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tMany time series, parti
ularly monthly e
onomi
 and oÆ
ial time series, are both non{linear and seasonal. In pra
ti
e simple power transformations are often used to trans-form su
h series to additive linear models and standard trend{seasonal de
ompositionpro
edures are then applied for various purposes in
luding seasonal adjustment, trendextra
tion and fore
asting.This paper 
onsiders the e�e
ts of trend{seasonal de
omposition on transformed timeseries whi
h are then transformed ba
k to provide seasonal and trend 
omponents in theoriginal s
ale of the data. It is shown that this approa
h leads to ambiguities in theresulting de
omposition whi
h result in systemati
 biases to these 
omponents. Thesee�e
ts are parti
ularly evident when there is signi�
ant variation about the trend, due toeither or both of the seasonal and irregular 
omponents.A new trend{seasonal de
omposition is proposed whi
h is largely free of these biases.Results are illustrated by simulation and with referen
e to NZ oÆ
ial time series.Keywords: Trend{seasonal de
omposition; seasonal adjustment; trend estimation; trans-formation; bias 
orre
tion.1 Introdu
tionMany time series, parti
ularly monthly e
onomi
 and oÆ
ial time series, are both non{linear and seasonal. In pra
ti
e simple power transformations are often used to transformsu
h series to additive linear models and standard trend{seasonal de
omposition pro
e-dures are then applied for various purposes in
luding seasonal adjustment, trend extra
-tion and fore
asting. A

urate identi�
ation of trends from seasonal data is important ifonly to determine important trend parameters su
h as dire
tion, level and rate of 
hange,or for the purpose of 
omparison between series. In the development that follows werestri
t attention to monthly time series with annual seasonality although our results andobservations apply more generally.A broad 
lass of non{linear seasonal time series models widely used in pra
ti
e is given1



by the additive model �(Yt) = Tt + St + �t (1)where Yt denotes the original series, �(y) a suitable transformation, Tt and St the trend andseasonal 
omponents and the so{
alled irregular 
omponent �t denotes noise. The latteris assumed to be stationary with mean zero (often white noise), and all three 
omponentsin the additive de
omposition are assumed to be independent. Other 
omponents su
has a 
alendar 
omponent 
an also be added. To further identify the 
omponents in (1)additional 
onstraints are needed. These in
lude lo
al smoothness 
onstraints for thetrend and the year to year evolution of the seasonal. Furthermore, the seasonal 
omponentis assumed to approximately sum to zero over any twelve month period so that11Xj=0St�j � 0: (2)These 
onstraints are suÆ
ient to ensure that the trend Tt runs through the middle ofthe transformed data over any twelve month period.The most widespread transformations used are the identity �(y) = y for the simple addi-tive model and the logarithm �(y) = log y for data whose 
omponents are multipli
ative.The trend{seasonal de
omposition pro
edure SABL (Cleveland et al (1978)) augmentsthese by 
onsidering the 
lass of power transformations de�ned by�(y) = 8><>: yp (p > 0)log y (p = 0)�yp (p < 0) : (3)It is assumed that a value of p 
an be found whi
h makes the de
omposition (1) hold,at least to a �rst approximation. In pra
ti
e, p is 
hosen so that there is no intera
tionbetween the trend and seasonal 
omponents in (1). However the trend{seasonal de
ompo-sition pro
edures used by most oÆ
ial statisti
al agen
ies in the world are X{11{ARIMA(Dagum (1980)) and X{12{ARIMA (Findley et al (1988)). These are based on the origi-nal X{11 pro
edure (Shiskin et al (1967)) whi
h has its own multipli
ative model whi
his di�erent from (1) with �(y) = log y. A useful referen
e to seasonal models su
h as(1) and trend{seasonal de
omposition pro
edures in general is given in the survey arti
leCleveland (1983).Consider the 
ase where Yt follows (1) with �(y) not the identity transformation. Toseasonally adjust Yt it is 
ommon pra
ti
e to seasonally adjust the transformed series �(Yt)by removing the seasonal 
omponent and then transforming ba
k into the original s
ale ofthe observations. Seasonally adjusted trends 
an also be obtained by ba
k{transformingthe trend of the transformed series. However this approa
h 
an lead to ambiguities interms of de�nition of trend and seasonal, parti
ularly where there is signi�
ant variationabout the trend, due to either or both of the seasonal or irregular 
omponents.An example is given in Figure 1 whi
h shows the number of visitor arrivals to NewZealand by month over the period January 1980 to De
ember 1991. Three trends aresuperimposed: the trend estimated by the X{11 multipli
ative model and two SABL2
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Figure 1: Visitor arrivals to New Zealand by month. Three trends are superimposed: thetrend estimated by the X{11 multipli
ative model (dotted line) and two SABL trends,one of the untransformed data (solid line) and the other the exponential of the trend ofthe logarithms of the data (dashed line)trends, one of the untransformed data and the other, the exponential of the trend of thelogarithms of the data. Despite the fa
t that X{11 trends are lo
ally quadrati
 and SABLtrends are lo
ally linear, both the X{11 and SABL trends of the original data are mu
hthe same. However there is a signi�
ant di�eren
e between these and the exponential ofthe trend of the logarithms of visitor arrivals. This di�eren
e, essentially the di�eren
ebetween the arithmeti
 and geometri
 means, was �rst systemati
ally dis
ussed in theliterature by Young (1968). His 
orre
tion formulae for the multipli
ative model are
losely related to the more general formulae proposed here.The reason why the X{11 multipli
ative trend yields mu
h the same trend as the SABLtrend from the original visitor data is dis
ussed in Se
tion 2. However the important pointto note is the following. If an additive model is �tted to the transformed data using (1)and then the inverse transform applied, the trend, seasonal and seasonally adjusted seriesobtained are not independent of the transformation 
hosen. Systemati
 di�eren
es existbetween them. In many 
ases the di�eren
es are slight. However in 
ases where there issigni�
ant variability about the trend due to either or both of the seasonal or irregular,the di�eren
e 
an be sizeable. For the New Zealand Visitor Arrivals data given in Figure1, the di�eren
e between the two SABL trends during June 1988 is 1839 arrivals or 2.5%.3



The above dis
ussion highlights the importan
e of de�ning appropriate trend and seasonal
omponents in the 
ase where �(y) is not the identity transformation. The standardrequirement that is built in to both the additive and multipli
ative X{11 models is that(moving) annual totals of seasonally adjusted and unadjusted series should be essentiallythe same. We shall refer to this as the seasonal balan
e 
onstraint. This is an e
onomi
requirement whi
h ensures that the pro
ess of seasonal adjustment is essentially one ofredistribution of seasonal variation so that, on an annual basis, observed totals (wealth,
redits, debits, numbers of visitor arrivals et
) are neither 
reated nor destroyed. Althoughthis is a natural e
onomi
 requirement, for transformed series following (1) it 
on
i
tswith (2) ex
ept in the additive 
ase �(y) = y. In Se
tion 3 we use the seasonal balan
e
onstraint to de�ne appropriate trend and seasonal 
omponents for the original series Yt.2 X{11 ModelsBefore developing appropriate de�nitions of trend, seasonal and irregular for models su
has (1) where �(y) 6= y, it is instru
tive to review the X{11 multipli
ative model.X{11 was initially developed by Shiskin et al (1967). Despite many new developments inseasonal time series models, it remains the most popular method of seasonal adjustmentand forms the basis of X{11{ARIMA (Dagum (1980)) and X{12{ARIMA (Findley etal (1988)) used by the majority of the world's oÆ
ial statisti
al agen
ies. The additiveversion of X{11 is as given in (1) with �(y) = y. However the multipli
ative version ofX{11 is essentially based on the modelYt = Tt(1 + St)(1 + �t) (4)where the seasonal fa
tor St satis�es (2) and E(�t) = 0. Applying the logarithm trans-formation to (4) yields a model whi
h is approximately the same as (1) with �(y) = log yprovided that St and �t are small. If either or both of the seasonal or irregular are size-able then di�eren
es emerge as is eviden
ed in Fig. 1. In parti
ular the two seasonal
onstraints di�er with one requiring the moving annual arithmeti
 mean, the other themoving annual geometri
 mean, of the seasonals to be approximately zero.The model (4) 
an also be written in additive form asYt = Tt + TtSt + Tt(1 + St)�t: (5)Provided that the trend is smooth, (2) ensures that the seasonal 
omponent TtSt willapproximately sum to zero over any twelve month period. This model is similar to thatproposed by Durbin and Murphy (1975), but has heteroskedasti
 multipli
ative errorsrather than additive homoskedasti
 errors.The additive form (5) helps to explain the non{linear X{11 model �tting pro
edure.Broadly speaking, the trend Tt is �rst estimated by �ltering (5) with a linear low{pass �lterthat also removes the seasonal TtSt. The resulting trend estimate is then divided through(5) and the seasonal 
omponent 1 + St extra
ted using simple linear �lters. This is thendivided into (4) to obtain a seasonally adjusted series. Further smoothing iterations are4




arried out together with various pro
edures to down{weight outliers, adjust for 
alendare�e
ts et
. Thus it 
an be argued that the X{11 pro
edure expresses a multipli
ativemodel as an additive model and �ts a

ordingly. This has the advantage of ensuring thatthe seasonal balan
e 
onstraint is satis�ed and is the reason why, in Figure 1, the X{11multipli
ative trend of the NZ visitor arrivals series is mu
h the same as the SABL trendfrom the untransformed data.3 A new trend{seasonal de
ompositionFollowing the example of the X{11 model (5), the general strategy we adopt is to ex-press Yt in additive form with trend, seasonal and irregular de�ned as fun
tions of the
orresponding 
omponents in the transformed series. The derived trend, seasonal andseasonally adjusted series are then 
onstru
ted from the estimates of the 
omponents inthe transformed series. This approa
h is impli
it in the X{11 multipli
ative pro
edure.It has the virtue of separating the model �tting, whi
h takes pla
e with the transformedseries, from the additive trend{seasonal de
omposition of the original series Yt whi
h is
onstru
ted so that the seasonal balan
e 
onstraint remains approximately true.Before 
onstru
ting an additive de
omposition for Yt, we �rst need to make some basi
assumptons about the trend, seasonal and irregular 
omponents given in (1). We shallassume that all three 
omponents are independent and that the trend Tt follows a de-terministi
 or sto
hasti
 model whi
h is lo
ally smooth. For example X{11 and SABLassume that Tt follows a lo
al low{order deterministi
 polynomial model in t within amoving window of 
onse
utive monthly observations. On the other hand Akaike (1980),Gers
h and Kitagawa (1983), Harvey (1989) and many others assume global sto
hasti
models for Tt of the form �pTt = �twhere �t is white noise and � is the ba
kwards di�eren
e operator satisfying �Xt =Xt � Xt�1. Typi
ally p = 1 or 2 and the varian
e of �t is taken small enough to ensurethat Tt is smooth. The irregular 
omponent �t is assumed to be a zero{mean stationarytime series.We shall assume that the evolving seasonal 
omponent 
an always be represented asSt = 6Xj=1f�j(t) 
os t�j + �j(t) sin t�jg (6)where �j = 2�j=12 and �6(t) = 0. The zero frequen
y 
omponent 
orresponding to�0 = 0 has been omitted from (6) to ensure that St measures departures from the trendTt whi
h des
ribes the instantaneous lo
al level of �(Yt) at time t. As a 
onsequen
ethis representation automati
ally satis�es (2) sin
e P11j=0 St�j will be approximately zeroprovided that the �j(t) and �j(t) are suÆ
iently smooth. Note that it will rarely be the
ase that P11j=0 St�j is identi
ally zero. This will only be true when St is stri
tly periodi
and the �j(t), �j(t) are 
onstants. If, as is 
ommonly the 
ase, the �j(t), �j(t) are evolvingslowly over time then St will also evolve slowly and P11j=0 St�j will have the appearan
e of5



a stationary time series with small varian
e. However, in the 
ase where the �j(t), �j(t)are evolving linearly in t, then P11j=0 St�j may also exhibit a seasonal pattern whi
h, inturn, will need to approximately sum to zero over any twelve month period. In this 
ase(2) will need to be repla
ed by P11j=0P11k=0 St�j�k � 0.The model (6) is impli
itly used by X{11 and SABL where the �j(t), �j(t) are assumedto be 
onstant or linear in t within an appropriately de�ned moving window. The mixedmodel proposed by Durbin and Murphy (1975) also �ts this framework. In terms ofsto
hasti
 seasonal models, (6) is the same as the model proposed by Hannan (1967) (seealso Ng and Young (1990)) where �j(t), �j(t) follow the sto
hasti
 trend models��j(t) = �j(t); ��j(t) = �j(t) (7)and the white noise pro
esses �j(t) (j = 1; : : : ; 6) and �j(t) (j = 1; : : : ; 5) are mutuallyindependent with E(�j(t)2) = E(�j(t)2) = �2j . In fa
t this sto
hasti
 seasonal model ismore general than might �rst appear. Dongfeng et al (1997) show, among other results,that Hannan's model is sto
hasti
ally equivalent to the model proposed by Harvey (1989)where St = 6Xj=1uj(t)and  uj(t)vj(t) ! =  
os �j sin�j� sin�j 
os�j ! uj(t� 1)vj(t� 1) !+  �j(t)�j(t) !with the �j(t), �j(t) de�ned as in (7). (This result was also informally 
ommuni
ated tothe �rst author by W.R. Bell (US Census Bureau) at an earlier date.) This seasonal modelis used in the stru
tural time series modelling pro
edure STAMP (Koopman et al (1995)and the seasonal de
omposition pro
edure MING (Bru
e and Jurke (1996)). Moreover,if the �j(t), �j(t) are repla
ed by 
arefully 
hosen stationary pro
esses, then (6) 
an beshown to en
ompass the sto
hasti
 seasonal model11Xj=0St�j = �twhere �t is stationary. The 
ase where �t is white noise is 
ommonly used (see Gers
h andKitagawa (1983), Harvey (1989) for example). If �t is an AR(1) pro
ess then the seasonalmodel is equivalent to that used in BAYSEA (Akaike (1980)). The generality of (6) andthe properties of su
h sto
hasti
 seasonal models is the subje
t of ongoing resear
h withsome results already reported in Dongfeng et al (1997). It is suÆ
ient for our purposeshere that we assume that St admits the instantaneous Fourier representation (6) with the�j(t), �j(t) evolving slowly over time.To handle both (1) and (4), we now 
onsiderYt = g(Tt; St; �t) (8)where the 
omponents Tt, St, �t are as de�ned above and g(x; s; e) is either ��1(x+ s+ e)with �(y) given by (3) or the X-11 model x(1 + s)(1 + e) given by (4). More generally6



g(x; s; e) 
ould be any well-behaved fun
tion of its arguments. We write Yt in the additiveform Yt = T �t + S�t + ��t (9)where T �t , S�t , ��t are yet to be de�ned trend, seasonal and irregular 
omponents. Pro
eed-ing 
onstru
tively we de�ne Mt = T �t + S�t asMt = Efg(Tt; St; �t)jT;Sg (10)where T and S denote the pro
esses fTt; t = 0;�1; : : :g and fSt; t = 0;�1; : : :g respe
-tively. This additively de
omposes Yt into a systemati
 
omponent Mt and an irregular
omponent ��t = Yt �Mt (11)where ��t has zero mean and is un
orrelated with Mt.Now Mt is an evolving trend and seasonal pattern that is a fun
tion M(x; s) of Tt and Stwhi
h, from (6), 
an be written asMt =M(Tt; St) =M(Tt; 6Xj=1f�j(t) 
os t�j + �j(t) sin t�jg):However any fun
tion of an (instantaneous) Fourier representation will 
reate a new (ad-ditive) Fourier representation of the form (6) with new 
oeÆ
ients �j(t), �j(t) and, inparti
ular, an additional zero frequen
y (�0 = 0) or lo
al level 
omponent with �0(t) = 0,but �0(t) not ne
essarily zero. For example, if M(x; s) = (x+ s)2 thenM(Tt; St) = ( 6Xj=0f�j(t) 
os t�j + �j(t) sin t�jg)2 = 6Xj=0faj(t) 
os t�j + bj(t) sin t�jgwhere �0(t) = Tt, �0(t) = 0 anda0(t) = �0(t)2 + 5Xj=1f�j(t)2 + �j(t)2g+ �6(t)2; b0(t) = 0:This 
an be veri�ed by dire
t algebra or by using the formula for the Fourier 
oeÆ
ientswhi
h, for �0 = 0 givesa0(t) = 112 11Xk=0( 6Xj=0f�j(t) 
os(t� k)�j + �j(t) sin(t� k)�jg)2:These arguments lead us us to de�ne the instantaneous lo
al level of Yt at time t asT �t = Ef 112 11Xk=0M(Tt; 6Xj=1f�j(t) 
os(t� k)�j + �j(t) sin(t� k)�jg)jT;Sg (12)where the 
onditional expe
tation ensures that T �t is a fun
tion of Tt and S. The 
on-ditional expe
tation is needed in general sin
e the se
ond argument of M is not St�k7



unless the �j(t), �j(t) are lo
ally 
onstants. However the 
onditional expe
tation willnot be ne
essary in the spe
ial 
ase where the �j(t), �j(t) are extra
tly dire
tly from thetransformed series. The seasonal 
omponent S�t is now de�ned by subtra
tion asS�t =Mt � T �t : (13)In the spe
ial 
ase of the identity transformation where g(x; s; e) = x + s + e we haveM(x; s) = x + s and T �t = Tt; S�t = St; ��t = �t:For the X-11 
ase where g(x; s; e) = x(1 + s)(1 + e) we have M(x; s) = x(1 + s) andT �t = Tt; S�t = TtSt; ��t = Tt(1 + St)�t:This leads to the following de�nition.De�nition 1 Let Yt follow the model spe
i�ed by (8). Then the trend T �t , the seasonal S�tand the irregular ��t in the additive de
omposition (9) of Yt are de�ned by (10), (11), (12)and (13). In parti
ular, the identity transformation model (1) with p = 0 and the X{11model (5) have this additive form.This de�nes the required trend{seasonal de
omposition. Given any parti
ular model forYt of the form (8), one 
ould derive pre
ise formulae for T �t , S�t and ��t as fun
tions of Tt,St and �t. Then these fun
tions and the estimated trend, seasonal and irregular of thetransformed series 
ould be used to provide estimates of the trend, seasonal and irregularfor the original series. Although of interest, this approa
h has not been followed here.Rather we shall adopt a simpler strategy of approximating these fun
tions with simplenon{parametri
 linear �lters of fun
tions of the 
omponent series.3.1 Approximate de
ompositionsWe now 
onsider approximating T �t and S�t byT̂ �t = Xk 
kM(Tt; St�k) (14)Ŝ�t = Mt � T̂ �t (15)where the 
k are the 
oeÆ
ients of a linear trend �lter LS that satis�esLS(Xt) =Xk 
kXt�k (Xk 
k = 1) (16)and LS also �lters out �xed annual seasonal patterns. If the �j(t), �j(t) are lo
ally
onstant then this �lter is just the simple one{sided 12 month moving average. However,to allow for evolution in the �j(t), �j(t), other linear �lters based on the simple 12month moving average might better be employed in pra
ti
e. These in
lude the standard12 month (13 point) 
entred moving average or the triangular 23 point moving averagewhere the non zero 
k are given by
k = 12� jkj144 (k = 0;�1; : : : ;�11):8



In parti
ular, the latter �lter results if the �j(t), �j(t) are lo
ally linear. Then it is nothard to show that T �t = 112 11Xk=0M(Tt; (1� k12)St�k + k12St+12�k)whi
h, using linear interpolation, should be well approximated by112 11Xk=0((1� k12)M(Tt; St�k) + k12M(Tt; St+12�k)) = 11Xk=�11 12� jkj144 M(Tt; St�k):The quality of this approximation is dependent on the smoothness of M(x; s) and the
loseness of the values of St for the same month in su

essive years. However it mightbe expe
ted that these would be quite reasonable approximations in pra
ti
e. Finallywe note that (12) is identi
ally zero when M(x; s) is proportional to s, regardless of thelaw of evolution for the �j(t), �j(t). This leads to the 
onvention that LS(St) is set tozero when evaluating T̂ �t . These approximations and de�nitions are now used to de�nesuitable non{parametri
 approximations of T �t and S�t .Result 2 Let Yt follow the model spe
i�ed by (8) with additive de
omposition given byDe�nition 1. Then the expressions (14) and (11) provide an approximate non{parametri
additive de
omposition of Yt in 
ases other than the identity transformation model (1)with p = 0 and the X{11 model (5).Consider, for example, (1) and the 
ases p = 0 and p = 0:5. For the multipli
ative 
ase�(y) = log y andMt =  (1)eTt+St; T̂ �t =  (1)eTtLS(eSt); Ŝ�t =  (1)eTt(eSt � LS(eSt))with  (s) denoting the moment generating fun
tion of �t. In the 
ase of Gaussian errors (1) = exp 12�2 where �2 = E�2t . In the 
ase of the square{root transform (p = 0:5) wehaveMt = (Tt + St)2 + �2; T̂ �t = T 2t + LS(S2t ) + �2; Ŝ�t = 2TtSt + S2t � LS(S2t ):The fun
tional dependen
e of T̂ �t and Ŝ�t on Tt and St 
an now be utilised to 
onstru
testimates. In the simplest 
ase this means repla
ing Tt and St in (14) by their estimatesobtained from the transformed data using standard trend{seasonal de
omposition pro
e-dures. The unknown �t parameters inMt are estimated from the estimated irregular of thetransformed data. Depending on the nature of the data, these parti
ular estimates 
ouldbe simple moment estimates or robust estimates that take proper a

ount of outliers. Inthe multipli
ative 
ase this pro
edure yields formulae that are 
losely related to thoseadvo
ated by Young (1968). For parametri
 Gaussian models su
h as those advo
ated byAkaike (1980), Gers
h and Kitagawa (1983), Harvey (1989), Ng and Young (1990), Mar-avall (1995) among many others, better estimates of Mt and T̂ �t 
an be obtained dire
tlyby determining EfMtjdatag; EfT̂ �t jdatag (17)9



using the relevant 
onditional densities determined from the Kalman �lter and smoother.Using this te
hnology, 
on�den
e limits 
an also be 
onstru
ted.Now 
onsider the 
ase where Yt follows (1) and �(y) is given by (3) or, more generally,by some other well{behaved fun
tion. In this 
ase 
omputationally simpler approximatepro
edures 
an be used provided St and �t are small.Result 3 Let Yt follow the model spe
i�ed by (1) where �(y) is some well{behaved fun
tion.Then T �t , S�t , ��t of De�nition 1 
an be approximated by the simpler forms ~T �t , ~S�t , ~��trespe
tively where ~T �t = ��1(Tt + 12
(Tt)(LS(S2t ) + �2))~S�t = ��1(Tt + St + 12
(Tt)�2)� ~T �t (18)~��t = Yt � ~T �t � ~S�tprovided St and �t are small. Here
(x) = ��(2)(��1(x))=(�(1)(��1(x)))2and �(j)(y) denotes the jth derivative of �(y). When �(y) is given by the power transfor-mation (3) 
(x) = ( 1 (p = 0)(p�1 � 1)=x (p 6= 0) : (19)The approximations given by Result 3 make simple additive adjustments to the trend ofthe transformed data and then ba
k{transform. Alternative approximations 
an also bedevised whi
h make additive adjustments in the original s
ale of the observations yieldingthe following result.Result 4 Let Yt follow the model spe
i�ed by (1) where �(y) is some well{behaved fun
tion.Then T �t , S�t , ��t of De�nition 1 
an be approximated by the simpler forms �T �t , �S�t , ���trespe
tively where �T �t = ��1(Tt)(1 + 12Æ(Tt)
(Tt)(LS(S2t ) + �2))�S�t = ��1(Tt)Æ(Tt)(St + 12
(Tt)(S2t � LS(S2t ))) (20)���t = Yt � �T �t � �S�tprovided St and �t are small. HereÆ(x) = ddx log��1(x)and 
(x) is as given in Result 3. When �(y) is given by the power transformation (3)Æ(x) = ( 1 (p = 0)p�1=x (p 6= 0) : (21)
10



Note that in the 
ase of (3) and the identity transformation p = 1 the 
omponents givenby Results 3 and 4 are identi
al with those of De�nition 1. In the multipli
ative 
asewhere �(y) = log y~T �t = eTt+12(LS(S2t )+�2); ~S�t = eTt+12�2(eSt � e12LS(S2t ))and �T �t = eTt(1 + 12(LS(S2t ) + �2)); �S�t = eTt(St + 12(S2t � LS(S2t ))):If �(y) is the square{root transform (3) with p = 0:5 then~T �t = (Tt + 12(LS(S2t ) + �2)=Tt)2; ~S�t = (Tt + St + 12�2=Tt)2 � ( ~T �t )2and �T �t = T 2t + LS(S2t ) + �2 = T̂ �t ; �S�t = 2TtSt + S2t � LS(S2t ) = Ŝ�t :In the next se
tion the relative performan
e of these various pro
edures is investigated byanalysis of simulated and real data.In pra
ti
e the above will need to be modi�ed to handle 
alendar and holiday e�e
ts, andto in
orporate robust estimation pro
edures to 
ope with outliers. The latter is dire
tlyaddressed by estimating Mt using the robustness weights derived when pro
essing thetransformed data. Calendar and holiday e�e
ts are typi
ally modelled by adding in anextra �xed e�e
ts regression 
omponent to the right{hand side of (1). The regressors in-
lude month length, numbers of ea
h type of week{day in the month and dummy variablesfor holidays. A similar development to that leading to De�nition 1 
ould be undertakento de�ne appropriate additive 
omponents in the original s
ale of the observations. Whenmean 
orre
ted, these e�e
ts will typi
ally be suÆ
iently small that they do not in
uen
ethe de�nitions of trend and seasonal given by De�nition 1, at least to �rst order. Thus,in pra
ti
e, 
alendar and holiday e�e
ts 
an be safely removed from the transformed dataprior to forming the required 
omponents given by (14), (18) or (20).4 Numeri
al studiesIn keeping with Thomson and Ozaki (1992) the analysis and simulations undertaken inthis se
tion are based on a sele
tion of New Zealand oÆ
ial series over the 12 year period1980 { 1991. The series 
onsidered are short{term visitor arrivals, mer
handise tradeexports and mer
handise trade imports.We �rst 
onsider the trends and seasonally adjusted series obtained from the New ZealandVisitor arrivals data using (1) with p = 0 and p = 0:5. The former is the more naturaltransformation although arguments 
an be advan
ed for both; indeed the power transfor-mation 
hosen by SABL was (3) with p = 0:25, a 
ompromise between the two alternatives.The e�e
ts of the 
orre
tions given in Se
tion 3 are illustrated in Table 1 where the meantrend bias gives the mean of the di�eren
es between the X{11 trend and ea
h of the trendsgiven by ��1(Tt), (14), (18) and (20). Sin
e X{11 �ts the additive de
omposition model11



Adjustment Mean Trend Bias Seasonal Balan
eMethod p = 0 p = 0:5 p = 0 p = 0:5No 
orre
tion -2040 -1181 1957 985Equation (14) -47 -186 1 1Equation (18) -99 -186 53 -4Equation (20) -133 -181 1 1Table 1: Visitor arrivals to New Zealand by month; trends and seasonally adjusted seriesobtained using (1) with logarithm and square root transformations. The mean trend bias(by 
omparison to X{11) and the mean seasonal balan
e bias from zero are given for the
orre
ted and un
orre
ted series.(5) dire
tly without any 
orre
tion, its trend has been used as the basis for 
omparison.The mean seasonal balan
e bias measures the mean di�eren
e between the 
entred 12month (13 point) moving averages of the original and seasonally adjusted series. Here thetrend Tt and other 
omponents have been estimated from the transformed series �(Yt)using SABL. All measurements are in the original s
ale of the observations and the 
al-
ulations have been 
arried out for the various 
orre
ted and un
orre
ted series over the
entral 10 year period to avoid 
ompli
ations with �lter end e�e
ts.The results in Table 1 indi
ate that, in the 
ase of strong seasonality, the 
orre
tionsare a marked improvement over the usual pro
edure of no 
orre
tion. There is little topi
k between the dire
t adjustment (14) and its approximations. As might be expe
ted,the unadjusted trend obtained using the square root transformation is better than thatobtained using the logarithm transformation. Moreover the 
orre
ted trend using the log-arithm transformation appears to be better than the 
orre
ted trend using the square roottransformation. However both 
orre
ted trends approximate the X{11 trend reasonablywell irrespe
tive of the transformation adopted. Thus the 
orre
tion pro
edure results intrends that are, to a large extent, invariant with respe
t to the transformation 
hosenWe now 
onsider analyses of three di�erent types of simulated series whose key parametersare given in Table 2. For ea
h type of series, 20 independent realisations of 12 yearsduration were generated using (1) with power p given by Table 2. The trends weredeterministi
 linear or quadrati
 fun
tions of time, the seasonal 
omponents were �xednon{evolutionary annual 
y
les, and the irregular 
omponents were Gaussian white noise.All 
omponents were generated for the transformed series whi
h were then transformedba
k into the original s
ale of the observations. The model parameters were 
hosenfollowing an analysis of the a
tual series 
on
erned. However these analyses were used asa guide only and the parameters adopted provide, at best, an overly simplisti
 des
riptionof the series 
on
erned.The key parameters given in Table 2 are CV, the average 
oeÆ
ient of variation in theoriginal s
ale of the observations, and SI, the seasonal to irregular ratio RMS(St)/� inthe transformed s
ale. Here �2 is the (
onstant) varian
e of the irregular 
omponentand RMS(St) is the root mean square of the seasonal pattern over any 12 month period.Simulated exports and imports have a relatively high variability about the mean level of12



Simulated Series p CV SIVisitor Arrivals 0.0 0.05 5Exports 0.5 0.10 2Imports 0.0 0.10 1Table 2: Key parameters for series simulated using (1) with power p, 
oeÆ
ient of variationCV and seasonal to irregular ratio SI.approximately 10%. Moreover, simulated exports have seasonal amplitudes approximatelytwi
e the size of the irregular whereas simulated imports have seasonal amplitudes ofapproximately the same size as the irregular. Thus, 
ompared to visitor arrivals, simulatedexports and imports represent situations where the use of 
orre
tion formulae should bemore marginal.The results are summarised in Figure 2. Here the standardised trend bias at a givenpoint in time t is de�ned as � �Tt=(s�T=p20) where � �Tt and s2�T are the sample mean andvarian
e respe
tively of the di�eren
es between the 20 individual trend estimates (withand without 
orre
tion) and the true trend T �t . The latter is de�ned by (12) and evaluatedfor the true Tt, St and �. The standardised seasonal balan
e bias is de�ned similarly as� �St=(s�S=p20) where � �St and s2�S are the sample mean and varian
e respe
tively ofthe di�eren
es between the 20 individual 
entred 12 month (13 point) moving averages ofthe original series and their seasonally adjusted forms. Thus the mean trend or seasonalbalan
e bias at any given time point has been measured in units of its own standarddeviation. As before, the results displayed relate to the 
entral 10 year period of the seriesto avoid possible end e�e
t 
ompli
ations. Only the results for the 
orre
tion pro
edure(14) have been displayed in Figure 2 sin
e the other pro
edures (18) and (20) produ
emu
h the same results. The 
hoi
e of 
orre
tion pro
edure 
an thus be based on other
riteria su
h as theoreti
al 
onsiderations and 
omputational 
onvenien
e.The results are self evident; the greater the variation about the trend the greater the gainsobtained from using the 
orre
tion formulae. Even in the 
ase of exports and importswhere the seasonal and irregular amplitudes are of modest size, there are still signi�
antgains to be had. These remarks apply to both trend and seasonal balan
e biases.In the 
ase of the 
orre
ted trends, there remains a small downwards bias. This is mostlikely due to the fa
t that T �t has been estimated from (14) with Tt, St and �2 repla
ed byestimates from the de
omposition of the transformed data. For parametri
 Gaussian basedmodels this problem might be alleviated to some extent by using (17) and the Kalman�lter. For models su
h as X{11 whi
h are already in the appropriate additive form, no
orre
tion formulae are needed and dire
t �tting of the 
omponents should be largelyfree of trend bias. Pro
edures that dire
tly �t the X{11 model in
lude X{11{ARIMA,X{12{ARIMA or the parametri
 pro
edures of Ozaki and Thomson (2002). However, ingeneral, further 
orre
tions will be needed to eliminate estimation bias. This is beyondthe s
ope of the 
urrent paper. Finally note that the 
orre
tion pro
edures do not appearto in
rease the variability of the trend estimates; indeed, if anything there might be aslight redu
tion in variability. 13
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