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Abstract

Many time series, particularly monthly economic and official time series, are both non—
linear and seasonal. In practice simple power transformations are often used to trans-
form such series to additive linear models and standard trend—seasonal decomposition
procedures are then applied for various purposes including seasonal adjustment, trend
extraction and forecasting.

This paper considers the effects of trend—seasonal decomposition on transformed time
series which are then transformed back to provide seasonal and trend components in the
original scale of the data. It is shown that this approach leads to ambiguities in the
resulting decomposition which result in systematic biases to these components. These
effects are particularly evident when there is significant variation about the trend, due to
either or both of the seasonal and irregular components.

A new trend-seasonal decomposition is proposed which is largely free of these biases.
Results are illustrated by simulation and with reference to NZ official time series.

Keywords: Trend-seasonal decomposition; seasonal adjustment; trend estimation; trans-
formation; bias correction.

1 Introduction

Many time series, particularly monthly economic and official time series, are both non—
linear and seasonal. In practice simple power transformations are often used to transform
such series to additive linear models and standard trend-seasonal decomposition proce-
dures are then applied for various purposes including seasonal adjustment, trend extrac-
tion and forecasting. Accurate identification of trends from seasonal data is important if
only to determine important trend parameters such as direction, level and rate of change,
or for the purpose of comparison between series. In the development that follows we
restrict attention to monthly time series with annual seasonality although our results and
observations apply more generally.

A broad class of non-linear seasonal time series models widely used in practice is given



by the additive model
d)(Y;) :Tt+St+6t (1)

where Y; denotes the original series, ¢(y) a suitable transformation, T; and S; the trend and
seasonal components and the so—called irregular component ¢; denotes noise. The latter
is assumed to be stationary with mean zero (often white noise), and all three components
in the additive decomposition are assumed to be independent. Other components such
as a calendar component can also be added. To further identify the components in (1)
additional constraints are needed. These include local smoothness constraints for the
trend and the year to year evolution of the seasonal. Furthermore, the seasonal component
is assumed to approximately sum to zero over any twelve month period so that

11
> S ~0. (2)
j=0

These constraints are sufficient to ensure that the trend 7; runs through the middle of
the transformed data over any twelve month period.

The most widespread transformations used are the identity ¢(y) = y for the simple addi-
tive model and the logarithm ¢(y) = logy for data whose components are multiplicative.
The trend-seasonal decomposition procedure SABL (Cleveland et al (1978)) augments
these by considering the class of power transformations defined by

v (p>0)
o(y) =4 logy (p=0) . (3)
-y* (p<0)

It is assumed that a value of p can be found which makes the decomposition (1) hold,
at least to a first approximation. In practice, p is chosen so that there is no interaction
between the trend and seasonal components in (1). However the trend—seasonal decompo-
sition procedures used by most official statistical agencies in the world are X-11-ARIMA
(Dagum (1980)) and X-12-ARIMA (Findley et al (1988)). These are based on the origi-
nal X-11 procedure (Shiskin et al (1967)) which has its own multiplicative model which
is different from (1) with ¢(y) = logy. A useful reference to seasonal models such as
(1) and trend-seasonal decomposition procedures in general is given in the survey article
Cleveland (1983).

Consider the case where Y; follows (1) with ¢(y) not the identity transformation. To
seasonally adjust Y} it is common practice to seasonally adjust the transformed series ¢(Y})
by removing the seasonal component and then transforming back into the original scale of
the observations. Seasonally adjusted trends can also be obtained by back-transforming
the trend of the transformed series. However this approach can lead to ambiguities in
terms of definition of trend and seasonal, particularly where there is significant variation
about the trend, due to either or both of the seasonal or irregular components.

An example is given in Figure 1 which shows the number of visitor arrivals to New
Zealand by month over the period January 1980 to December 1991. Three trends are
superimposed: the trend estimated by the X—11 multiplicative model and two SABL
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Figure 1: Visitor arrivals to New Zealand by month. Three trends are superimposed: the
trend estimated by the X-11 multiplicative model (dotted line) and two SABL trends,
one of the untransformed data (solid line) and the other the exponential of the trend of
the logarithms of the data (dashed line)

trends, one of the untransformed data and the other, the exponential of the trend of the
logarithms of the data. Despite the fact that X—11 trends are locally quadratic and SABL
trends are locally linear, both the X-11 and SABL trends of the original data are much
the same. However there is a significant difference between these and the exponential of
the trend of the logarithms of visitor arrivals. This difference, essentially the difference
between the arithmetic and geometric means, was first systematically discussed in the
literature by Young (1968). His correction formulae for the multiplicative model are
closely related to the more general formulae proposed here.

The reason why the X-11 multiplicative trend yields much the same trend as the SABL
trend from the original visitor data is discussed in Section 2. However the important point
to note is the following. If an additive model is fitted to the transformed data using (1)
and then the inverse transform applied, the trend, seasonal and seasonally adjusted series
obtained are not independent of the transformation chosen. Systematic differences exist
between them. In many cases the differences are slight. However in cases where there is
significant variability about the trend due to either or both of the seasonal or irregular,
the difference can be sizeable. For the New Zealand Visitor Arrivals data given in Figure
1, the difference between the two SABL trends during June 1988 is 1839 arrivals or 2.5%.



The above discussion highlights the importance of defining appropriate trend and seasonal
components in the case where ¢(y) is not the identity transformation. The standard
requirement that is built in to both the additive and multiplicative X—11 models is that
(moving) annual totals of seasonally adjusted and unadjusted series should be essentially
the same. We shall refer to this as the seasonal balance constraint. This is an economic
requirement which ensures that the process of seasonal adjustment is essentially one of
redistribution of seasonal variation so that, on an annual basis, observed totals (wealth,
credits, debits, numbers of visitor arrivals etc) are neither created nor destroyed. Although
this is a natural economic requirement, for transformed series following (1) it conflicts
with (2) except in the additive case ¢(y) = y. In Section 3 we use the seasonal balance
constraint to define appropriate trend and seasonal components for the original series Y;.

2 X-11 Models

Before developing appropriate definitions of trend, seasonal and irregular for models such
as (1) where ¢(y) # y, it is instructive to review the X—11 multiplicative model.

X-11 was initially developed by Shiskin et al (1967). Despite many new developments in
seasonal time series models, it remains the most popular method of seasonal adjustment
and forms the basis of X-11-ARIMA (Dagum (1980)) and X-12-ARIMA (Findley et
al (1988)) used by the majority of the world’s official statistical agencies. The additive
version of X-11 is as given in (1) with ¢(y) = y. However the multiplicative version of
X-11 is essentially based on the model

Vi=T,(1+S)(1+¢) (4)

where the seasonal factor S; satisfies (2) and F(¢;) = 0. Applying the logarithm trans-
formation to (4) yields a model which is approximately the same as (1) with ¢(y) = logy
provided that S; and ¢; are small. If either or both of the seasonal or irregular are size-
able then differences emerge as is evidenced in Fig. 1. In particular the two seasonal
constraints differ with one requiring the moving annual arithmetic mean, the other the
moving annual geometric mean, of the seasonals to be approximately zero.

The model (4) can also be written in additive form as
K == Tt + TtSt + Tt(l + St)ﬁt- (5)

Provided that the trend is smooth, (2) ensures that the seasonal component TS, will
approximately sum to zero over any twelve month period. This model is similar to that
proposed by Durbin and Murphy (1975), but has heteroskedastic multiplicative errors
rather than additive homoskedastic errors.

The additive form (5) helps to explain the non-linear X-11 model fitting procedure.
Broadly speaking, the trend T is first estimated by filtering (5) with a linear low—pass filter
that also removes the seasonal 7;5;. The resulting trend estimate is then divided through
(5) and the seasonal component 1+ S; extracted using simple linear filters. This is then
divided into (4) to obtain a seasonally adjusted series. Further smoothing iterations are
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carried out together with various procedures to down—weight outliers, adjust for calendar
effects etc. Thus it can be argued that the X—11 procedure expresses a multiplicative
model as an additive model and fits accordingly. This has the advantage of ensuring that
the seasonal balance constraint is satisfied and is the reason why, in Figure 1, the X-11
multiplicative trend of the NZ visitor arrivals series is much the same as the SABL trend
from the untransformed data.

3 A new trend—seasonal decomposition

Following the example of the X—11 model (5), the general strategy we adopt is to ex-
press Y; in additive form with trend, seasonal and irregular defined as functions of the
corresponding components in the transformed series. The derived trend, seasonal and
seasonally adjusted series are then constructed from the estimates of the components in
the transformed series. This approach is implicit in the X-11 multiplicative procedure.
It has the virtue of separating the model fitting, which takes place with the transformed
series, from the additive trend-seasonal decomposition of the original series Y; which is
constructed so that the seasonal balance constraint remains approximately true.

Before constructing an additive decomposition for Y}, we first need to make some basic
assumptons about the trend, seasonal and irregular components given in (1). We shall
assume that all three components are independent and that the trend 7; follows a de-
terministic or stochastic model which is locally smooth. For example X-11 and SABL
assume that T; follows a local low—order deterministic polynomial model in ¢ within a
moving window of consecutive monthly observations. On the other hand Akaike (1980),
Gersch and Kitagawa (1983), Harvey (1989) and many others assume global stochastic
models for 7T} of the form
APT, =y

where 7, is white noise and A is the backwards difference operator satisfying AX, =
X; — X, 1. Typically p =1 or 2 and the variance of 7, is taken small enough to ensure
that T; is smooth. The irregular component ¢, is assumed to be a zero-mean stationary
time series.

We shall assume that the evolving seasonal component can always be represented as

6

Sy = {a;(t)costh; + B;(t)sint);} (6)

J=1

where \; = 27j/12 and [s(t) = 0. The zero frequency component corresponding to
Ao = 0 has been omitted from (6) to ensure that S; measures departures from the trend
T, which describes the instantaneous local level of ¢(Y;) at time t. As a consequence
this representation automatically satisfies (2) since 2;1:0 Si—; will be approximately zero
provided that the a;(t) and f;(t) are sufficiently smooth. Note that it will rarely be the
case that ]1-1:0 Si—; is identically zero. This will only be true when S is strictly periodic
and the a;(t), B;(t) are constants. If, as is commonly the case, the a;(t), 5;(t) are evolving
slowly over time then S; will also evolve slowly and 2;1:0 S;—; will have the appearance of
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a stationary time series with small variance. However, in the case where the a;(t), 3;(t)
are evolving linearly in ¢, then 2}1:0 Si—; may also exhibit a seasonal pattern which, in
turn, will need to approximately sum to zero over any twelve month period. In this case
(2) will need to be replaced by 2}1:0 il Stk ~ 0.

The model (6) is implicitly used by X-11 and SABL where the «;(t), 5;(t) are assumed
to be constant or linear in ¢ within an appropriately defined moving window. The mixed
model proposed by Durbin and Murphy (1975) also fits this framework. In terms of
stochastic seasonal models, (6) is the same as the model proposed by Hannan (1967) (see
also Ng and Young (1990)) where «;(t), 3;(t) follow the stochastic trend models

Aay(t) = n;(t), AB;(t) = &(t) (7)

and the white noise processes 7;(t) (j = 1,...,6) and &(t) (j = 1,...,5) are mutually
independent with E(n;(t)?) = E(§;(t)?) = oj. In fact this stochastic seasonal model is
more general than might first appear. Dongfeng et al (1997) show, among other results,
that Hannan’s model is stochastically equivalent to the model proposed by Harvey (1989)

where

St = ;Uj(t)

()= (55 2 ) () (46

with the n;(t), &(t) defined as in (7). (This result was also informally communicated to
the first author by W.R. Bell (US Census Bureau) at an earlier date.) This seasonal model
is used in the structural time series modelling procedure STAMP (Koopman et al (1995)
and the seasonal decomposition procedure MING (Bruce and Jurke (1996)). Moreover,
if the n;(t), &;(t) are replaced by carefully chosen stationary processes, then (6) can be
shown to encompass the stochastic seasonal model

and

11
Z Stfj =T
§=0

where 7, is stationary. The case where 7, is white noise is commonly used (see Gersch and
Kitagawa (1983), Harvey (1989) for example). If 7, is an AR(1) process then the seasonal
model is equivalent to that used in BAYSEA (Akaike (1980)). The generality of (6) and
the properties of such stochastic seasonal models is the subject of ongoing research with
some results already reported in Dongfeng et al (1997). It is sufficient for our purposes
here that we assume that S; admits the instantaneous Fourier representation (6) with the
a;(t), B;(t) evolving slowly over time.

To handle both (1) and (4), we now consider
Yy = g(T3, St ) (8)

where the components T}, Sy, ¢; are as defined above and g(z, s, €) is either ¢! (z + s +¢)
with ¢(y) given by (3) or the X-11 model (1 + s)(1 + e) given by (4). More generally
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g(x, s, e) could be any well-behaved function of its arguments. We write Y; in the additive
form
Y, =T+ S +¢ (9)

where T}, S}, €; are yet to be defined trend, seasonal and irregular components. Proceed-
ing constructively we define M, =T} + S; as

M, = E{g(T}, S;,€¢)|T, S} (10)

where T and S denote the processes {T};t = 0,41,...} and {S;;t = 0,£1,...} respec-
tively. This additively decomposes Y; into a systematic component M; and an irregular
component

¢ =Y, — M, (11)

where €; has zero mean and is uncorrelated with A7;.

Now M, is an evolving trend and seasonal pattern that is a function M (z, s) of T; and S,
which, from (6), can be written as

Mt (Tta St Tta Z{OLJ CcOS t)\] + 5] (t) sin t)\]})

However any function of an (instantaneous) Fourier representation will create a new (ad-
ditive) Fourier representation of the form (6) with new coefficients «;(t), 5;(t) and, in
particular, an additional zero frequency (A\g = 0) or local level component with [y(¢) = 0,
but ap(t) not necessarily zero. For example, if M(x,s) = (z + s)? then

M(Ty, Sy) = Z{a] costh; + B;(t) sint);})? Z{a] costA; + bj(t)sintA;}
where ay(t) = Ty, fo(t) = 0 and

ag(t) = ag(t) +§]% )2+ B;(1)*} + as(t)?, bo(t) = 0.

This can be verified by direct algebra or by using the formula for the Fourier coefficients
which, for A\g = 0 gives
1 1 6

ao(t) = 35 2 (3_fa(t) cos(t — k)A; + B;(¢) sin(t — k) })*.

k=0 j=0

These arguments lead us us to define the instantaneous local level of Y; at time ¢ as
E{—ZM Tt,z{ay cos(t — k)X + B(t) sin(t — HADIT, S} (12)

where the conditional expectation ensures that 7 is a function of 7, and S. The con-
ditional expectation is needed in general since the second argument of M is not S; j
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unless the «;(t), 5;(t) are locally constants. However the conditional expectation will
not be necessary in the special case where the a;(t), 8;(t) are extractly directly from the
transformed series. The seasonal component S} is now defined by subtraction as

In the special case of the identity transformation where g(z,s,e) = = + s + e we have
M(z,s) =x+ s and

Tt* = Tta SZ( = Sta 6: = €.
For the X-11 case where g(x,s,e) = z(1 + s)(1 + e) we have M(z,s) = z(1 + s) and
Tt* = Tt, SZ( = TtSt, 6: = Tt(l + St)Et.

This leads to the following definition.

Definition 1 Let Y; follow the model specified by (8). Then the trend T}, the seasonal S}
and the irreqular € in the additive decomposition (9) of Y; are defined by (10), (11), (12)
and (13). In particular, the identity transformation model (1) with p = 0 and the X-11
model (5) have this additive form.

This defines the required trend—seasonal decomposition. Given any particular model for
Y; of the form (8), one could derive precise formulae for T}, S; and € as functions of 7y,
S; and ¢;. Then these functions and the estimated trend, seasonal and irregular of the
transformed series could be used to provide estimates of the trend, seasonal and irregular
for the original series. Although of interest, this approach has not been followed here.
Rather we shall adopt a simpler strategy of approximating these functions with simple
non-parametric linear filters of functions of the component series.

3.1 Approximate decompositions

We now consider approximating 7 and S} by
T = zk: ce M (T, S 1) (14)
Sfo= M, -Ty (15)
where the ¢, are the coefficients of a linear trend filter Lg that satisfies

Ls(Xt) == ;Ckthk (; Cr = 1) (16)

and Lg also filters out fixed annual seasonal patterns. If the «;(t), 5;(t) are locally
constant then this filter is just the simple one—sided 12 month moving average. However,
to allow for evolution in the «;(t), §,(t), other linear filters based on the simple 12
month moving average might better be employed in practice. These include the standard
12 month (13 point) centred moving average or the triangular 23 point moving average
where the non zero ¢, are given by

12 — |k|
Cr. —
k 144

(k=0,+1,...,411).



In particular, the latter filter results if the a;(t), 5;(t) are locally linear. Then it is not
hard to show that

. 1 k k
T} = 75 X2 M(Ti, (= 5)Sime + 55012-0)

which, using linear interpolation, should be well approximated by

1 & k k 12 — |k

— 1— —\M(T, _ — M (T, _ =
9 k:O(( 12) (Ty, St—r) + 12 (T4, St412-k)) k;ﬂ 114

M(Ty, Si—)-

The quality of this approximation is dependent on the smoothness of M (x,s) and the
closeness of the values of S; for the same month in successive years. However it might
be expected that these would be quite reasonable approximations in practice. Finally
we note that (12) is identically zero when M (z, s) is proportional to s, regardless of the
law of evolution for the a;(t), §;(t). This leads to the convention that Lg(S;) is set to
zero when evaluating Tt*. These approximations and definitions are now used to define
suitable non—parametric approximations of 7} and S;.

Result 2 Let Y; follow the model specified by (8) with additive decomposition given by
Definition 1. Then the expressions (14) and (11) provide an approzimate non—parametric
additive decomposition of Yy in cases other than the identity transformation model (1)

with p =0 and the X-11 model (5).

Consider, for example, (1) and the cases p = 0 and p = 0.5. For the multiplicative case
¢(y) =logy and

~

M, = p(1)e"+5, T; = (1)l Lg(e™), S; =1p(1)e" (e’ — Lg(e™))

with ¢(s) denoting the moment generating function of ¢;. In the case of Gaussian errors
¥(1) = exp 502 where 0 = E¢;. In the case of the square-root transform (p = 0.5) we
have

M, = (T, + S,)* + 0%, TF = T? + Lg(S?) 4 o2, SF = 91,5, + 52 — Lg(S?).

The functional dependence of Tt* and 5’;‘ on T; and S; can now be utilised to construct
estimates. In the simplest case this means replacing T; and S; in (14) by their estimates
obtained from the transformed data using standard trend—seasonal decomposition proce-
dures. The unknown ¢; parameters in M; are estimated from the estimated irregular of the
transformed data. Depending on the nature of the data, these particular estimates could
be simple moment estimates or robust estimates that take proper account of outliers. In
the multiplicative case this procedure yields formulae that are closely related to those
advocated by Young (1968). For parametric Gaussian models such as those advocated by
Akaike (1980), Gersch and Kitagawa (1983), Harvey (1989), Ng and Young (1990), Mar-
avall (1995) among many others, better estimates of M; and Tt* can be obtained directly
by determining

E{M,|data}, E{T}|data} (17)



using the relevant conditional densities determined from the Kalman filter and smoother.
Using this technology, confidence limits can also be constructed.

Now consider the case where Y; follows (1) and ¢(y) is given by (3) or, more generally,
by some other well-behaved function. In this case computationally simpler approximate
procedures can be used provided S; and ¢; are small.

Result 3 Let Y; follow the model specified by (1) where ¢(y) is some well-behaved function.
Then Ty, S, € of Definition 1 can be approzimated by the simpler forms Tj, S;, €
respectively where

Ty = ¢ YT+ 5v(T)(Ls(S)) + %))

Sfo= ¢ N+ S+ 3v(Th)o®) — T (18)

& = Y, -1,-5

provided S; and €; are small. Here

Y(z) == (67" (2)) /(8 (67 (2)))’

and ¢ (y) denotes the jth derivative of ¢(y). When ¢(y) is given by the power transfor-

mation (3)
0 ={ | (p=0) (19)

The approximations given by Result 3 make simple additive adjustments to the trend of
the transformed data and then back-transform. Alternative approximations can also be
devised which make additive adjustments in the original scale of the observations yielding
the following result.

Result 4 Let Y; follow the model specified by (1) where ¢(y) is some well-behaved function.
Then Ty, S;, € of Definition 1 can be approzimated by the simpler forms Ty, S;, &
respectively where

T; = ¢ HT)( + 36(T)V(T)(Ls(SF) +0%))
S; = ¢ (T)O(T)(Si + 37(Ti)(SF — Ls(S7))) (20)
E: = Y- Tt* - S:

provided S; and €; are small. Here

d

§(w) = - log 6 ()

and y(z) is as given in Result 3. When ¢(y) is given by the power transformation (3)

_ 1! (p=10)
@={ 1 (h70) .
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Note that in the case of (3) and the identity transformation p = 1 the components given
by Results 3 and 4 are identical with those of Definition 1. In the multiplicative case

where ¢(y) = logy

~ 1 . ~ 1 1
Tt* — eTt+§(LS(Sf)+0'2) S;k — 6Tt+§0'2 (6St o 6§L5(St2))

3

and
Ty =" (1+ 3(Ls(SP) +07)), S =" (S + 3(S7 — Ls(SP)))-
If ¢(y) is the square-root transform (3) with p = 0.5 then
Ty = (Ti + 5(Ls(S7) + %) /Th)?, St = (T, + S+ 50°|T)" = (T})?
and B R ) R
T; =T} + Ls(S?) +o® =T}, S; =2TyS, + S? — Ls(S?) = S;.

In the next section the relative performance of these various procedures is investigated by
analysis of simulated and real data.

In practice the above will need to be modified to handle calendar and holiday effects, and
to incorporate robust estimation procedures to cope with outliers. The latter is directly
addressed by estimating M; using the robustness weights derived when processing the
transformed data. Calendar and holiday effects are typically modelled by adding in an
extra fixed effects regression component to the right-hand side of (1). The regressors in-
clude month length, numbers of each type of week—day in the month and dummy variables
for holidays. A similar development to that leading to Definition 1 could be undertaken
to define appropriate additive components in the original scale of the observations. When
mean corrected, these effects will typically be sufficiently small that they do not influence
the definitions of trend and seasonal given by Definition 1, at least to first order. Thus,
in practice, calendar and holiday effects can be safely removed from the transformed data
prior to forming the required components given by (14), (18) or (20).

4 Numerical studies

In keeping with Thomson and Ozaki (1992) the analysis and simulations undertaken in
this section are based on a selection of New Zealand official series over the 12 year period
1980 — 1991. The series considered are short—term visitor arrivals, merchandise trade
exports and merchandise trade imports.

We first consider the trends and seasonally adjusted series obtained from the New Zealand
Visitor arrivals data using (1) with p = 0 and p = 0.5. The former is the more natural
transformation although arguments can be advanced for both; indeed the power transfor-
mation chosen by SABL was (3) with p = 0.25, a compromise between the two alternatives.
The effects of the corrections given in Section 3 are illustrated in Table 1 where the mean
trend bias gives the mean of the differences between the X—11 trend and each of the trends
given by ¢~1(T}), (14), (18) and (20). Since X-11 fits the additive decomposition model
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Adjustment Mean Trend Bias Seasonal Balance

Method p=20 p=0.5 p=20 p=0.5
No correction -2040 -1181 1957 985
Equation (14) -47 -186 1 1
Equation (18) -99 -186 53 -4
Equation (20)  -133 -181 1 1

Table 1: Visitor arrivals to New Zealand by month; trends and seasonally adjusted series
obtained using (1) with logarithm and square root transformations. The mean trend bias
(by comparison to X-11) and the mean seasonal balance bias from zero are given for the
corrected and uncorrected series.

(5) directly without any correction, its trend has been used as the basis for comparison.
The mean seasonal balance bias measures the mean difference between the centred 12
month (13 point) moving averages of the original and seasonally adjusted series. Here the
trend T; and other components have been estimated from the transformed series ¢(Y})
using SABL. All measurements are in the original scale of the observations and the cal-
culations have been carried out for the various corrected and uncorrected series over the
central 10 year period to avoid complications with filter end effects.

The results in Table 1 indicate that, in the case of strong seasonality, the corrections
are a marked improvement over the usual procedure of no correction. There is little to
pick between the direct adjustment (14) and its approximations. As might be expected,
the unadjusted trend obtained using the square root transformation is better than that
obtained using the logarithm transformation. Moreover the corrected trend using the log-
arithm transformation appears to be better than the corrected trend using the square root
transformation. However both corrected trends approximate the X-11 trend reasonably
well irrespective of the transformation adopted. Thus the correction procedure results in
trends that are, to a large extent, invariant with respect to the transformation chosen

We now consider analyses of three different types of simulated series whose key parameters
are given in Table 2. For each type of series, 20 independent realisations of 12 years
duration were generated using (1) with power p given by Table 2. The trends were
deterministic linear or quadratic functions of time, the seasonal components were fixed
non-evolutionary annual cycles, and the irregular components were Gaussian white noise.
All components were generated for the transformed series which were then transformed
back into the original scale of the observations. The model parameters were chosen
following an analysis of the actual series concerned. However these analyses were used as
a guide only and the parameters adopted provide, at best, an overly simplistic description
of the series concerned.

The key parameters given in Table 2 are CV, the average coefficient of variation in the
original scale of the observations, and SI, the seasonal to irregular ratio RMS(S;)/o in
the transformed scale. Here o2 is the (constant) variance of the irregular component
and RMS(S;) is the root mean square of the seasonal pattern over any 12 month period.
Simulated exports and imports have a relatively high variability about the mean level of
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Simulated Series p CV SI

Visitor Arrivals 0.0 0.05 5
Exports 0.6 010 2
Imports 0.0 0.10 1

Table 2: Key parameters for series simulated using (1) with power p, coefficient of variation
CV and seasonal to irregular ratio SI.

approximately 10%. Moreover, simulated exports have seasonal amplitudes approximately
twice the size of the irregular whereas simulated imports have seasonal amplitudes of
approximately the same size as the irregular. Thus, compared to visitor arrivals, simulated
exports and imports represent situations where the use of correction formulae should be
more marginal.

The results are summarised in Figure 2. Here the standardised trend bias at a given
point in time ¢ is defined as AT;/(sar/v/20) where AT} and s are the sample mean and
variance respectively of the differences between the 20 individual trend estimates (with
and without correction) and the true trend T;*. The latter is defined by (12) and evaluated
for the true 73, S; and 0. The standardised seasonal balance bias is defined similarly as
AS,/(sa5/v/20) where AS; and s3¢ are the sample mean and variance respectively of
the differences between the 20 individual centred 12 month (13 point) moving averages of
the original series and their seasonally adjusted forms. Thus the mean trend or seasonal
balance bias at any given time point has been measured in units of its own standard
deviation. As before, the results displayed relate to the central 10 year period of the series
to avoid possible end effect complications. Only the results for the correction procedure
(14) have been displayed in Figure 2 since the other procedures (18) and (20) produce
much the same results. The choice of correction procedure can thus be based on other
criteria such as theoretical considerations and computational convenience.

The results are self evident; the greater the variation about the trend the greater the gains
obtained from using the correction formulae. Even in the case of exports and imports
where the seasonal and irregular amplitudes are of modest size, there are still significant
gains to be had. These remarks apply to both trend and seasonal balance biases.

In the case of the corrected trends, there remains a small downwards bias. This is most
likely due to the fact that T} has been estimated from (14) with T}, S; and o2 replaced by
estimates from the decomposition of the transformed data. For parametric Gaussian based
models this problem might be alleviated to some extent by using (17) and the Kalman
filter. For models such as X—11 which are already in the appropriate additive form, no
correction formulae are needed and direct fitting of the components should be largely
free of trend bias. Procedures that directly fit the X—11 model include X-11-ARIMA,
X-12-ARIMA or the parametric procedures of Ozaki and Thomson (2002). However, in
general, further corrections will be needed to eliminate estimation bias. This is beyond
the scope of the current paper. Finally note that the correction procedures do not appear
to increase the variability of the trend estimates; indeed, if anything there might be a
slight reduction in variability.

13



Trend Bias for Simulated Series
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Figure 2: Simulated visitor arrivals, exports, imports and balance of exports less imports;
trend and seasonal balance biases. In each case boxplots of standardised trend biases
from the true trend and standardised seasonal balance biases from zero are given for the
uncorrected series and series corrected using (19).
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