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Asymptotic Stationarity Properties of Out-of-Sample Forecast Errors of 
Misspecified RegARIMA Models 
David F. Findley, Bureau of the Census 

1. Introduction 

Suppose we have observations Yt, 1 ≤ t ≤ 
T of a time series of the form 

Yt = αξt + yt, (1) 

where ξt is a sequence of nonstochastic column 
vectors and yt is a mean zero process whose au­
tocovariance structure is stationary or asymp­
totically stationary in a sense to be defined. 
With monthly or quarterly economic data for 
example, the regressor sequence ξt might de-
scribe holiday effects (Bell and Hillmer, 1983) 
and trading day effects (Findley, Monsell, Bell, 
Otto, and Chen, 1998) as well as localized ef­
fects such as a shift of the level of the series or 
other intervention effect (Box and Tiao, 1975). 
Such data are candidates for regARMA mod­
eling. The modeler considers a regressor ξt

M 

that might not coincide with ξt, and proceeds 
as though, for some αM to be estimated, the 
residual process yt

M = Yt −αM ξt
M obeys a zero-

mean, invertible ARMA (r, s) model, although 
this may not be correct even when the choice 
of regressor is. For model selection in this sit­
uation, Findley (1990, 1991) suggests graphi­
cal diagnostics that can show whether one of 
the model choices provides persistently bet­
ter h-step-ahead forecasts Y M of data Yt+h,t+h|t 
t0 ≤ t ≤ T − h, for some relevant h ≥ 1, where 
t0 is large enough for parameter estimation. 
Findley et al. (1998) emphasize comparisons 
of “out-of-sample” forecasts obtained when the 
model coefficients used to calculate Y M aret+h|t 
estimated from Ys, 1 ≤ s ≤ t. The diagnos­
tics for such comparisons that are implemented 
in the X-12-ARIMA time series modeling and 
seasonal adjustment program discussed in this 
reference often sugges�t that the accumulating�2 
squared errors 

�τ
t=t0 

Yt+h − Y M increaset+h|t 

roughly linearly in τ , or, more concretely, that 
the average squared out-of-sample forecast er­
rors converge as τ →∞, to a finite limit, even 
for models that are far from correct. In this ar­
ticle, under very weak assumptions on yt and 
practically general assumptions on ξt given in 
Section 2, we establish the convergence with 

probability one (w.p.1) of 

T −h � �21 � 
lim t+h|t

T →∞ T − h − t0 + 1 
Yt+h − Y M 

t=t0 

to a limiting value that shows the large-sample 
effects of any misspecification of the regressor 
or of the asymptotic second moment proper-
ties of yt, see (31) below. Convergence over 
a set of realizations of the time series having 
probability one is the natural type of conver­
gence to consider because it is forecasts of the 
observed realization of Yt that are of interest. 
The analysis is made delicate by the fact that 
each Y M 

t+h|t, and hence each term of the sum of 
squared errors, is determined by a different es­
timate of the model parameters. Our focus on 
out-of-sample forecast errors was partly stimu­
lated by Rissanen (1986). In later Sections, to 
simplify the expressions, we use t0 = 1 in sums 
and T in place of T − h in denominators. 

2.	 Basic Assumptions and Some Con-
sequences 

We consider regressor sequences ξt, t ≥ 1 
of the form � � 

xtξt = , (2)
Xt 

where, with � denoting transpose, the vectors 
xt define transient effects satisfying 

∞ 

t1/2 (xt 
� xt)

1/2 
< ∞, (3) 

t=1 

and are such that no individual regressor se­
quence (xit)t≥1 is a linear combination of 
the rest, (xjt)t≥1 , j �= i, or, equivalently, 
det [ 

�∞ 
t=1 xtx

� 
t] > 0. The vectors Xt are such 

that 

T −k1 � 
Γk ≡ lim Xt+kXt 

� exits for k ≥ 0, (4) 
T →∞ T 

t=1 

with Γ0 (finite and) positive definite,Γ0 > 0. 
From (4), it follows that there exists a 

nondecreasing positive semidefinite matrix val­
ued function GX (λ) , −π ≤ λ ≤ π such that� πΓk = −π e

ikλdGX (λ), see Hannan (1970, p. 
76ff.), where also (4) is verified for periodic 
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regressors and therefore for regressors used to 
model trading day and holiday effects. 

Example 1 For Xt = (−1)t , one has Γk = 
(−1)k , and GX (λ) can be defined as 

0, −π ≤ λ < π 
GX (λ) = 1, λ = π

. (5) 

The random variables yt, t ≥ 1 in (1) 
should be asymptotically stationary in the 
sense of Parzen (1962), i.e. the sample lagged 
second moments converge w.p.1 to finite limits, 

T −k1 � 
γk ≡ w.p.1- lim yt+kyt, k ≥ 0. (6) 

T →∞ T 
t=1 

We call γk the asymptotic lag k second mo­
ment of yt. Let Gy (λ), −π ≤ λ ≤ π de-
note a nondecreasing function such that γk = 

−π πe−ikλdGy (λ). Gy (λ) is called the asymp­
totic spectral distribution of yt. The property 
(6) follows from a variety of sets of conditions, 
see Theorem IV.3.6 of Hannan (1970, p. 210) 
and Section 3 of Findley, Pötscher and Wei 
(2001) (hereafter FPW (2001)). 

Our other requirement is that the series 
yt and Xt be asymptotically orthogonal in the 
sense that, for each k ≥ 0, 

T −k1 � 
w.p.1- lim yt+kXt 

� = 0. (7)
T →∞ T 

t=1 

Because Γ0 > 0, this condition with k = 0 is 
necessary and sufficient for the strong consis­
tency of the least squares estimates of the coef­
ficients of Xt, see the derivation of (11) below. 
For weakly stationary yt, there are a variety 
of conditions that yield (7), see Hannan (1978) 
and Section 3 of FPW (2001). 
2.1 Some consequences 

Because w.p.1-limT →∞ T −1 � 
t
T 
=1 yt 

2 exists 
and is finite, we have 

w.p.1- lim 
yt = 0, (8) 

t→∞ t1/2 

see Remark 2.1 of FPW (2001), and similarly 
for Xt/t1/2 . �∞Consequently, �� t=1 yt+kx� t � = �∞ � 

(t + k)−1/2yt+k (t + k)1/2 
x� t con-t=1 

verges with probability one, by (8) and (3). 
Similarly, if �·� denotes a matrix norm, we 
have (w.p.1) 

∞ ∞ 

�yt+kxt 
� � < ∞, �xt+k Xt 

�� < ∞. (9) 
t=1 t=1 

A consequence of these properties is the con­
vergence of the ordinary least squares (OLS) 
estimate of α in (1) from data Yt, 1 ≤ t ≤ T 
which is defined by � �−1T T 

α̂T ≡ Ytξt 
� ξtξt 

� , (10) 
t=1 t=1 

The limiting value is given by � 
� ∞ 

�−1 
 

∞ � 
ˆw.p.1- lim αT = α+ ytxt 

� xtxt 
� 0 

T →∞ 
t=1 t=1 

(11) 
where 0 denotes a zero row vector with the di­
mension of Xt. So this estimator is strongly 
consistent for Xt, but asymptotically biased for 
xt. 

3. ARMA Forecasting of Asymptoti­
∗cally Stationary yt 

3.1 ARMA Parameterizations 
∗Let yt be an asymptotically stationary 

time series with asymptotic second moments γ∗ 
k 

and asymptotic spectral distribution Gy ∗ (λ). 
∗Suppose yt is being modeled as an invertible 

ARMA(r, s) model for given r, s ≥ 0 with au­
toregressive polynomial a (z) = 1 + a1z + · · · + 
ar z

r and moving average polynomial c (z) = 
1 + c1z + · · · + csz

s satisfying 

a(z) �= 0 �= c(z), |z| ≤ 1. (12) 

Initially, we do not require ar �= 0	 or cs �= 
˜0. Define θ (z) ≡ c (z) /a (z) and θ (z) ≡ 

c (z) /a (z) = θ (z)−1 . The coefficients of the 
power series expansions θ (z) = 

�∞ 
j=0 θj z

j and 
˜ θ (z) = 

�∞˜ 
j=0 θj z

j are the model’s autoregres­
sive representation coefficients and moving av­
erage representation coefficients, respectively. 
Let Θr,s denote the set of all such autoregres­
sive representation coefficient sequences θ ≡ 
(1, θ1, . . .). For a given θ ∈ Θr,s, let aθ (z) ≡ 
1+ aθ,1z + · · · + aθ,r z

r and aθ (z) ≡ 1+ cθ,1z + 
· · · + cθ,sz

s denote polynomials with no zeros 
in {|z| ≤ 1} such that θ (z) ≡ cθ (z) /aθ (z). 
These polynomials are uniquely defined only 
if θ ∈ Θr−1,s−1 in which case either aθ,r �= 0 
or cθ,s �= 0, and aθ (z) and cθ (z) have no 
zeros in common. Thus, the subset Θr,s ≡max 
Θr,s \ Θr−1,s−1 is the set of uniquely identified 
models in Θr,s. Note that Θr,s = Θr,s if r = 0max 
or s = 0. 

Appendix A of Pötscher (1991) explains in 
detail why the moving average representation 
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˜ ˜ coefficient sequence θ ≡ 1, θ1, . . . is a natu­
ral parameter for ARMA models which avoids 
discontinuities that arise at a(z) and c(z) with 
common zero the associated pathological be­
havior of m.l.e.’s of ARMA(r, s). For invert­
ible models, the autoregressive representation 
coefficients θ ≡ (1, θ1, . . .) can play same role, 
because of the coordinatewise continuity of the 
transformations θ ↔ ˜ θ, see FPW (2002). 
3.2 Basic Forecast Formulas 

For any h ≥ 1 and θ ∈ Θr,s, define 
˜ θh−1 (z) ≡ 

�h−1˜ 
j=0 θj z

j . Let B denote the back­
∗ ∗ ∗shift operator, Byt = yt−1. If yt is a station­

ary Gaussian ARMA(r, s) process with AR and 
MA polynomials a (z) and c(z), respectively, 
and with θ (z) = a (z) /c (z), then the mean 
square optimal forecast yt 

∗ 
+h|t (θ)of yt 

∗ 
+h from 

∗ yu, −∞ < u ≤ t, is produced by the filter 

˜ π (h, θ) (B) ≡ B−h θ (B) − θ ˜ 
h−1 (B) θ (B) , 

(13) 
(see Hannan 1970, p. 147). That is, 

∞ 
∗ ∗ ∗ yt+h|t (θ) = π (h, θ) (B) yt = πj (h, θ) yt−j . 

j=0 

(14) 
For this forecast function, the associated fore-
cast error filter is 

η (h, θ) (B) ≡ ˜ θh−1 (B) θ (B) , (15) 

i.e. 

yt 
∗ 
+h − yt 

∗ 
+h|t (θ) = η (h, θ) (B) yt 

∗ 
+h 

∗More generally, for any series yt with station­
∗ ∗ ary second moments Eyt+k yt = γ∗ 

k , the sum in 
(14) converges in mean square and defines the 

∗θ-model’s h-step ahead forecast of yt+h, whose 
mean square error has the formula � π ��η (h, θ) 

� 
e iλ
���2 

dGy ∗ (λ) . 
−π 

Given an asymptotically stationary series 
∗ yt that is available only for t ≥ 1 and is not 

necessarily second-moment stationary, for any 
θ ∈ Θr,s we can use a truncated version (14) to 
define the θ-model’s predictors, 

t−1 

yt 
∗ 
+h|t (θ) ≡ πj (h, θ) yt 

∗
−j . (16) 

j=0 

3.3 Astr¨˚ om’s Recursion Formula for 
∗ yt+h|t (θ) 

For ARMA processes, Astr¨˚ om (1970) es­
tablished a useful recursion for the h-step­
ahead forecasts (14) that follows from the poly­
nomial division algorithm applied to the ratio 

˜ θ (z) = c (z) /a (z) = 
�∞˜ 

j=0 θj z
j of the MA 

polynomial c (z) and the AR polynomial a (z) , 
which we assume have degrees s and r, respec­
tively. With θ ˜ 

h−1 (z) = 
�h−1 ˜ 

j=0 θj z
j , this algo­

rithm yields 

˜ c (z) = θh−1 (z) a (z) + z h gh (z) , 

where 

˜ gh (z) = z −h θ (z) − θ ˜ 
h−1 (z) a (z) (17) 

is a polynomial of degree at most 
q = max {r − 1, s − h}. Because the 
forecast filter (13) can be expressed as 
π (h, θ) (B) = gh (B) c (B)−1 , the predictor 
sequence yt 

∗ 
+h|t (θ) defined by (14) satisfies the 

difference equation 

c (B) yt 
∗ 
+h|t (θ) = gh (B) yt 

∗ , (18) 

which is ˚ om’s Recursion Formula. Let Θ
r,s

Astr¨ 
denote the superset of Θr,s obtained by weak­
ening (12) to a(z) �= 0 �= c(z), |z| < 1. 

Proposition 1 Let θ ∈ Θ
r,s 

be given and also 
∗ ∗ a sequence yt , t ≥ 1. Define yt = 0 for 

−q + 1 ≤ t ≤ 0. Then the truncated predictors 
(16) whose coefficient are defined by (13) are 
the solution of (18) for t ≥ 1 determined by the 
initial conditions yt 

∗ 
+h|t (θ) = 0, −s +1 ≤ t ≤ 0. 

This recursion property is the key to ob­
taining results for out-of-sample forecast errors. 
One can modify the proof of Lemma 5 of Lai 
and Ying (1991), which is concerned with pre­
dictors defined by an ˚ om Recursion For-Astr¨ 
mula with time-varying but converging coeffi­
cients, to establish 

∗Theorem 2 Let yt , t ≥ 1 be an asymptoti­
cally stationary sequence. Suppose a sequence 
θt , t ≥ 1 of random variates with values in 
Θ

r,s 
is given such that θt → w.p.1 θ

∞ ∈ Θr,s 
max. 

Then, for each h ≥ 1. the truncated predictors 
yt 
∗ 
+h|t (θ

t) have the property that 

1 �T −h � � � �2 
yt 
∗ 
+h|t θt − yt 

∗ 
+h|t (θ

∞) → w.p.1 0. 
T 

t=1 



� � 

� � 

� �� � � 

� � 

Now from Proposition 2.1 and Theorem with the corresponding partition of α in (1) be-
2.1 of FPW (2001) we can obtain ing α = aM aN AM AN and those of Γk and 

GX (λ) being 
Theorem 3 Let θt , t ≥ 1 be a sequence in � � 

ΓMM ΓMN 
k kΘ

r,s 
such that Γk = ΓNM ΓNN (23) 

k k 

θt → w.p.1 θ
∞ ∈ Θr,s 

max. (19) and 

Then the out-of-sample forecast errors yt 
∗ 
+h − GMM (λ) GMN (λ) 

yt 
∗ 
+h|t (θ

t), t ≥ 1 are jointly asymptotically sta-
GX (λ) = 

GNM (λ) GNN (λ) , 

tionarity. In particular 
respectively. Then, with ξt

M � ≡ xM
t 

� 
Xt

M � 

1 �T −h � � ��2 and αM ≡ aM AM , we have∗ ∗ w.p.1- lim yt+h − yt+h|t θt 

T →∞ T 
t=1 Yt = αM ξt

M + yt
M (24) 

= 
� π ��η (h, θ∞) 

� 
e iλ
���2 

dGy ∗ (λ) . (20) with 
N−π yt

M = a N xt + AN Xt
N + yt. (25) 

Example 2. Consider the situation in It follows from (6), (4), (7) and (9) that yt
M is 

which a first order autoregressive model is asymptotically stationary with 
∗fit to yt . With θ = (1, −φ, 0, 0, . . .), sup-

γM = AN ΓNN AN � + γk pose the Yule-Walker estimates of φ are used, k � π
k �t−1

φt ≡ s=1 yt 
∗ 
+1yt 

∗/ 
� 

s
t 
=1 (yt 

∗)2 
, t ≥ 2. Then = e −ikλdGyM (λ), 

φt → w.p.1 ρ
∗ 

1 /γ∗ 
1 ≡ γ∗ 

0 . From (15) and (20), we −π 

obtain with GyM (λ) ≡ AN GNN (λ) AN � + Gy (λ). We 
T −h � � �h ∗ 

�2 
are assuming that AN �= 0 (otherwise there 

w.p.1- lim 
1 � 

yt 
∗ 
+h − φt yt 

would be no misspecification). Therefore, in 
t→∞ T − h 

t=1 contrast to (7)� π � �2 
∗ T −k = ��1 − (ρ1 )

h 
e ihλ�� dGy ∗ (λ) 

w.p.1- lim T −1 
� 

yt+kXt
M �M 

−π 
T →∞ 

t=1�� � � �2 
� 

∗ ∗ ∗ ∗ T −k = γ0 1 − (ρh)2 + ρh − (ρ1)
h 

, (21) 
= w.p.1- lim T −1 

� 
AN XN 

t+k Xt
M � 

T →∞ 
t=1with� ρ∗ ≡ γ∗ � 0 , which is the minimizer of 

AN ΓNM (26)� π h h/γ∗ 

= 
−π 
�1 − ρeihλ�2 

dGy ∗ (λ). k 

Although (20) and results that follow do will generally be non-zero for some k unless the 
∗ ∗not require θt = θt (y1 , . . . , yt ), this is the most sequences Xt

N and Xt
N are asymptotically or-

natural type of random θt to occur with fore- thogonal. 
cast errors of the form yt 

∗ 
+h − yt 

∗ 
+h|t (θ

t). For 5. Joint Asymptotic Stationarity of
simplicity, we shall call all forecast errors of this OSFE’s from a Misspecified re-
form out-of-sample forecast errors (OSFE’s) gARMA Model.
For in-sample forecast errors obtained with pa- � � 
rameter estimates θT , (20) was obtained in a Suppose we are given ξt

M � ≡ xM
t 
� Xt

M � 

more general setting in FPW (2002), but the and data Yt, 1 ≤ t ≤ T . The OLS estimator of 
case of regressor misspecification was not con- αM in (25) is 
sidered. � �−1T T 

ˆ4. Estimating the Coefficients of a Mis- αM ≡ Ytξt
M � ξt

M ξt
M � . (27)T 

specified Regressor t=1 t=1 

Let xt and Xt be partitioned into modeled With ΓNM and ΓMM as in (23), define CNM ≡0� 0 �−1
and not-modeled vectors, ΓNM ΓMM . Due to (26), instead of (11),0 0 � � � � we have 

xM XM 

αMxt = 
xN , Xt = 

XN , (22) w.p.1- lim ˆ T = αM (28) 
t t T →∞ 
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model with the correct regressor Xt, we have,∞ � 
M �+  yt

M xt xt xt 
M M � + C AN CNM  from (21) with yt 

∗ = yt that 
t=1 t=1 

where � �−1∞ ∞ 

C ≡ AN CNM XM x M � xt
M xt

M � .t t 
t=1 t=1 

Let θt , t ≥ 1 be random variables with 
values in Θ

s 
such that 

θt → w.p.1 θ
M,∞ ∈ Θr,s 

max (29) 

holds. We consider the forecast functions 

Y M θt ≡ αM ξM M 
t+h|t t t+h + yt+h|t θt (30) 

with 

t−1� � � � � � �
M yt+h|t θt ≡ πj h, θt Yt − αt

M ξM 
t−j . 

j=0 

Theorem 4 When (29) holds, the OSFE se­
quences Yt+h − Y M 

t+|t (θ
t) , t ≥ 1 for h = 1, 2, . . . 

are jointly asymptotically stationary with 

T −h � � ��21 � 
Yt+h − Y M θt 

T t+h|t 
t=1� π 

→	 w.p.1 

��η 
� 
h, θ∞,M 

� � 
e iλ
��� dGy (λ) 

−π 

+BN 

�� π ��η 
� 
h, θ∞,M 

� � 
e iλ
���2 

dGX (λ) BN � 

−π 
(31) 

where, with I denoting the identity matrix of 
order dim Xt

N , 

BN ≡ AN 
� 
−CNM I . (32) 

The first expression on the right of (31) 
can be interpreted as the limiting mean squared 
error of the forecast of yt+h and the second as 
that of the forecast of αξt+h. 

Set 

σhh (θ) ≡ 
� π ��η (h, θ) 

� 
e iλ
���2 

dGy (λ) , (33) 
−π 

and note that if Xt
M and Xt

N are asymptoti­
cally orthogonal, then CNM = 0. 

Example 3. Consider the fitting of an 
AR(1) model for the regression error and do­
ing one-step-ahead forecasting (h = 1). For a 

σ11 (θ∞) = γ0 1 − ρ2 .1 

For a misspecified regressor with Xt
N = (−1)t , 

∗(21) with yt = yt
M and γM = AN 

�2 (−1)k +γkk 
yield 

σ11 
� 
θM,∞� = π �� 1 − ρM e iλ�2 

dGy (λ)1 
−π 

= π �1 − ρ1e iλ + ρ1 − ρM e iλ�2 
dGy (λ)1 

−π � �2 
= σ11 (θ∞) + γ0 ρ1 − ρM ,1 

where � �2 

ρM γ1 − AN 

= 1 
γ0 + (AN )2 

Suppose that the nonconstant entries of Xt
M 

have been deseasonalized, as in Soukup and 
Findley (2000). Then Xt

N = (−�1)t is orthogo­
nal to Xt

M . As η 1, θM,∞ eiλ = 1 − ρM eiλ ,1 
the final term on th�e 

2 
right in (31) has the� �2 � value AN 1 + ρM . Thus, the increase in1 

asymptotic mean square one-step forecast error 
resulting from the regressor misspecification is � �2 � 

γ0 ρ1 − ρM + AN 
�2 � 

1 + ρM 
�2 

.1 1 

We note that if the AR(1) model incorrect in 
the sense that ρk �= ρk for some k > 1, then1 
models different from the AR(1) could have an 
asymptotic mean square one-step forecast error 
smaller than σ11 (θ∞). 

6. Extensions 

Results for the truncated predictors 
yt 
∗ 
+h|t (θ) often serve as stepping stones toward 

results for the more commonly used finite past 
predictors defined by 

t−1 

ỹ  t 
∗ 
+h|t (θ) ≡ πt,j (h, θ) yt 

∗
−j , 

j=0 

whose coefficient vector [πt,j (h, θ)]1≤j≤t−1 is 
the solution of the linear system 

[πt,j (h, θ)]0≤j≤t−1 [ρj−k (θ)]0≤j,k≤t−1 

= [ρh+k (θ)]1≤k≤t , 

with ρk (θ) = 
�∞ �∞ 

j=0 θj+k θj / j=0 θj 
2 , k ≥ 0. 

All of the preceding asymptotic stationarity as­
sertions and limit formulas can be established 



for the situation in which these predictors are 
used instead of (16), also to define Generalized 
Least Squares estimates of αM to be used in 
place of OLS estimate used above. This is be-
cause under the assumptions of Lemma 2, we 
have, for ε > 0 and θt 

t−1� � � � � �� 
(1 + ε)j sup �πt,j h, θt − πj h, θt � 

θt ∈θr,s 
j=0 max 

= Ow.p.1 (1) 

for every h ≥ 1, see (5.5) and Theorem 2.1 (a2) 
of FPW (2002). 

It can be shown that a limiting second mo­
ment formula analogous to (31) holds if the 
condition on the regressors (4) is weakened to 
allow polynomial regressors in Xt

M when the 
entries of Xt

M and Xt
N regressors are either 

constant or are periodic with mean zero. In this 
situation, we require the transitory regressors 
to satisfy 

�∞ 
t=1(1+ ε)j (xt 

� xt)
1/2 

< ∞ for some 
ε > 0, as the intervention regressors of Box and 
Tiao (1975) do. For within-sample forecast er­
rors, we need no such restrictions: the analogue 
of (31) holds for all regressors Xt

M satisfying 
what Hannan (1970) calls Grenander’s condi­
tions, see Findley (2001). 

Finally, the ARMA models can be replaced 
by ARIMA models as in FPW (2002). Details 
are available in the technical report Findley 
(2001). 

Disclaimer. This paper reports the re­
sults of research and analysis undertaken by 
Census Bureau staff. It has undergone a Cen­
sus Bureau review more limited in scope than 
reviews given to official Census Bureau publi­
cations. Any opinions expressed are those of 
the author and may not reflect Census Bureau 
policy. 
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