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1. Introduction
The model of Fay and Herriot (1979) for small area estimation can be written

yi = Yi + ei i = 1; : : : ;m (1)

= (x0i¯ + ui) + ei (2)

where the yi are direct survey estimates of true population quantities Yi for m small areas, the ei
are sampling errors (of the yi) independently distributed as N(0; vi), the ui are small area random
e¤ects (model errors) distributed i:i:d: N(0; ¾2u), the x

0
i are 1£r row vectors of regression variables

for area i, and ¯ is the corresponding vector of regression parameters.
From (2), letting § = diag(¾2u + vi), ¯ can be estimated by generalized least squares (GLS):b̄ = (X0§¡1X)¡1X0§¡1y with Var(b̄) = (X0§¡1X)¡1, where y = (y1; : : : ; ym)0, and X is m£ r

with rows x0i. Then the best linear unbiased predictors (BLUPs) of the Yi can be formed and their
error variances obtained from

bYi = hiyi + (1¡ hi)x0i b̄ (3)

Var(Yi ¡ bYi) = ¾2u(1¡ hi) + (1¡ hi)2x0iVar
³b̄´xi (4)

where hi = ¾2u=(¾
2
u + vi): From (3), the smoothed estimate bYi is a weighted average of the

regression prediction x0i b̄ and the direct estimate yi. The �rst term in (4), ¾2u(1 ¡ hi), is the
inherent prediction error variance that would result if all model parameters were known. The
second term in (4) accounts for additional error due to estimating ¯. Given the vi, (4) can be
augmented to re�ect uncertainty about ¾2u using asymptotic formulas (Prasad and Rao 1990,
Datta and Lahiri 1997) or a Bayesian approach (Berger 1985, pp. 190-193). When only point
estimates yi and variances vi are available, uncertainty about sampling error variances is generally
ignored, though Bell and Otto (1992) address this problem for a time series application via a
Bayesian model-based approach.
This paper considers di¤erent approaches to dealing with uncertainty about ¾2u in the context

of a particular application: estimating annual poverty rates of school-aged (5-17) children for the
states of the U.S. using data from the Current Population Survey (CPS). For this problem Fay and
Train (1997) developed a Fay-Herriot model for each year where, for each ofm = 51 �states� i (in-
cluding the District of Columbia as a �state�), yi is the direct CPS estimate, Yi the true poverty
rate, and xi includes a constant term and three variables derived from administrative sources.
(Actually, ratios di¤ering slightly from true poverty rates were modeled.) U.S. Internal Revenue
Service income tax return �les supplied two variables: an analogue to state child poverty rates and
also state rates of non�ling for income taxes. Data from the U.S. Department of Agriculture were
used to develop a variable re�ecting state participation rates in the food stamp poverty assistance
program. In addition, xi includes the residual from regressing 5-17 state poverty rates from the
previous (1990) decennial census on the other regression variables for 1989 (the census income
reference year). The vi were obtained from a sampling error model of Otto and Bell (1995) that
involved �tting a generalized variance function (GVF) to �ve years of direct variance and covari-
ance estimates for each state produced by Fay and Train (1995). This application is an important
component of the Census Bureau�s Small Area Income and Poverty Estimates (SAIPE) program.
For information, see the SAIPE web site at http://www.census.gov/hhes/www/saipe.html.
Section 2 of this paper examines, in the context of the Fay and Train (1997) model, di¤erent

approaches to dealing with uncertainty about ¾2u (given the vi) and their e¤ects on prediction
error variances. Future work will explore a Gibbs sampling scheme to also recognize uncertainty
about sampling error variances using the model of Otto and Bell (1995).



2. Accounting for Uncertainty About the Model Error Variance (¾2u)
Three estimation approaches are considered here: maximum likelihood (ML), restricted ML

(REML), and the less-familiar mean likelihood (MEL). A Bayesian analysis is also explored. First,
note REML maximizes the restricted likelihood (Harville 1977, p. 325)

L(¾2u) / j§j¡
1
2
¯̄
X0§¡1X

¯̄¡ 1
2 e¡

1
2 (y¡Xb̄)0§¡1(y¡Xb̄) (5)

where b̄ = b̄(¾2u) is given by GLS. Omitting the term ¯̄
X0§¡1X

¯̄¡1=2
from (5) gives the concen-

trated likelihood (for ¾2u) maximized by ML. Also, (5) normalized to integrate to 1 is the Bayesian
posterior density of ¾2u under the �at prior p(¯; ¾

2
u) / constant (Berger 1985, p. 192). The

corresponding posterior mean of ¾2u is the same as the mean likelihood estimate (Barnard 1949).
For the Fay and Train (1997) model of U.S. 5-17 year-old state poverty rates, Table 1 shows

the three estimates of ¾2u for 1989�1993. Focusing �rst on the left half of Table 1, note that the
ML and REML estimates are both zero in the �rst four years.

Table1. Alternative Estimates of ¾2ufor Five Years
Updating vi to Convergence
year ML REML MEL
1989 0 0 1:7
1990 0 0 2:2
1991 0 0 1:6
1992 0 0 1:6
1993 :4 1:7 3:4

No Updating of vi
ML REML MEL
4.6 4.9 6.1
1.9 2.5 3.7
0 0 1.6
0 0 1.4
3.3 2.1 3.6

Having b¾2u = 0 has several unreasonable implications. First, it implies that if the Yi were observed
(if the CPS were a complete census every year), then the model would �t this data perfectly. (Note:
The 1990 census data are not the Yi for 1989 because of CPS-census measurement di¤erences.)
Second, since b¾2u = 0 implies hi = 0 for all i, (3) implies that each bYi is just the regression
prediction, x0i b̄; the direct estimates yi get no weight. Third, b¾2u = 0 implies that the �rst term
on the right hand side of (4) is zero, and the prediction error variance comes entirely from the
error in estimating ¯. These results tend to look unreasonable, as will be seen later in Table 2.
Getting b¾2u = 0 for ML could motivate consideration of REML, which is intended to remove the

downward asymptotic bias of ML (Datta and Lahiri 1997, p. 8). Table 1 shows that in this applica-
tion, however, REML is of little help. The mean likelihood estimates, or Bayesian posterior means
of ¾2u, look more reasonable. (These were computed for Table 1 as

R
¾2uL(¾

2
u)d¾

2
u=
R
L(¾2u)d¾

2
u,

with the integrations done numerically by Simpson�s rule over 100 equal subintervals of ¾2u 2 [0; 20],
an interval judged from graphs to contain essentially all the posterior probability for ¾2u for all
years.) The reason for the di¤erences between the estimators of ¾2u is easy to see from graphs
(not shown) of the marginal posterior density (L(¾2u)=

R
L(¾2u)d¾

2
u), which reveal a long right tail

in all years. Since the marginal posteriors are not concentrated near ¾2u = 0, the posterior means
substantially exceed the posterior modes (mean likelihood estimators exceed REML estimators).
The estimation scheme used by Fay and Train (1997) involved iteratively updating the vi given

each new estimate of (¯;¾2u). If superscript (k) denotes the kth iteration, the update of vi used

was v(k)i = v
(0)
i [x0i b̄(k)(1¡ x0i b̄(k))]=[yi(1¡ yi)], where v(0)i are the original estimated vi from the

sampling error model of Otto and Bell (1995). The idea was to adjust the vi at each iteration

to be consistent with the current estimate x0i b̄. To �nd b̄(k) and b¾2(k)u the v(k¡1)i were used.
Convergence was e¤ectively achieved in two iterations. For comparison, the right half of Table 1
shows the estimates of ¾2u without updating the vi. The results are di¤erent in some cases, though
some zero estimates for ¾2u still occur. For the remainder of this paper, results from updating vi
to convergence are used.
Tables 2 and 3 show some alternative prediction error variances for 1992 (when b¾2u = 0 for ML

and REML) and for 1993, respectively. Also shown are CPS sample sizes ni (number of households
in the March CPS sample), CPS direct poverty rate estimates yi, and direct sampling variance



estimates v(0)i . Results are shown for four states in increasing order of v(0)i : California (CA), the
largest state with the largest sample size and lowest direct variance; North Carolina (NC); Indiana
(IN); and Mississippi (MS). The tables show variances (ML1, REML1, and MEL1) obtained by
plugging b¾2u (and corresponding fully updated vi) into (4) for b¾2u given by ML, REML, and MEL.
For ML and REML the tables also show prediction error variances (ML2 and REML2) augmented
as in Datta and Lahiri (1997) to asymptotically account for error in estimating ¾2u. The tables
also show two �Bayesian posterior variances� described later.

Table 2. Alternative Prediction Error Variances for Four States for 1992
state ni yi v

(0)
i ML1 ML2 REML1 REML2 MEL1 Bayes1 Bayes2

CA 4; 927 20:9 1:9 1:3 3:6 1:3 2:8 1:5 1:4 1:4
NC 2; 400 23:0 5:5 :6 2:0 :6 1:2 1:6 1:4 2:0
IN 670 11:8 9:3 :3 1:4 :3 :6 1:8 1:6 1:7
MS 796 29:6 12:4 2:8 3:8 2:8 3:0 4:1 3:9 4:0

Table 3. Alternative Prediction Error Variances for Four States for 1993
state ni yi v

(0)
i ML1 ML2 REML1 REML2 MEL1 Bayes1 Bayes2

CA 4; 639 23:8 2:3 1:5 3:2 1:6 2:2 1:7 1:7 1:7
NC 2; 278 17:0 4:5 1:0 2:4 1:7 2:2 2:2 2:0 2:0
IN 650 10:3 8:5 :8 1:9 1:8 2:2 2:9 2:7 3:0
MS 747 30:5 13:6 3:2 4:3 4:2 4:5 5:2 5:0 5:1

First consider ML1 and REML1 in 1992, which are the same since b¾2u = 0 for both. When
¾2u = 0, (4) reduces to Var(Yi ¡ bYi) = x0iVar(b̄)xi, and variation in (4) over states results solely
from variations in the regression variables xi. Hence, the small values for NC and IN, despite
their having smaller sample sizes and higher sampling variances than CA. In fact, many other
states have values for (4) lower than that for CA. While these results would not be unexpected if
we really believed ¾2u = 0, since ¾

2
u = 0 seems questionable so do these prediction error variances.

Now comparing the ML1 results from 1992 and 1993, we see substantial increases in 1993 for NC
and IN. Similar large increases occur for many other states. In general, the di¤erences between
the ML1 results in the two years seem overly large and not very plausible (suggesting problems
particularly for 1992). The REML1 results for 1993 show even more dramatic increases due to the
larger REML estimate of b¾2u = 1:7 for 1993, and in contrast cast doubt on the 1993 ML1 results.
Augmenting the ML and REML prediction variances as in Datta and Lahiri (1997) to re�ect

error in estimating ¾2u (ML
2 and REML2 results) yields large increases, suggesting that ignoring

this term can signi�cantly underestimate prediction error variance. Note the largest contributions
from estimating ¾2u go to the states with the lowest sampling variances. This makes some sense as
the lower vi is the more weight goes to the direct estimate yi in (3) when ¾2u > 0, so uncertainty
about ¾2u means more to states with fairly precise direct estimates. However, this also means that
the unappealing pattern of many states having smaller prediction error variances than CA persists
in ML2 in both years and REML2 in 1992.
Plugging the much larger mean likelihood estimates of ¾2u into (3) produces much larger pre-

diction error variances than those from ML1 and REML1 for NC, IN, and MS (and for many
other states not shown). It also yields a more intuitively appealing pattern with prediction error
variance increasing with sampling variance.
Bayesian posterior variances can be computed as

Var(Yijy) = E[Var(Yijy; ¾2u)] +Var[E(Yijy; ¾2u)] (6)

where the outer expectation and variance on the right hand side are taken over the marginal
posterior distribution of ¾2u. These were computed by Simpson�s rule in the same manner as the
posterior means of ¾2u discussed above. Bayes

1 in Tables 2 and 3 denotes E[Var(Yijy; ¾2u)], while
Bayes2 denotes Var(Yijy). (The results shown are still conditional on the sampling variances vi,
set at their fully updated values from the mean likelihood estimation.) Note that Bayes1 is fairly



close to MEL1, i.e., averaging Var(Yijy; ¾2u) over the posterior of ¾2u gives about the same result
as evaluating Var(Yijy; ¾2u) at the posterior mean of ¾2u. Given this, Var[E(Yijy; ¾2u)] = Bayes2¡
Bayes1 can be thought of as accounting for uncertainty about ¾2u, and as a Bayesian analogue to
the term augmenting (4) to account for error in estimating ¾2u. For most states Var[E(Yijy; ¾2u)]
is quite small, so Var(Yijy) is close to E[Var(Yijy; ¾2u)], and to MEL1. Note, however, the large
di¤erence between Bayes1 and Bayes2 for NC in 1992. This arises because the regression prediction
for NC in 1992 (which varies little over the di¤erent estimates of ¾2u) is x

0
i
b̄ = 17:7, which di¤ers

substantially from the direct estimate yi = 23:0. When such large di¤erences between the direct
estimate and the regression prediction occur, the conditional mean (E(Yijy; ¾2u) as given by (3))
is sensitive to variation in ¾2u. Hence, the posterior variances re�ect this. A similar, though less
pronounced e¤ect occurs for IN in 1993 when x0i b̄ = 15:3 versus yi = 10:3. Such occurrences are
rare in this example, and when x0i b̄ and yi are close, Var[E(Yijy; ¾2u)] is close to zero. Note the
di¤erence in this result from the frequentist results, which do not depend in such a direct way on
the realized data values.
Without overinterpreting the results from this particular example, they nonetheless show the

potential di¢culties for the frequentist approaches when the model error variance is estimated at
or near zero. By averaging over the posterior of ¾2u, the Bayesian approach avoids unreasonable
results from �xing ¾2u at a single value near 0, and gives more intuitively plausible results.
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