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Abstract:

The Airline model, introduced by Box and Jenkins in their sem-
inal bookTime Series Analysis: Forecasting and Control, is rou-
tinely used to model economic time series. This model is pa-
rameterized by two factors, and gaussianity is usually assumed
for the underlying noise component. Here, this model is gener-
alised to include a non-Gaussian component to model outliers in
the data. The model is examined using a state-space modelling
approach, and importance sampling (see Durbin and Koopman).
It utilises the decomposition method for ARIMA models devel-
oped by Hillmer and Tiao. This is necessary in order to pre-
serve the airline structure whilst allowing a flexibility to include
non-Gaussian noise terms for different components in the model.
Different forms for the generalisation of the noise term are in-
vestigated. The models are interrogated through the use of a real
series, the US Automobile Retail Series. The new models allow
outliers to be accounted for, whilst keeping the underlying struc-
tures that are currently used to aid reporting of economic data.

1. Introduction

The aim of seasonal adjustment is straightforward: remove sea-
sonal variations from time series observations. For many eco-
nomic time series the seasonal cycle is clearly visible in a time
series graph but it can not be observed. An important task of the
U.S. Bureau of the Census is to extract the seasonal component
in economic time series and to remove it from the series. Years
of experience from experts and users have culminated in the cur-
rent Census X-12-Arima procedure which is described and doc-
umented in Findley, Monsell, Bell, Otto, and Chen (1998) and
Ladiray and Quenneville (2001). The Census X-12 program has
become the standard seasonal adjustment method for many sta-
tistical agencies worldwide.

A simple approach to estimating seasonal effects that are ad-
ditive is to consider seasonal means by computing the sample
mean of observations associated with a particular season (e.g.
calender months or quarters). With regression and other statis-
tical models, seasonal effects can be estimated by including so-
called seasonal dummy variables which in effect allow different
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means for different seasons. Alternatively, seasonal effects can
be removed directly by considering the sum ofs observations of
the last year wheres is the number of seasons in a year. When
focus is on the growth rate of seasonally adjusted time series,
this approach amounts to taking annual differences of the time
series. For both approaches seasonal effects are determined by
weighting the appropriate observations using zeros and ones as
unnormalised weights. As a result the observation weights are
not discounted when they lie further away. In the dummy case
the weighting patterns are too wide for practical purposes while
in the seasonal-sum case they are too short. More advanced meth-
ods of seasonal adjustment aim at discounting weighting patterns
which are not too wide and not too short. Weighting patterns for
seasonally adjusted data can be determined explicitly by choos-
ing a set of moving average filters or implicitly by estimating a
seasonal time series model. One of the most commonly used sea-
sonal models is the airline model introduced by Box and Jenkins
(1976) who used it to study a time series of monthly number of
US airline passengers. The airline model is given by

(1−B)(1−Bs)yt = (1− θB)(1−ΘBs)ξt (1)

whereξt ∼ N (0, σ2), t = 1, . . . , n with observationyt, back-
shift operatorB so thatByt = yt−1 andBsyt = yt−s, seasonal
lengths (s = 4 for quarterly data ands = 12 for monthly data)
and white noise disturbanceξt. The model requires non-seasonal,
∆(B) = 1−B, and seasonal,∆s(B) = 1−Bs, differencing and
is based on a moving average polynomial of degrees+1. The dy-
namic characteristics of the model depend on two parametersΘ
andθ, which essentially describe the seasonal and non-seasonal
structure of the data, respectively, although not completely inde-
pendently of one another. The airline model falls within the class
of seasonal autoregressive integrated moving average (ARIMA)
models.

For any seasonal adjustment procedure, a difficult problem to
handle in practice is the treatment of outliers in a time series. The
identification of outliers for a given time series and a given model
specification leads to two particular problems. The first is that an
outlier can only be identified with respect to a specific model. An
observation may be an outlier for one model but not for another
model while both models can be nested or even fall within the
same class. The second problem is related to the sample choice.
An observation common to two different samples may be iden-
tified as an outlier in one sample while it is not an outlier for
another sample. When an outlier is identified in a time series, it
is not guaranteed that the observation will again be identified as
an outlier when the time series is extended with more recent ob-
servations even if the same model and the same outlier detection
method are used. Such outlier detection practices lead to seasonal



adjustment procedures for which new outliers may be identified
while previously identified outliers may later be regarded as reg-
ular observations. Therefore revisions of seasonal adjustments
and sliding-spans statistics are highly sensitive to outliers; (see
Findley, Monsell, Bell, Otto, and Chen (1998)). Since outliers
and ways in which they are treated in seasonal adjustment proce-
dures are highly influential with respect to the resulting season-
ally adjusted series and its properties, official statisticians regard
these as important problems that deserve attention.

Here, outliers in time series undergoing seasonal adjustment
are considered utilising heavy tailed distributions to handle out-
liers within seasonal adjustment procedures. In this approach the
detection and the seasonal adjustment itself are not considered
as separate parts of the procedure but they are treated simultane-
ously. Whilst the airline model will be explored explicitly, this
approach can be used for a wide variety of model classes in a
similar way.

Earlier contributions in the treatment of outliers in the context
of model-based seasonal adjustment are given by Chang, Tiao,
and Chen (1988) who consider the estimation of general ARIMA
models in the presence of outliers and by Hillmer, Bell, and Tiao
(1983) who consider these methods in the context of seasonal
adjustment. A different approximation technique is developed
by Durbin and Cordero (1993) who present a treatment for out-
liers in the context of general state space models. The estimation
techniques that we use in this paper rely on state space and im-
portance sampling methods which are explored in Durbin and
Koopman (2001). These methods lead to exact maximum likeli-
hood estimates subject to Monte Carlo error.

2. The canonical airline model in state space form

The airline model is an example of the wider ARIMA class of
models. Box and Jenkins (1976) discusses the airline model as
a special case of seasonal ARIMA models. These are models
which can be written as stationary ARMA models when appro-
priate seasonal and non-seasonal differences are taken. When the
Box and Jenkins methodology of identifying ARIMA models is
taken, many seasonal time series in economics and business can
be effectively described by an airline model. Further the airline
model is parsimonious and is relatively easy to estimate.

Model-based seasonal adjustment relies on the principle that
the airline model can be decomposed into different unobserved
components. The seasonal component is removed from the data
to obtain seasonally adjusted data. The seasonal component is
not observed and hence has to be inferred from the data itself
through the use of a model.

2.1 Canonical decompositions

The aim is to decompose time seriesyt into components for sea-
sonalSt, trendTt and irregularIt under the assumption that
yt = St + Tt + It is modelled by the airline model. Typical
models for the components are

∆(B)2Tt = θT (B)ωt

(1 +B + . . .+Bs−1)St = θS(B)ηt

It = εt

(2)

andωt, ηt andεt are assumed to be white noise with variances
σ2

ω, σ2
η andσ2

ε respectively. The moving average polynomials
θS(B) and θT (B) refer to the seasonal and trend components
respectively. However, unless other assumptions are made the
decompositions will not be unique. It is often advantageous to
have known noise properties for the different components and as
such one property that is commonly proposed is to completely
remove white noise from the seasonal component. In the case of
separate trend and irregular components, all the white noise from
the trend component is removed as well. This results in a unique
decomposition if the decomposition is possible (the possibility
exists that there may not be enough white noise in the system to
do this). The noise processes for each of the components are all
assumed to be independent and as such this is one reason for the
restriction on the parameter space that can be represented in the
canonical form.

The decomposition was originally derived in work by Burman
(1980) and Hillmer and Tiao (1982) who demonstrated how to
calculate the separate components and the noise ratios for each
of the new resulting components. Essentially this is based on a
partial fraction decomposition and minimization,

θ(B)θ(B−1)
∆(B)∆s(B)∆(B−1)∆s(B−1)

σ2 =
θS(B)θS(B−1)
U(B)U(B−1)

σ2
ω

+
θT (B)θT (B−1)
∆(B)2∆(B−1)2

σ2
η + σ2

ε

(3)

whereθ(B), σ2 refer to the Airline model as defined in (1), that is
considered for time seriesyt. U(B) is the seasonal sum operator,
namelyU(B) = 1+B+. . . Bs−1. The partial fraction decompo-
sition can be found by coefficient matching or any other suitable
method, yielding a set of partial fractions and a remainder term.
It was found that for the airline model, it was very efficient to find
the coefficients using a matrix system of equations. The denomi-
nators are easy to construct for the airline model as the multiplied
out polynomials are easy to compute (x−2−4x−1 +6−4x+x2

andx−(s−1) + 2x−(s−2) + . . . + s + . . . + 2xs−2 + xs−1) and
thus the matrix is easy to set up:

1 −4 6 −4 1 0 . . . 0
0 1 −4 6 −4 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 −4 6 −4 1

1 . . . s . . . 1 0 . . . 0
0 1 . . . s . . . 1 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 . . . s . . . 1


. (4)

This matrix describes how to convert each of the two compo-
nents, seasonal (top block) and non-seasonal (lower block), to
the MA component of the original airline model. Thus the in-
verse of this matrix applied to the squared (where here squared is
multiplying the forward and backward MAs) MA coefficients of
the airline model then results in the squared MA coefficients for
the individual components. The squaring of the original airline



model MA parameters can easily be accomplished using the fast
fourier transform or other polynomial multiplier.

In the following we adopt the frequency domain approach of
signal extraction, see Bell (1984). The partial fraction compo-
nents contain white noise and as such are not the canonical form
that we require. To remove white noise, it must be possible for
the components to have a minimum value, across all frequencies,
of zero,i.e. the pseudo-spectrum must have a minimum value of
zero. This is because white noise has a flat spectrum, and as such
the addition or subtraction of a constant to the spectrum can be
seen as changing the white noise component. Hence if

γS = minw
θS(eiw)θS(e−iw)
U(eiw)U(e−iw)

σ2
ω (5)

γT = minw
θT (eiw)θT (e−iw)
∆(eiw)2∆(e−iw)2

σ2
η, (6)

then by subtracting the minimum from each of the components
and addingγS+γT toσ2

ε , the canonical decomposition is formed.
However, whenγS + γT + σ2

ε < 0, the decomposition is said
to be inadmissible and a model decomposition with the desired
properties does not exist. Hillmer and Tiao (1982) showed that
the decomposition is always admissible for the airline model if
Θ > 0. Assuming the canonical form is admissible, then the
minimums are subtracted from the original decompositions and
the new decompositions are formed. These are still in the form
of squared components so these are then solved to find the under-
lying MA models for each of the components. Several methods
have been proposed to do this, including simple root solving (the
roots come in inverse pairs due to the nature of the polynomial) or
a method developed by Maravall and Mathis (1994) which allows
more numerical stability in the root finding for large polynomials.

2.2 State space representation of decomposition model

The ARMA model can be put in state space in different ways;
see, for example, Problem 2.6 of Anderson and Moore (1979).
Also any ARIMA model can be written in state space form. The
general state space model is given by

yt = Zαt +ut, αt+1 = Tαt +Rvt, t = 1, . . . , n, (7)

where

ut ∼ N (0, σ2H), vt ∼ N (0, σ2Q), α1 ∼ N (a, σ2P ),
(8)

with m × 1 state vectorαt, modelled as a vector autoregressive
process, and observationyt, depending linearly onαt. The sys-
tem matricesZ, T andR are fixed and known but some elements
may depend on, for example, the coefficients of the autoregres-
sive and moving average polynomials. The ARMA model, is
given in state space form as (7) and (8) with the first element of
the state vectorαt equal toyt (remaining elements are auxiliary
variables) and with

Z′ =


1
0
...
0
0

 , T =


φ1 1 0 · · · 0
φ2 0 1 0
...

...
. . .

φm−1 0 0 1
φm 0 0 · · · 0

 , R =


1
θ1

...
θm−2

θm−1


(9)

with m = max(p, q + 1) and furtherH = 0 andQ = 1. The
mean vector of the initial state vector isa = 0 and the initial
variance matrix,P , is the solution of

(I − T ⊗ T ) vec(P ) = vec(RR′). (10)

The general ARIMA model can also be formulated in state space
form in similar ways. State elements associated withD(B), the
non-stationary part of the ARIMA model, require special initial-
isation conditions.

The ARIMA components model can be formulated in state
space form by incorporating the individual components (i.e.
Trend, Seasonal and Irregular) in one state vector; see discussion
in Bell (2003). For example, consider the decomposition model
with the ARIMA componentsSt andNt as implied by the canon-
ical decomposition of the airline model. The state space form for
this model is a combined version of the individual models for the
components.

3. Treatment of outliers for seasonal adjustment

Outliers can be problematic for seasonal adjustment since the es-
timated seasonal component, whether model-based methods are
used or not, can be heavily influenced by the presence of outliers
in the time series. A common method for identifying outliers is
to include an outlier dummy for a specific observation at timet.
The corresponding coefficient is estimated simultaneously with
the other parameters of the model. When the dummy coefficient
is significant for a certain confidence level, the associating obser-
vation is then treated as an outlier. This procedure is repeated for
every observation. When the model is cast in state space form,
a more efficient method of computing outlier diagnostic tests for
all observations can be adopted using the disturbance smoothing
algorithm; see Harvey and Koopman (1992). In the case of the
ARIMA components model, the outlier dummy variable can be
incorporated within the framework of regression ARIMA com-
ponents models of Bell (2003).

The aforementioned method of detecting outliers based on out-
lier dummies is not satisfactory since it relies on a variety of sub-
jective decisions of which usually little reference can be made to
underlying statistical properties. Also, once an observation is de-
tected to be an outlier and the associated dummy variable is kept
in the model, the observation is effectively removed from the time
series. It is an all or nothing strategy. A more compelling strat-
egy would be to weight observations in some effective way so
that less weight is given to potential outlying observations while
more weight is given to other observations. It is therefore prefer-
able to model outliers as a component and to include them as part
of the model. This leads to the introduction of a component for
outliers that is part of the ARIMA components model. Various
distributional assumptions for this component can be considered
including heavy tailed distributions such as t and mixture of nor-
mals.

3.1 Outliers in the Airline Model

Modelling outliers as part of the error termεt in the airline model
(1) is problematic. For example, instead of a Gaussian distur-



bance termεt a heavy tailed distribution forεt may be consid-
ered. However, the disturbance term of the airline model is asso-
ciated with all the dynamics, including the ones associated with
the seasonal and irregular components, as opposed to just a part
of it; see also the discussion in Box and Tiao (1975). It is there-
fore not easy to discriminate the irregular error from the seasonal
and trend components. However, the additive outliers should be
associated with the irregular rather than with all components.
Thus, the heavy tailed distribution must apply to the irregular
but not to the trend and seasonal components. Here the theory of
canonical decomposition can come into play. The decomposition
allows the addition of an error component into the irregular term
which can follow a heavy tailed distribution without that term
being associated with the seasonal or the trend. However, care
must be taken when outlining the new model so that the structure
of the model still remains of an airline form. This is important
so that the underlying economic understandings derived from the
model are not lost. The general component models allow for a
much wider range of options than the underlying airline model
and as such estimation must be constrained so that the airline
model structure (or a version as close as possible) is still implicit
in the model. A similar problem applies to the trend component
if a heavy tailed distribution is to be used for its noise compo-
nent so that breaks in trends, also known as level shifts, can be
modelled.

3.2 Outlier component

When the airline model is represented by the ARIMA compo-
nents model implied by the canonical decomposition, it includes
an irregular component. Although this white noise irregular com-
ponent is independent of the trend and seasonal components, it
depends on the airline coefficientsθ, Θ andσ2 via the canonical
construction in the same way as the other two ARIMA compo-
nents depend on them. This suggests that another white noise
component, that is independent of the imposed airline structure,
may be identified. In the case where the time seriesyt is truly
generated by airline model (1) without any additional shocks, the
outlier component will be zero since it does not come into play
and, when it is considered for estimation, it will not be signif-
icant. When the generation ofyt is distorted by additive noise
that is not related to the implied trend and seasonal dynamics of
the airline model, the outlier component will be non-zero to ac-
commodate potential outliers.

The outlier componentOt can be modelled in various ways.
An obvious choice is to have it as a Gaussian white noise term
with a relative large variance, that is

Ot ∼ N (0, σ2
O), t = 1, . . . , n, (11)

with σ2
O >> σ2

ε . The outlier component is independently dis-
tributed amongst all other disturbances in the model and for all
disturbances at different time points. For noisier time series a
heavy tailed distribution can be considered with the t or the mix-
ture of normals distributions as obvious examples. The definition
of the outlier component in the case of a t distribution is given by

Ot ∼ t(ν, σ2
O), t = 1, . . . , n, (12)

whereν > 2 is the number of degrees of freedom andσ2
O is

the variance which is constant for anyν. In the other case of an
outlier component modelled by a mixture of normals, we have

Ot ∼ (1−ψ)N (0, σ2
O)+ψN (0, σ2

Oλ), t = 1, . . . , n, (13)

where0 ≤ ψ ≤ 1 determines the intensity of outliers in the series
andλ measures the magnitude of the outliers.

The inclusion of an outlier component will add at least one
(in the Gaussian case) or more (in the non-Gaussian case) coeffi-
cients which brings the total number of four or higher parameters
to be estimated. The extra variance parameter that needs to be
considered can be dropped if it is possible to fix it as a multiple
of the irregular variance of the canonical decomposition. This
reduces the parameter space at the cost of less flexibility in mod-
elling the time series. If multiple breaks in the trend also need
consideration, it would be possible in turn to add a further one or
two parameters to the model to account for this but would again
increase the problems of identifying unknown parameters from
usually short time series.

Apart from adding the outlier componentOt to the decom-
positionyt = St + Tt + It, another way of incorporating the
outlier component exists. An outlier term attempts to model a
discrete function with a continuous approximation. Outliers are
points which do not lie within the limited statistically likely space
defined by the model. Whilst we are modelling outliers as a con-
tinuously distributed function, the known case would just be to
exclude an outlying point from the model, a discrete function.
One possibility to improve the approximation is to include the
underlying irregular term from the airline model along with the
discrete outlier function to generate a new inclusive noise term.
In effect, the irregular termIt is then replaced by the outlier com-
ponentOt such that

yt = St + Tt +Ot, Ot ∼ t(ν, σ2
O), t = 1, . . . , n.

where the t-density approximates the density of the sum of the
irregular componentIt and the discrete outlier function. This
model has the same number of parameters as the earlier specifi-
cations, the only difference being whether the two noise compo-
nents are modelled separately or together. However in both cases
the componentOt can be regarded as continuous in the sense that
it is defined at every point even in the known case.

Whilst the first formulation of the decomposition model with
Ot added and assumed to be an observational error does not re-
quire use of the canonical form in its estimation, the second with
Ot replacingIt does require estimation through the canonical
form, due to the inability to write this model in terms of the non-
canonical airline model.

4. Illustration

A real data set from the US Census Bureau with outliers was ex-
amined. All computations have been carried out using the object-
oriented matrix programming environment ofOx, see Doornik
(2001). Extensive use is made of the state space functions in the
SsfPack library, see Koopman, Shephard, and Doornik (1999).



For Gaussian models, once the model is in state space form and
all disturbances are assumed Gaussian, the Kalman filter can be
used to construct the exact likelihood function. However, non-
gaussian estimation of the model is carried out using the im-
portance sampling and simulation methods described in detail
in both Durbin and Koopman (2000) and Durbin and Koopman
(2001).

4.1 US Automobile Retail Series

A data set from the US Census Bureau was investigated to evalu-
ate the effectiveness of the procedure. This series was examined
and it was determined that there were outliers present using a
longer version of the data set. However when a shortened sub-
set of the data was taken, it was found that the outliers, assumed
to be in the data, depended on the threshold that was chosen for
outlier detection. If a relatively small threshold was used (that is
3.0) then the two of the three outliers determined for the longer
series were found, whilst if this number was larger (that is4.5)
then none of the outliers were detected. Typical values of thresh-
olds used in seasonal adjustment tend to be high due to the large
number of tests that are being performed. This difference allows
illustration of the advantages of using a t-distribution, as a prede-
termined threshold for the detection of the outliers is not required.
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Figure 1: US Retail Sales of Automobiles (Jan 1977-Mar 1988,
source: US Census Bureau) and estimated components from a
three components model with t-distribution for outlier compo-
nent: (top) seriesyt and trendTt; (middle) seasonal component
St; (bottom) outlier componentOt.

The components resulting from fitting the model with the t-
distribution to account for outliers can be seen in Figure 1. In
the four components model, the outlier component does not only
account for the outliers but also accounts for some of the other
noise in the system. This is due to the continuous nature of the
t-distribution. Whilst the irregular component left in the Gaus-
sian part of the model is still present, it is now different to the
component in the original Gaussian only model. However, in the
three components model, the irregular component is replaced by
the outlier component which does not lead to this problem of the

noise being separately modelled. Whilst only the three compo-
nents model output is shown in Figure 1 the four components
model is very similar but has a slight tendency to have problems
distinguishing the two different error components.
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Figure 2: US Retail Sales of Automobiles (Jan 1977-Mar
1988, source: US Census Bureau) and estimated components
from a Gaussian model and a three components model with t-
distribution for outlier component: (top) seasonal component
from Gaussian model with outlier threshold value of3.0 (sea-
sonal) and seasonal from three components t-model (t-seasonal)
and the difference between the two series; (bottom) seasonal
component from Gaussian model with outlier threshold value of
5.0 (seasonal) and seasonal from three components t-model (t-
seasonal) and the difference between the two series. The dif-
ferences are normalised to the root mean square of the seasonal
signal.

In Figure 2, the seasonal components from the two different
models are overlayed with the two different threshold levels on
the subsequent graphs. As can be seen, if the threshold is set too
high, in this case, the seasonality is markedly different from the
t-seasonality as the presence of the outliers is not detected. It is
most noticeable towards the end of the series. This can be more
easily seen in the difference between the two. It should also be
noted that the changes in seasonality are largest (up to 40% of the
root mean square of the seasonal signal) near the outliers, they
are still present even in months much earlier than the outliers.
However, as can also be seen, if the outliers are detected then the
seasonal components in the Gaussian and t-case are much more
alike. Even subtle changes can have a big effect, especially on
yearly changes of seasonally adjusted data. Thus it is likely that
the problem of where to set the threshold, so that only outliers
are removed and not actual data, can be ignored if a t-distribution
is used, where no predetermined threshold is needed.

5. Discussion

This paper discusses the role and treatment of outliers in seasonal
adjustment. Although seasonal adjustment can take many forms,
here we are concerned with unobserved component ARIMA



model based seasonal adjustment where a model is used to sea-
sonally adjust the data, as opposed to a filter based approach such
as the X-11 approach. However, the model based ideas can en-
compass either the structural modelling ideas of STAMP or al-
ternatively the airline and other ARIMA based canonical decom-
position models. Traditional treatment of outliers is based on the
use of dummy regression variables to account for the outliers in
the data evaluated on a model by model basis for each sample of
the data. This is an all or nothing approach where the data point
under evaluation is either included or excluded from the model
based on a subjective threshold and the current model, including
any previously identified outliers, under evaluation.

A method of using heavy tailed distributions to account for
outliers is investigated. The heavy tailed distributions are applied
here to the irregular component in the model decomposition in
order to account for additive outliers although this generalises
to other outlier types by assigning heavy tailed distributions to
other components, for example the trend component to account
for level shifts in the data. This method allows for an objective
method of determining the outliers through a form of weighting
for the data, as opposed to the all or nothing subjective approach.
The seasonal adjustment will be less sensitive to the outliers in
the series as they will be separately dealt with on a continuum
basis as opposed to the their entire inclusion or exclusion. In the
automobile series example, it was seen that the inclusion or ex-
clusion of a point outlier can have a marked effect on the seasonal
component and thus on the seasonally adjusted series, whilst the
seasonal adjustment taking into account the t-distributed outlier
component is more stable and closely resembles the series where
all outliers are adequately captured.

There are assumptions made in the method and it is necessary
to realise the limitations these impose. It is important to remem-
ber that any additional components to be estimated in the model
make the entire model more difficult to identify and as such ac-
counting for many different types of outliers such as the ones in
the seasonal component for example, as well as level shift and
additive outliers, may lead to the model becoming unidentifiable
for short series. Longer series may also have problems due to
the changing nature of the data over the time period, as defini-
tions and other non-statistical effects occur in the data. Thus
it is important to determine which components are most effec-
tively modelled, which is a problem for all model based proce-
dures. Also importance sampling, whilst working well for most
t-distributed data can break down as the degrees of freedom be-
come too small. In most cases this will not be a problem, and
limits can be set during the estimation to ensure the degrees of
freedom are only estimated over an estimable range.

The new methods presented here for seasonally adjusting the
airline model lead to a more robust adjustment in the presence of
outliers whether or not these outliers are well known. Although
the focus here was for the airline model, these methods are easily
extendable to other model based decompositions and adjustments
and will provide a less subjective and more robust framework in
which to carry out the seasonal adjustment of many economic
time series.
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