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Abstract

We present two types of diagnostics for
SEATS and similar programs. We start with
modi�cations of the diagnostic used by SEATS
to detect underestimation or overestimation,
meaning inadequate or excessive supression of
frequency components near the target frequen-
cies, e.g. the seasonal frequencies in the case
of seasonal adjustment. The modi�cations use
time-varying variances of the �nite-length �lter
output instead of the constant variance associ-
ated with the in�nite-length �lter. The SEATS
diagnostic is shown to be substantially biased
toward indicating underestimation even when
the estimation is optimal, a situation where
the modi�ed diagnostics are unbiased. The sec-
ond type of diagnostic considered is an adapta-
tion of the widely used sliding spans diagnostic
of X-12-ARIMA. The adaptation is a method
for determining the span length appropriate for
model-based-adjustment as a function of the
ARIMA model�s seasonal moving average pa-
rameter.

Disclaimer. This report is released to in-
form interested parties of ongoing research and
to encourage discussion of work in progress.
The views expressed are those of the authors
and not necessarily those of the U.S. Census
Bureau.

1. Introduction

The most widely used ARIMA model-
based approach to seasonal adjustment is the
"canonical" decomposition approach of Hillmer
and Tiao (1982) and Burman (1980) as im-
plemented in SEATS (Gomez and Maravall,
1997) and in other software under development,
see Monsell, Aston and Koopman (2003). We
present modi�cations of SEATS�diagnostic for
determining underestimation and overestima-
tion in Section 2. These modi�ed diagnostics
could also be used in the "structural" ARIMA
model-based approaches of DECOMP (Kita-
gawa 1981, 1985) and STAMP (Koopman, Har-
vey, Doornik and Shepherd, 1995). In Section

3, we provide an adaptation of the sliding spans
diagnostic of Findley, Monsell, Shulman and
Pugh (1990) for the canonical decomposition
approach.

The model-based approaches referenced
above assume that, after removal of any trad-
ing day, holiday and/or outlier e¤ects, the time
series to be seasonally adjusted, Yt; 1 � t � N ,
(or log Yt) can be decomposed into a sum of sea-
sonal, trend and irregular components denoted
by St, Tt and It respectively,

Yt = St + Tt + It; 1 � t � N: (1)

The model-based methods provide an indi-
rectly or directly speci�ed model for each com-
ponent and produce estimates Ŝt, T̂t, and Ît
that are Gaussian conditional means, e.g.

Ŝt = E (StjYs; 1 � s � N) (2)

=

t�1X
j=t�N

cSj;t (N)Yt�j :

Thus the cSj;t (N) are the t- and N -dependent

minimizers of E
�
St �

Pt�1
j=t�N c

S
j;tYt�j

�2
un-

der assumptions that make it possible to eval-
uate this expectation by treating the values
of model parameters estimated from Ys; 1 �
s � N as if they were correct. T̂t and Ît are
de�ned analogously. (For simplicity, we will
usually suppress the dependence of the esti-
mates on N , the models, and the decomposi-
tion.) Here and elsewhere, E (�) denotes the
mean calculated according to the model spec-
i�ed for the data. The additivity property of
conditional means yields the seasonal decompo-
sition Yt = Ŝt+T̂t+Ît; 1 � t � N . Model inad-
equacy can lead to inadequacies in this decom-
position. The most fundamental inadequacy
is the presence of an easily detectable seasonal
component in the adjusted series, Ât = Yt� Ŝt,
or in the detrended seasonally adjusted series
Ît = Ât � T̂t, i.e., the irregular component.
Therefore seasonal adjustment programs need
a diagnostic (or several) to detect residual sea-
sonality. Spectrum estimates are the most de-
veloped and widely used diagnostics for the de-
tection of essentially periodic components such



as seasonality and trading day e¤ects. The pro-
gram DECOMP provides spectrum estimates
of Ât and Ît for detecting residual seasonal-
ity (and residual trading day e¤ects). Simi-
lar estimates are provided in X-12-ARIMA and
the programs discussed in Monsell, Aston and
Koopman (2003).

SEATS does not yet have spectrum diag-
nostics for detecting residual seasonality. In-
stead, it provides a diagnostic for detecting
"underestimation" and "overestimation." Mar-
avall (2003) de�nes underestimation of the sea-
sonal component to mean that its estimate
does not capture all of the seasonal varia-
tion. Overestimation means that too much
variation has been assigned to this component.
Underestimation is SEATS�main indicator of
residual seasonality. For the seasonally ad-
justed component Ât or the irregular compo-
nent Ît, underestimation can be interpreted
to mean that the seasonal adjustment or ir-
regular �lters do not adequately suppress fre-
quency components around the seasonal fre-
quencies. That is, the dips in their gain func-
tions at the seasonal frequencies are too nar-
row. Overestimation means these dips are
too wide, with the result that too much sup-
pression occurs. (The irregular �lters provide
suppression both around the seasonal frequen-
cies and also around low frequencies associated
with trend, so mis-estimation of It could also
result from inappropriate suppression of low-
frequency components).

2. Variance of Estimator vs. Variance
of Estimate (SEATS)

We now describe the SEATS diagnostic in-
tended to detect overestimation and underesti-
mation. We show it is biased toward identifying
underestimation even when the estimate is op-
timal. Then we present analyses of a modi�ed
diagnostic that is unbiased. For simplicity, we
focus on estimation of the irregular component,
because the model for this component is white
noise and therefore speci�es a constant variance
�2I = E

�
I2t
�
. (For the seasonal, trend and sea-

sonally adjusted components, the diagnostic is
calculated for the "stationary transformation"
of each component, meaning the output of the
"di¤erencing" operation speci�ed by the com-
ponent�s ARIMA model.) Our limited study
seems to be the �rst systematic investigation
of the SEATS diagnostic.

In SEATS, the term estimator is used for

the theoretical Wiener-Kolmogorov estimate
that applies with bi-in�nite data. To have a
speci�c formula for the variance of the estima-
tor of the irregular component used by SEATS,
suppose the ARIMA model for the data is ex-
pressed in the usual notation as

� (B)� (B)Yt = � (B) at: (3)

Thus � (B) denotes the di¤erencing opera-
tor which transforms Yt to stationarity, e.g.
� (B) = (1 � B)2

�
1 +B + � � �+Bp�1

�
, at is

the innovations process (with variance �2a), etc.
Also, B is the backshift operator and p is the
number of observations per year: p = 12 in our
analyses. The pseudo-spectral density of the
model for Yt is

f (�) =
�2a
2�

����� �
�
ei�
�

� (ei�)� (ei�)

�����
2

:

The spectral density of the associated model
for It is �2I=2�. Then, with

cIj =
�2I
4�2

Z �

��

cos j�

f (�)
d�; j = 0;�1; : : : ; (4)

the estimator of It is given by the Gaussian
conditional expectation de�ned by the co-
variance structure speci�ed by the Wiener-
Kolmogorov formula

IWK;t = E (ItjYs;�1 < s <1) (5)

=

1X
j=�1

cIjYt�j ;

under the assumption that the initial val-
ues of Yt used to determine the solution to
the di¤erence equation (3) are independent of
the stationary time series � (B)Yt, see Bell
(1984). The variance of the estimator �2WK;I =

E
�
I2WK;t

�
has the formula �2WK;I = �

2
Ic
I
0.

With Yt; 1 � t � N denoting the data
available for seasonal adjustment, SEATS de-
�nes the estimate of It to be the model�s condi-
tional mean from the available N observations

Ît

�
= Ît (N)

�
= E (ItjYs; 1 � s � N) (6)

=
t�1X

j=t�N
cIj;t (N)Yt�j :

In principle, SEATS�variance of the estimate



is de�ned to be the sample second moment*

Î2 =
1

N

NX
t=1

Î2t ; (7)

and underestimation is indicated when Î2 <
�2WK;I , overestimation when Î2 > �2WK;I .
In practice, the calculations that produce
the component models in SEATS and other
software yield variances like �2I and �2WK;I

scaled as though the innovation variance of
(3) were equal to one, quantities we shall
denote by �2I=�

2
a and �2WK;I=�

2
a. An esti-

mate of �2WK;I is obtained by multiplying the
latter ratio by an essentially unbiased esti-
mate �̂2a of �2a. We de�ne �̂2a to be the
the maximum likelihood estimate �̂2a;mle when
the model coe¢ cients leading to (6) are �xed
independently from the data, as in most of
our simulation experiments. When coe¢ -
cients are estimated, SEATS�estimate is used,
�̂2a = �̂2a;mle (N � n�;�) = (N � n�;� � ncoeffs),
where n�;� is the order of � (B) plus that
of � (B) (when SEATS� (conditional) esti-
mates of � (B) are used), ncoeffs is the
number of ARMA coe¢ cients in the model.
So SEATS criterion is Î2 < �̂2a

�2WK;I

�2a
for

underestimation, Î2 > �̂2a
�2WK;I

�2a
for overesti-

mation.
In correct and incorrect model cases with

the correct � (B), �2a can be interpreted as
the model�s asymptotic mean square one-step-
ahead prediction error, and it can be shown
that �̂2a � �2a ! 0 in probability and in mean,
see (b) of Proposition 5.2 of Findley, Pötscher
and Wei (2003). When E

�
�̂2a=�

2
a

�
' 1, the fol-

lowing simple Proposition shows that SEATS�s
under/overestimation criterion is biased toward
indicating underestimation when the estimate
is actually optimal, i.e. when the model is cor-
rect. A slight modi�cation of the Proposition�s
proof can be used to obtain the analogous re-
sults for the stationary transforms of the sea-
sonal, seasonally adjusted and trend compo-
nents, which we will not discuss further.

Proposition 1 When the ARIMA model (3)

* Instead of Î2, SEATS uses the sample variance,P
t

�
Ît � Ît

�2
= (N � 1), where Ît is the sample mean.

This is N= (N � 1) ' 1 times the smaller quantity

Î2�
�
Ît
�2
. Therefore, the bias results we obtain apply

to the sample variance as well as to the sample second
moment.

and variance �2I used for the calculation of the
estimates Ît in (6) and of �2WK;I are correct,
then

E
�
Î2
�
� �2WK;I : (8)

Strict inequality necessarily holds when the
moving average polynomial � (B) in (3) has
positive degree.

Proof. The estimate Ît and its error It � Ît
sum to It, and, because the model is correct,
are uncorrelated. The same is true for IWK;t

and It�IWK;t. Thus. setting �2t = E
�
Î2t

�
, we

have

�2I = �2t + E
�
It � Ît

�2
= �2WK;I + E (It � IWK;t)

2
: (9)

It follows that

�2t � �2WK;I ; (10)

because E
�
It � Ît

�2
� E (It � IWK;t)

2, since

IWK;t is the optimal estimator from the larger
data set Ys;�1 < s < 1. Further, strict
inequality always holds when (3) has a mov-
ing average component, because then in�nitely
many coe¢ cients (4) are nonzero. The asser-
tions of the proposition follow from this fact,
(10), and another consequence of the model�s
correctness,

Etrue
�
Î2
�
= N�1

NX
t=1

�2t ; (11)

where Etrue (�) denotes expectation with the re-
spect to the true distribution of the data.

For the case in which Yt follows the Box-
Jenkins airline model (AL)

(1�B)(1�B12)Yt = (1� �B) (1��B) at;
(12)

with � = 0:6, Table 1 shows the relative bias

�2WK;I=E
true

�
Î2
�
for sample sizesN = 72; 144

and various �.
The relative bias values are very similar

for other values of � with 0:1 � � � 0:9. These
results, documenting substantial bias, suggest
that in place of the constant variance �2WK;I

that applies to the in�nite case (5), the aver-
age of the time-varying t-dependent variances

�2t = E
�
Î2t

�
should be used, calculated as



though the estimated or speci�ed model is cor-
rect. Thus, the resulting modi�ed diagnostic

compares Î2 to

1

N

NX
t=1

�2t : (13)

instead of to �2WK;I . Note that �2t can be

obtained from �2t = �2I � E
�
It � Ît

�2
, cf.

(9). The two r.h.s. quantities are available
from model-based adjustment programs that
use state space methods, usually in units of �2a.
When only these scaled quantities, which we
denote by �2t=�

2
a, are available, the role of (13)

is taken by

�̂2a
N

NX
t=1

�2t
�2a
: (14)

Thus

Î2 <
�̂2a
N

NX
t=1

�2t
�2a

(15)

indicates underestimation and

Î2 >
�̂2a
N

NX
t=1

�2t
�2a

(16)

indicates overestimation. SEATS has no sig-
ni�cance test for under/overestimation. It is
di¢ cult to derive a test that accounts for the
variability of both Î2 and �̂2a.in the di¤erence

between Î2 and (14). We plan to investigate

a test that accounts for the variability of Î2.
Maravall (2003) illustrates such a test for the

SEATS diagnostic assuming Î2 has been ob-
tained from (5).

Table 1. Relative Bias �2WK;I=E
true

�
Î2
�

for Various � (� = 0:6) and N
� N = 72 N = 144
0.1 1.1900 1.0875
0.2 1.1726 1.0795
0.3 1.1588 1.0736
0.4 1.1462 1.0685
0.5 1.1365 1.0639
0.6 1.1293 1.0599
0.7 1.1274 1.0563
0.8 1.1363 1.0546
0.9 1.1633 1.0614

2.1 Performance of the modi�ed diag-
nostic

We now present a limited exploration of
the ability of the modi�ed diagnostic based
on (14) to detect underestimation and overes-
timation. 5000 independent replicates of se-
ries of length 144 were generated by inputting
pseudo-N (0; 1) innovations at into the di¤er-
ence equation (12) with � = � = 0:6. Underes-
timated irregulars were obtained from SEATS
by specifying adjustment with an airline model
with � = 0:6 and � > 0:6. This results in
seasonal adjustment �lters and irregular �lters
that do less than optimal suppression of fre-
quency components around the seasonal fre-
quencies. Overestimated irregulars were ob-
tained by specifying � < 0:6 (and � = 0:6) to
force greater than optimal suppression of such
frequency components. See Findley and Mar-
tin (2003) for plots of squared gains of seasonal
adjustment �lters for various �. (The corre-
sponding plots for irregular �lters are similar
except near � = 0.) For each speci�cation, Ta-
ble 2 lists the percentage of the 5000 series clas-
si�ed as underestimated. The percents for the
case in which (12) is estimated for each series
should be near �fty. The SEATS diagnostic
results reveal strong bias toward indicating un-
derestimation when there is none in this case
and in misspeci�ed � cases. Thus it is not a
reliable diagnostic for residual seasonality. The
modi�ed diagnostic that uses (14), designated
Mod1 in Table 2, does much better in the over-
estimation and estimated cases, and does fairly
well identifying underestimation. The Mod2
column presents percentages for a further mod-
i�cation described in Subsection 2.2.

Table 2. Percent of Simulated Airline
Model Series with � = � = 0:6 for Which

(15) Holds for Diagnostics of
Adjustments Produced with Various

Incorrect ��s
Incorrect � SEATS Mod1 Mod2

0.3 12.1 1.6 2.2
0.4 32.2 6.3 8.2
0.5 62.7 22.1 24.6

estimated �;� 100 48.0 48.6
0.7 96.6 74.2 73.3
0.8 99.1 83.7 83.5
0.9 98.4 66.4 80.8

The local properties considered next indi-
cate that the decreases in Table 2 at � = 0:9



are due to end point behavior.

2.2 Local properties and a further
modi�cation

When the ARIMA model speci�ed to ob-
tain the estimate Ît is incorrect, the model-
based quantities �2t and their average (13) will
generally be di¤erent from the true means of Î2t
and Î2 respectively. In fact, the results of Ta-
ble 2 suggest that (13) will be larger than the

mean of Î2 when there is underestimation and
smaller when there is overestimation for the
examples considered. This conjecture is sup-
ported by Table 3 which presents the results of
a simulation experiment with 10; 000 indepen-
dent replicates of series of length 144 satisfying

(12) with � = � = 0:6:We use Êtrue
�
Î2t

�
resp.

Êtrue
�
Î2
�
to denote the simple average over

the replicates of Î2t resp. Î
2.

Table 3. Simulation Means of Î2 from
10000 Series with � = � = 0:6

Compared to (13)

� Êtrue
�
Î2
�

(13)

0.3 0.1633 0.1236
0.5 0.2147 0.2003
0.6 0.2455 0.2455
0.7 0.2834 0.2965
0.8 0.3356 0.3534
0.9 0.4036 0.4135

A natural next question is whether the av-
erages over all t inherit these properties from
analogous local properties. That is, for every
t, is the mean of Î2t less than �

2
t when there

is underestimation, and greater than �2t when
there is overestimation? An analysis using

Êtrue
�
Î2t

�
from 5000 simulations to represent

the true means indicates that a local prop-
erty may hold in the case of overestimation but
does not in the case of underestimation, where

the values of Êtrue
�
Î2t

�
are consistently larger

than �2t near the ends of the series. Figures

2�6 present the graphs of Êtrue
�
Î2t

�
and �2t

that provide these conclusions for the incor-
rect model cases of Table 3. Figure 1 shows

that the Êtrue
�
Î2t

�
are very close to the true

means Etrue
�
Î2t

�
= �2t in the correct model

case � = 0:6.

Figure 1: Êtrue
�
Î2t

�
(solid) and �2t (dotted)

from � = 0:6

The time intervals at the ends of the series
over which Êtrue

�
Î2t

�
> �2t are substantially

wider in Figure 6 for the case � = 0:9 than
in Figure 5 for the case � = 0:8. Also, the

values of Êtrue
�
Î2t

�
� �2t over these outer in-

tervals are visually greater on average, and the
values between these intervals do not compen-
sate for this di¤erence, as is shown in Table 3
by the fact that the percentage increase from

Figure 2: Êtrue
�
Î2t

�
(solid) and �2t (dotted)

from � = 0:3

Êtrue
�
Î2
�
to (13) for � = 0:9 is less than half

of what it is for� = 0:8 (2:4% vs. 5:3%). These
results help to explain the �nding from Table 2
that, even though the underestimation is more
extreme when � = 0:9 than when � = 0:8, it is
less detectable with the diagnostic. They also
suggest, for the case N = 144 at least, that
modifying the sums in (7) and (14) to run from
13 to N�12 might yield a diagnostic that iden-
ti�es underestimation more reliably with little
or no loss in identi�cations of overestimation.
Results for this diagnostic, listed in the Mod2



Figure 3: Êtrue
�
Î2t

�
(solid) and �2t (dotted)

from � = 0:5

Figure 4: Êtrue
�
Î2t

�
(solid) and �2t (dotted)

from � = 0:7

column of Table 2, con�rm this conjecture.
In summary, we have shown that modi�ed

diagnostics based on �nite-�lter variances, par-
ticularly the second diagnostic just described,
perform better than SEATS� biased diagnos-
tic which uses an in�nite-�lter variance. This
�ts the pattern of the conclusion of Findley
and Martin (2003) that �nite-�lter frequency
domain diagnostics are more informative than
the corresponding diagnostics of the Wiener-
Kolmogorov �lter (5). Another �nding is that
underestimation is more di¢ cult to identify
than overestimation.

3. Sliding Span Lengths For SEATS

We now consider a suite of diagnostics not
currently in SEATS. The sliding spans diag-
nostics of X-12-ARIMA compare seasonal ad-
justments (or trends, etc.) of the same month
calculated from four overlapping equal-length
(sub)spans of the data. The adjustment op-
tions (ARIMA model, holiday regressors, �l-
ters, etc.) speci�ed for each span are the op-

Figure 5: Êtrue
�
Î2t

�
(solid) and �2t (dotted)

from � = 0:8

Figure 6: Êtrue
�
Î2t

�
(solid) and �2t (dotted)

from � = 0:9

tions speci�ed for the entire time series. The
diagnostics calculated from these comparisons
by X-12-ARIMA are fundamental for deciding
when a seasonal adjustment must be rejected
because of inconsistency/instability, see Find-
ley, Monsell, Shulman and Pugh (1990) and
Findley et al. (1998) for details.

These diagnostics can be used if L + 3
years of data are available, where L, the span
length in years, is large enough that the speci-
�ed adjustment options can yield adjustments
of reasonable quality for a span of length L, un-
der moderately favorable circumstances. Sea-
sonal adjustment �lters whose coe¢ cients de-
cay slowly require longer spans. The "e¤ective"
length of the seasonal adjustment �lter is the
length needed to obtain adjustments that will
change little when more data become available.
The �lters for adjustment of months near the
center of the series usually produce the best
adjustments. Therefore, for speci�ed software
options, we seek to determine the shortest se-
ries length such that adjustments near the se-



ries�center will change little if the time series is
extended with consistent data, past or future.

For example, when a default X-11 seasonal
adjustment is obtained with the 3� 5 seasonal
�lter (and the 13-term Henderson trend �lter),
the non-zero weights of the symmetric seasonal
adjustment �lter for the center of the series
span 169 months if the series is this long or
longer. However, it is usually the case that al-
most the same seasonal adjustment at and near
the center is obtained for a series of length 85
months with the same center. Consequently,
when the series is 96 or 97 months long, sea-
sonal adjustments for months within a year or
so of its center are usually little changed when
the series is extended with additional data. The
sizes of such changes increase with increasing
distance from the center of the series and can
be large within two years of the ends of the se-
ries. From such considerations, when the 3� 5
seasonal �lter is used, eight years is taken to be
the appropriate span length for sliding spans
analysis, so eleven years of data are needed to
calculate sliding spans diagnostics. By similar
reasoning, six years would be used as the span
length with the 3� 3 seasonal �lter and twelve
years with the 3� 9 seasonal �lter.

The model-based seasonal adjustment �l-
ters of SEATS are always as long as the data
span being adjusted (when the ARIMA model
speci�ed has a moving average component).
We present an approach for determining "ef-
fective" �lter/span lengths for the sliding spans
diagnostic from an analysis of �lters associated
with the airline model. (This is the model
chosen for about half the series adjusted by
SEATS, see Gomez and Maravall, 1997.) Us-
ing the fact that values of � and � are known
for which the SEATS seasonal adjustment �l-
ters have gain and phase-shift properties very
close to those of the X-11 �lters (see Planas
and Depoutot, 2002 and Findley and Martin,
2003), we calibrate the span lengths used for
SEATS to coincide with the span lengths used
for the X-11 �lters when the two types of �lters
are close. In this way, the span length speci�ca-
tions used for SEATS adjustments are anchored
to the successful experiences obtained with the
X-11 �lters.

Let tc denote the midpoint of an observa-
tion interval for Yt of length 241 months. For
2 � L � 20 and tc� 6L � t � tc+6L, consider
the seasonal adjustment from a data span of

length 12L+ 1 centered at tc,

ALt = E (AtjYs; tc � 6L � s � tc + 6L) :

We focus on the adjustment one year past the
center of the span, ALtc+12, and consider its root
mean square di¤erence from the adjustment
A20tc+12 from the 241 month span as a fraction
of the root mean square error of A20tc+12,

relerr(L) =

(
E
�
ALtc+12 �A

20
tc+12

�2
E
�
A20tc+12 �Atc+12

�2
)1=2

:

We have chosen A20tc+12, the adjustment
available with twenty years (and one month)
of data, as the closest value to the truth
Atc+12 the user might ever see and there-
fore the reference adjustment for evaluating
the performance of ALtc+12. The quan-
tity relerr(L) is easily calculated from
state-space smoothing algorithms using
the decomposition E

�
ALtc+12 �Atc+12

�2
=

E
�
ALtc+12 �A

20
tc+12

�2
+ E

�
A20tc+12 �Atc+12

�2
,

which results from the fact that for L � 20,
ALtc+12 � A20tc+12 is a linear combination
of Ys; tc � 120 � s � tc + 120 and is therefore
uncorrelated with the error of the optimal
estimate A20tc+12 of Atc+12 from these Ys.

When Yt obeys the airline model,
relerr(L) depends on � and �, but the de-
pendence on � is weak. For a given � (and �
between 0:2 and 0:8), de�ne the span length
for sliding spans analysis to be

L� = min (L : relerr(L) � 0:25) : (17)

Table 4. � � 0 at which the span length L�
increases to the value indicated.

� L� (in years)
0.160 5
0.325 6
0.490 7
0.535 8
0.620 9
0.640 10
0.695 11
0.710 12
0.750 13
0.760 14
0.795 15
0.805 16
0.840 17
0.850 18

> 0.910 19



The span lengths of 6, 8, and 12 years used
by X-12-ARIMA with the 3�3, 3�5, and 3�9
�lters coincide with the lengths L� for the ��s
that de�ne the best airline model approxima-
tions to these seasonal adjustment �lters in Ta-
ble 1 of Planas and Depoutot (2002), namely
� = 0:38, 0:55, and 0:73, respectively. (The �
values paired with these � in their Table 1 are
between 0:58 and 0:60:)

Our Table 4, obtained from (17) with
airline models, provides the span lengths L�
(in years) we currently recommend for sliding
spans analyses of SEATS seasonal adjustments
from a model with seasonal di¤erencing and a
seasonal moving average factor � � 0:160. For
0 � � < 0:160, use L� = 4.

With four spans of the speci�ed length,
sliding spans diagnostics are to be interpreted
as indicated in Findley, Monsell, Bell, Otto
and Chen (1998). In preliminary studies at
the Census Bureau involving simulated se-
ries with known seasonal decomposition com-
ponents, this sliding spans diagnostic imple-
mented for SEATS provided more reliable indi-
cations of adjustment inaccuracy than all other
diagnostics considered: on average, the greater
the inaccuracy, the larger the maximal changes
in adjustments over the spans. This approach
to determining span lengths does not provide
useful results for � � 0:85. In fact, it requires
series lengths that will often be impractical for
� � 0:71. We have ideas for approaches to de-
tect excessive instability with spans of length
10 years or less for large values of �.
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