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Abstract1.  There has been much international research
in recent years on the cell suppression approach to
protecting a statistical table. In this paper, the author
compares some of the new and old methods from both
a theoretical and practical point of view. The basic
theoretical difference among the approaches is the type
of mathematical programming method that is used to
solve the optimization problem involved.  However, the
usefulness of a cell suppression program often depends
on features in addition to the optimization method used;
e.g., (1) ability to handle linked tables,  (2) allowance
for  capacities, (3) guarantee of adequate suppression,
(4) set of expressible cost functions and (5)  adequate
speed for major production runs. The author will
compare some of the optimization methods and some
of the programs that have been reported in the literature
in recent years; e.g., network based programs (Jewett),
extended network methods (J. Castro),  linear
programming  based programs (Massell), integer
programming based programs (Fischetti, Salazar),
hypercube based programs (Giessing), and programs
(e.g., Argus) that use several methods.

1.0     Introduction

The existence of sensitive cells in statistical tables that
are released by statistical agencies has long been
recognized.  In frequency count tables, also known as
contingency tables, cells with a value, especially a
count of '1',  may reveal confidential data. For example,
a table of demographic data in which a cell that is
defined to be the number of males of a certain race with
income in a certain range in a certain locality, would be
sensitive if it had a count of '1' because neighbors of

this man might well be able to associate him with this
cell and thus uncover his income. With economic data,
sensitive cells generally arise in magnitude tables, i.e.,
tables in which the data displayed is that for some
variable that measures some (continuous) economic
quantity such as sales.  For such data, the  largest
contributors of the magnitude variable  are often known
to table users.  Often the number of contributors for
each cell is published in an associated  frequency count
table.  If there were one contributor, its value  (e.g.,
total sales) would be revealed directly to a table user if
the cell were published. This would violate the pledge
of confidentiality to this contributor. Thus the cell
cannot be released as is. It must be suppressed or
otherwise modified. Even if there were two
contributors to a cell, we would suppress the cell
because the second contributor could, by subtraction of
its own value, determine the value of its competitor. In
general, in determining sensitivity, we make
assumptions about what is known by companies about
their competitors,  and how  good an a priori estimate
they have of their competitors' cell contributions. Ways
of measuring sensitivity of cells, determining how
much protection each sensitive cell requires, and ways
of  achieving this protection have been developed over
the past thirty years. Work continues on these topics
but the major advances of recent years have centered
on the computational aspects of the problem. The
protection of sensitive cells is most commonly achieved
by suppressing additional cells, called complementary
cells. The reason for these complementary (also called
'secondary') suppressions is to make it impossible for
any table user to estimate closely the value of the
sensitive cells or that of any respondent contribution to
such cells directly from the table.  The determination of
an optimal set of complementary cells is called the
(complementary) Cell Suppression Problem (CSP). 

The CSP can be stated in a pure mathematical form in
which all the details of preprocessing and
implementation details are ignored. In that pure form,
the CSP has been shown to be an NP-hard optimization
problem (one of the major algorithm classifications).
Since the CSP is an easy-to-state yet challenging
optimization problem that arises in a familiar setting
(viz., additive statistical tables) the CSP has attracted
the attention of  researchers in the academic community
who are experts in mathematical programming
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algorithms commonly studied in the field of operations
research. Network flow and linear programming have
been applied to the CSP for over twenty years (ref: K-
S-1). More recently, integer programming (ref: F-S-1),
extensions of network flow (ref: Castro), and an
algorithm called "hypercube" (ref: G-1) have been
implemented. Sometimes a direct implementation of an
algorithm leads to a program with long runtimes; in
those cases, additional algorithmic features are needed
to make the program fast enough for production work.
For example, use of dynamic constraint generation and
branch and cut methods have greatly speeded up
integer programming programs (ref: F-S-1).

The description below of  several algorithms and
associated implementations can help a given agency (or
organization or person) decide which features are
desirable for protecting their tables. They may decide
to acquire an existing program or to write their own.
Agencies that already have a suppression program may
decide to modify it to incorporate features of other
programs.

2.0 Description of the input  data:  (1) table data
(2) auxiliary data

Let us begin our description of suppression programs
by describing the data and aspects of protection directly
related to the data. We assume throughout this paper
that we are given a table of dimension d of size (n1,
n2,..., nd) that includes marginal totals; i.e., we assume
the tables to be additive. We usually assume the cell
entries are non-negative although this is mainly for
simplicity of description. The data may be un-rounded
or rounded. Rounding, by itself, provides some
protection beyond that provided by cell suppression.
Often it is known that the suppressed values must be
integral. This fact may also affect the amount of
protection provided by a given suppression pattern. Let
us mention here an implementation feature that often
modifies some data values. This feature is the
recalculation of  marginals from the interior data to
ensure additivity.

There is a practical aspect of the CSP that is sometimes
ignored in research papers but can be quite important in
practice for certain types of tables. It fits in this section
because it requires auxiliary input data. It is sometimes
called the "common respondent problem" and can make
the calculation of protection quite complicated. It arises
because a table user may be a respondent who
contributed data  which is a component of some cell
entries. Such a  respondent will know one summand of
one or more suppressed cells. Of course, one important

goal of the suppression selecting process is to ensure
that one respondent cannot learn sensitive information
about other respondents. If the protection process
achieves this goal, one says that protection is at the
respondent level rather than at the cell level. Building
in such protection requires access to data at the
respondent level; i.e. microdata. Specifically, one must
know the respondents (e.g., establishments or
companies) and their values that contribute to each cell
value. 

3.0 Commonly used protection methods for
magnitude and frequency data

Magnitude data tables are commonly produced for
economic data. In such tables, cell values are
enormously varied, sometimes differing by several
orders of magnitude. Cell suppression has been used
successfully for this type of data. For frequency data,
it is possible to use cell suppression but other methods
are often used instead because of ease of use.
Traditional methods are  collapsing of categories (table
redesign), and rounding (of various types). One newer
method is  perturbation of the underlying microdata.

4.0 Table structure

When we discuss the various mathematical
programming algorithms that can be used for the CSP,
we will need to take into account the structure of the
table. The simplest structure is that of a simple table, in
which there are no subtotals in any of the dimensions;
i.e., each dimension has exactly one total level which is
the sum of all the other levels. A 'simple' table has the
minimum number of additive relations for a table of its
size. Additive relations form the constraints in the
various mathematical programming models we consider
below. The next simplest case is a table in which there
is hierarchy of depth one for exactly one of the
dimensions. It turns out that network flow models can
model tables of  (at most) dimension two and a
hierarchy (of any depth) in at most one dimension but
cannot model more highly structured tables (ref: F-1).
Here we are referring to standard network flow models,
not the extensions to such models that have been
described recently by Castro. These standard models
can be shown to be equivalent to a special class of LP
models. However, this special class can be run much
faster using the network flow algorithm than using one
of the LP algorithms (e.g., simplex) (ref: I-1, chap. 6).



5.0 Consistency of data protection across tables
and over time

5.1 Processing a set of tables with overlapping
data (i.e., linked tables) on one run

One aspect of cell suppression, which is often given
only light treatment in theoretical papers, is how to
treat linked tables in a consistent way. By 'consistent
way' we mean that if a given cell appears in two or
more tables that are undergoing suppression during the
same computer run, that cell should be given the same
suppression status in all the tables. ("Suppression
status" usually   includes some of the following 4 cases:
display (true) value, suppress, display an interval that
includes the exact value, display a value chosen from
that interval).   "Backtracking" is used in the
implementations we are most familiar with (ref:  J-1,
M-1) to ensure consistency. Currently, these
implementations deal only with 2 cases of suppression
status, exact value or suppression. In these programs,
once a given cell is chosen as a complementary
suppression, all tables previously suppressed (in the
given computer run) that contain the new 'C' cell, are
revisited with the goal of ensuring that in each such
tables, the new C cell has adequate protection. It is easy
to see that this revisiting can greatly increase the
runtimes when many C cells are selected in the
overlapping regions of the linked tables.

5.2 Processing a set of tables with overlapping
data (i.e., linked tables) on more than one run

In the programs referred to in section 5.1, there is
mechanism that allows cells belonging to linked tables
to be treated in a consistent way, even if the tables in
the set are processed on different computer runs. This
mechanism involves the notion of "freezing cells"; i.e.,
the suppression status of the each cell is written in the
master data file at the end of the first computer run.
The program then tries to preserve that suppression
status on future runs. That is, if a cell was suppressed
on the first run, then all future runs begin with that cell
suppressed. Conversely, if a cell is deemed important
to display (i.e., not to suppress),  then an attempt is
made to display  that cell on all runs. This can be
usually be accomplished by associating a very high cost
to a cell that we want to display (ref: J-1; M-1; G-2)

6.0 Output Data

When an input table has undergone traditional cell
suppression the output is a table  in which either the

final cell entry is the same as the initial cell entry (a
numerical value)  or is a symbol (e.g., D) indicating
that the cell has been suppressed (i.e., in traditional
(complete) suppression, no numerical information is
given for such cells). There are alternatives to this
traditional output format. For example, one can, instead
of the writing a symbol for a suppressed cell, display
the audit interval for that cell; i.e., the [min,max]
feasibility interval that can be calculated by an audit
program whose input is the table with suppressions.
Another way of displaying the output table comes from
a new protection method, called  "interval publication"
(ref: S-1). In this method, for sensitive cells, the
(desired)  protection interval replaces the true value,
and some other (secondary) cells also have their values
replaced by intervals so that the sensitive cells are
protected. (See section 8.0 on "interval publication").

7.0 Cost functions and information loss

In the network flow and LP models, if one wants to
select a suppression pattern by minimizing the total
value of  the cells selected for suppression, one can do
this approximately with the continuous variables that
are defined for the cells (the ith cost coefficient is the
value for cell i,  the ith variable represents the 'flow'
through cell i).   However, in order to do this precisely
or to minimize the total number of suppressed cells,
ones need to use binary variables  that assign a '1' to
each primary suppression and each potential
complementary suppression and a '0' to the displayed
cells. Binary variables are not available in network and
LP models but are available in integer programming
models. Thus the latter models allow for a wider range
of cost functions, including some very natural ones.
Updating of the cost coefficients is frequently done as
a new sensitive cell is about to be protected.
Specifically, all suppressed cells determined prior to
the  current stage of the program, can be assigned a
zero cost. In the hypercube method, the loss function is
linear in the logarithm of the cell value. Negative costs
are associated to any sensitive cell or complementary
cell that had been suppressed at an earlier stage 
(ref: G-2).
There is a simple way to reduce the amount of
oversuppression after an adequate suppression pattern
has been found for a given sensitive cell. One creates
a new and much smaller problem that treats all the
(preliminary) complementary cells selected for that
sensitive cell as the set of possible complementary
cells. One then uses a new loss function, perhaps one
that is quite different from the original one, and tries to
see if a strict subset of the set of preliminary
complementary cells suffice to protect the sensitive



cell. In fact, if the second loss function is chosen well,
it may be possible to produce a final suppression
pattern similar to that which one gets from use  of a
single loss function expressed using binary variables.
There are additional ways to test for oversuppression;
e.g., by varying the suppression pattern in reasonable
ways and checking  each variation using an auditing
program to see if it provides sufficient protection. This
will tend to produce a locally minimal but, in general,
not globally optimal, suppression pattern.

8.0 Interval Publication and Information Loss

There is another way of constructing an information
loss function. The method we describe below is given
in a paper on interval publication (ref: S-1) but could
also be used in standard (complete) cell suppression.
The method is based on the assumption that a typical
user has some knowledge of  some of the cell values
prior to release of the table (undergoing suppression).
We then assume that this a priori knowledge, which
may be based on information from various sources,
can be expressed in the form of  a priori bounds for
each cell value.  We then use these bounds to express
the information loss for each cell.  For example, say, a
user knows that cell A,  prior to release of the given
table,  has a value in the interval [a1,b1]; we could call
this the uncertainty interval. The narrower this interval,
the more the user knows a priori about the cell value. A
reasonable measure for this loss of information (due to
suppression of the cell)  is 'b1-a1'. This means the
information loss when a cell is suppressed is
proportional to the width of the uncertainty interval that
a typical user has for that cell value. In the extreme
case in which users know the (exact) cell value prior to
agency release of the table, there would be no
information loss in suppressing that cell. The author
believes that these ideas can be extended to the case of
a priori knowledge about each respondent's value; i.e.,
knowledge about the summands for each cell. This idea
is perhaps most important in the case in which a user is
a respondent. When the a priori bounds vary among the
group of table users, one has to decide which bounds to
use in the information loss function. 
Interval publication may be compared with controlled
rounding or even source data (e.g., microdata)
perturbation in that the information loss is not
concentrated in a small number of suppressed cells but
is spread over a wider number of cells. (One could say
the information loss is smoothed over a broader part of
the table than in complete cell suppression). It is
claimed that clever use of integer programming
methods (e.g., branch and cut) can make interval
publication much faster than the standard

implementation of LP methods for complete cell
suppression (ref: S-1).

9.0 Mathematical Programming Options for
solving the complete CSP

9.1. Ordinary Network Flow  

References: (theory: Co-1;  practice: J-1)
Range of application:
Provides desired protection  for 2d -tables with a
hierarchy in at most 1 dimension.
Can be extended  for n-dim tables with n > 2 or for 2-d
tables beyond those above but desired protection is not
guaranteed for these cases
Limitations: Oversuppression is common for all cases
but usually  tolerable; undersuppression for the cases
mentioned above; limited types of cost functions can be
expressed
Strong Points:  extremely fast;  often 30 times faster
than LP (ref: I-1, chap. 6; M-1) 

9.2 Linear Programming 

References: (theory M-2;  K-S-1; practice: M-1; K-S-1)
Range of application:
Provides desired protection for tables of all dimensions
and degrees of hierarchy.
Limitations: Oversuppression is common but usually
modest; limited types of cost functions can be
expressed;slow for large tables (e.g., 100 by 100) since
runtime may increase with cube of problem size;
Strong Points: easy to implement the optimization
problem;  can call a standard LP package after the LP
problem related structures (constraint matrix, b vector,
etc.) have been defined

9.3  Integer Programming

References: (theory:  J-S-2; practice: J-S-2, K-S-1)
Range of application:
Provides desired protection for tables of all dimensions
and degrees of hierarchy.
Can provide optimal solution if all sensitive cells are
protected simultaneously.
Limitations:  Very slow even on tables of moderate size
if implemented in a straight forward way; (can be
speeded up greatly with clever use of branch and cut
methods, but these require specialized knowledge). The
first implementations of this method (see references)
may have had protection only at the cell level, not at the
respondent level, since there was no mention of cell
capacities. However, capacity code could easily be
added.



Strong Points: Can express the full range of cost
functions since binary and integer variables can be used
in the model description

9.4  The hypercube method

References:  (theory: G-R-1; G-2; practice: G-R-1; G-1,
G-H-1)
Range of application.
Provides protection from exact disclosure for tables of
all dimensions and degrees of hierarchy.
Divides n-dim tables with hierarchical structure into a
set of n-dim tables without substructure.
Limitations: Often oversuppresses (estimate of  30% in
ref: G-1) and it may not find the best suppression
pattern even for a single sensitive cell.  This occurs
because it is considering only the simplest types of
suppression patterns.
Strong Points. Very fast for the reason that it considers
a single type of suppression pattern and thus can handle
enormous tables. Will likely be the algorithm applied to
large tables in Argus (ref: A-1).

9.5  Extensions of  network flows methods (e.g.,
multicommodity networks; networks with side
constraints) 

References:  (theory: Ca-1; practice: Ca-1)
Range of applications: Can be used to protect 3-dim
tables including ones with hierarchies and ones that are
linked.
Limitations: Current versions cannot handle tables of
dim n > 3. First few computational experiments show
longer runtimes than non-network model application of
dual simplex method. Does not  preserve the integrality
property of minimum cost network flow models.
Strong Points: Can be implemented using a general
linear programming solver that exploits the network
with side constraints structure of the constraint matrix
for the CSP. Can be used in conjunction with the
integer programming methods after problem has been
decomposed into lower dimensional subtables. Future
work may lower runtimes.

10.0 Summary:

There are a range of techniques currently being used or
in development that are increasing the amount of
information released from statistical tables while
satisfying sensible confidentiality requirements. With
the choice of algorithm, choice of  information loss
functions, and use of audit functions to revise the initial
suppression pattern, the user  now has more  options

for doing cell suppression, both traditional and its
newer variants and more control over the final
suppression pattern. He also has a fairly good idea of
the tradeoffs involving runtimes and information loss
that each method entails. The pure cell suppression
problem for individual independent tables is a
computationally difficult problem. When one adds the
complications due to linked tables, common
respondents, and the need to limit the cells that can be
suppressed, it becomes even more difficult.  It appears
that the best approach to program design is to have two
or more main computational algorithms, which can be
selected either by the user or by a "smart" program, that
possess a reasonable balance of information loss, risk,
and runtime. In some cases, a  suppression run
followed by an audit and a second suppression provides
such a reasonable tradeoff.  The problem of
consistency of suppressions among tables from
different runs needs to be considered; construction of
a database containing records for each cell previously
released is one approach currently being implemented.

The author views this paper as a first effort to give a
comparative analysis of cell suppression methods; he
plans to  provide more detailed  analyses in future
publications.
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