing Data, John
 Wiley: New York.
Nemhauser, G. L. and Wolsey, L. A., (1988), Integer and Combinatorial Optimization, John
 Wiley: New York.
Winkler, W.E. (1997), "DISCRETE 97," Undocumented computer system, Statistical
 Research Division, U.S. Bureau of the Census.

