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Multiplicative Noise for Masking Continuous Data

Jay J. Kim and William E. Winkler1

Abstract

To protect the identity of the persons or firms on a microdata file, noise is sometimes added to
the data before releasing it to the public.  There has been conjecture that, rather than adding
noise,  multiplying noise might better protect the confidentiality. Two forms of multiplicative
noise are considered.  The first approach is generating random numbers which have mean one
and small variance, and multiplying the original data by the noise.  The second approach is to
take a logarithmic transformation, compute a covariance matrix of the transformed data, 
generate random number which follows mean zero and variance/covariance c times the
variance/covariance computed in the previous step, add the noise to the transformed data and
take an antilog of the noise added data. This paper investigates the statistical properties of both
methods and shows how well they protect the identity of those on the file via re-identification
trials.

Key Words:  Microdata,  confidentiality,  mask,  multiplicative noise.
 
1. Introduction

In 1993, the Department of Health and Human Services (HHS) commissioned the Bureau of the
Census to create a microdata file by combining the 1991 March Current Population Survey (CPS)
data with income data from the 1990 Internal Revenue Service (IRS) 1040 Income Tax Return
file.  The file was needed for statistical purposes in analyzing income tax policies and low-
income supplemental payments.   Income tax and other data needed to be masked in the resultant
file so that both IRS and Bureau of the Census confidentiality requirements were met. 

To satisfy the two conflicting requirements: (1) protect confidentiality for the people on the file,
and (2) maintain analytic properties of the unmasked data, we used an additive noise approach
(Kim 1986, 1990; Fuller 1993; Kim and Winkler 1995; Winkler 1998, Roque 2000, Yancey et al.
2002).  We used the additive noise approach because it is easy to implement and does a good job
satisfying both requirements.  Alternative approaches that produce synthetic or simulated data
(Kennickell 1999) can yield data that satisfy both requirements reasonably well but require
considerable skill to implement.  To further assure confidentiality of the file that was masked
with additive noise, we performed data swapping (Dalenius and Reiss 1982) on a small part of
the file (less than one percent) that might possibly be re-identified.  Because of minimal data
swapping, the main analytic properties of the data were maintained.
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2  After this paper was drafted, a paper (see Muralidhar, et al) dealing with a multiplicative scheme came to
the authors� attention.  However, our current paper is more comprehensive.

3  All ei j's for a given j follow the same distribution. That is, we assume an independent, identical
distrubution for all i for a given j.

Because multiplicative noise is often more suitable for economic modeling of income data,
Hwang (1986), among others, has conjectured that it might be more suitable than additive noise
in some situations.  In this paper, we consider two forms of multiplicative noise.  The first, called
Multiplicative Noise Scheme I, is to generate normal random numbers which have mean 1, and
multiply the original data by this noise.  The second approach, called Multiplicative Noise
Scheme II, is to take a logarithmic transformation on the unmasked data, compute a covariance
matrix of the transformed data, generate random numbers which follow a normal distribution
with mean 0 and variance/covariance which is c times the variance/covariance obtained in the
previous step, add the noise to the transformed data, then take the antilog.  The former was once
used by the Energy Information Administration in the U.S. Department of Energy.  Specifically,
to mask the heating (and cooling) degree days, hj , a random number, rj , is generated from a
normal distribution with mean 1 and variance .0225.  The random number is truncated such that
the resulting number ej satisfies .  Note ej is neither continuous nor discrete, but.01 � �e j�1�� .6
mixed due to truncation. The masked data hjej were released. 

In this paper, we will investigate the statistical properties of both schemes mentioned above
(sections 2 and 3) and try the schemes in masking Internal Revenue Service (IRS) income data,
calculating the mean and the variance from the masked file in an effort to recover the mean and
the variance 2 of the unmasked data (section 4).  We also try to match the records in the masked
file against those in the unmasked file (section 5).

2.        Multiplicative Noise Scheme I

2.1. Masking Scheme

Let xi j  be the value for the ith person's jth characteristic, i = 1, 2,... n;   j = 1, 2,... . p.  We will
denote the noise ei1, ei2 . . . . ei p corresponding to xi1, xi2 . . . , xip.  We let
 

yi j  = xi j ei j

where ej 
3is a random variable following a normal distribution with mean µj and variance σj

2 
before truncation. The noise is usually doubly truncated such as in the following equation

 f (e) �

1
2πσ

exp[� 1
2σ2

(e � µ)2 ]

1
2πσ�

B

A
exp [� 1

2σ2
(e � µ)2 ] de

for A < e < B
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   (1)�

1
2πσ

exp [� 1
2σ2

(e � µ)2 ]

Φ ( B�µ
σ
) � Φ (A�µ

σ
)

where  A and B are the lower and upper truncation points and  stands for the cumulativeΦ(A)
probability up to A.  The above can be reexpressed as 

K
σ
Z( e�µ

σ
)

where   K� 1

Φ ( B�µ
σ
) � Φ ( A�µ

σ
)

and 

Z(x) � 1
2πσ

exp[� 1
2
x 2 ]

The amounts of truncation are  from below and  from above.Φ ( A�µ
σ
) 1�Φ ( B�µ

σ
)

2.  2. Properties of the Masked Data
 
2.2.1.   Expected Value of yj When |ej - µj| ���� c

Since xj and ej are independent,

E(yj) = E(xj) E(ej),

where, ignoring subscript j 

E(e) � K 1
2π σ �

B

A
e exp[� 1

2σ2
(e � µ)2 ] de

(2)� µ � K [Z( A � µ
σ

) � Z(B � µ
σ

) ] σ

The above integration was achieved by putting .  Then  and  . h �
e � µ
σ

e � σ h � µ de � σ dh
From equation (2),
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E(x) � E(y)

µ � K [Z( A � µ
σ

) � Z(B � µ
σ

) ]σ

Since the data disseminator will release , , A and B, users can compute the expected value ofµ σ
the noise.   Z(x) is the ordinate of the standard normal curve and Z(-x) = Z(x).  If , thenA � �B
the bias of e is zero because  .   If A �B, then the bias can be either positiveZ( �B�µ

σ
) � Z( B�µ

σ
)

or negative.

The variance of the noise can be calculated similarly.

V(y) � E(y 2) � [E(y) ]2

.� E(x 2) E(e 2) � [E(x )E(e) ]2

Now

.                                         (3)E(e 2) � K 1
2πσ �

B

A
e 2 exp[� 1

2σ2
(e � µ)2 ]de

Let  ,   then  and .  The above equation becomes  h� e � µ
σ

e � σ h � µ de � σdh

.             (4)E(σh � µ)2 � K 1
2π �

B�µ
µ

A�µ
σ

(σ2h 2 � 2σµh � µ2) exp[ � 1
2
h2]dh

Equation (4) can be evaluated as the sum of the following three components, 

Component (1)    -                (5)σ2 K 1
2π �

B�µ
σ

A�µ
σ

h 2 exp[� 1
2
h2 ] dh

Component (2)    -                                (6)2 σ µ K 1
2π �

B�µ
σ

A�µ
σ

h exp[� 1
2
h 2] dh

Component (3)    -                                     (7)µ2 K 1
2π �

B�µ
σ

A�µ
σ

exp[� 1
2
h 2]dh

Component (1) can be evaluated by integration by parts.  To do so, let 

   (hence )u � h du � dh
and 

    (hence ).dv � σ2K 1
2π

h exp[� 1
2
h 2] dh v � �σ2 K 1

2π
exp[� 1

2
h 2]

Equation (5) becomes
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uv�
B�µ
σ
A�µ
σ

� �

B�µ
σ

A�µ
σ

vdu � �σ2K 1
2π

h exp[ � 1
2
h 2] �

B�µ
σ
A�µ
σ

� σ2K 1
2π �

B�µ
σ

A�µ
σ

exp[� 1
2
h 2]dh

� �σ2 K h Z(h)�
B�µ
σ
A�µ
σ

� σ2 KΦ(h)�
B�µ
σ
A�µ
σ

Equations (6) and (7) reduce to 

    and    ,  respectively.�2σ µ K Z(h)�
B�µ
σ
A�µ
σ

µ2 KΦ(h)�
B�µ
σ
A�µ
σ

Observe that .  ThenΦ(h)�
B�µ
σ
A�µ
σ

� K �1

E(e 2) � σ2 � µ2 � σ2 K[ A�µ
σ

Z( A�µ
σ

) � B�µ
σ

Z( B�µ
σ

)]

� 2σµK[Z( A�µ
σ
) � Z( B�µ

σ
)]

If A = -B, the above reduces to

.E(e 2) � σ2 � µ2 � 2σ2K Z( A�µ
σ

)

 .[E(e) ]2 � µ2 � σ2K 2[Z( A�µ
σ

) � Z( B�µ
σ

) ]2 � 2σµK[Z( A�µ
σ

) � Z( B�µ
σ

)]

Finally, 

V(y) � E(x 2)E(e 2) � [E(x )E(e) ]2

{� E(x 2) σ2 � µ2 � σ2K[ A�µ
σ

Z( A�µ
σ

) � B�µ
σ

Z( B�µ
σ

) ]

 }� 2σµK[Z( A�µ
σ

) � Z( B�µ
σ

) ]

{� [E(x ) ]2 µ2 � σ2K 2[Z( A�µ
σ

) � Z( B�µ
σ

) ]2

}.  (8)� 2σµK[Z( A�µ
σ

) � Z( B�µ
σ

) ]

Since , , A and B will be known to users and (the estimate of)  can be easily calculatedµ σ E(x)
following the formula in section 2.2.1,  the estimate of  also can be obtained.V(x)
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If A = -B, the variance of y simplifies to

V(y) � E(x 2) [σ2 � µ2 � 2σ2K Z( A�µ
σ

) ] � [E(x ) ]2 µ2

and

.           (9)V(x) �
V(y) � σ2E(x 2) [1�2KZ( A�µ

σ
) ]

µ2

3.        Multiplicative Noise Scheme II

3.1. Masking Scheme

We define  the same way as before.xi j

Let
yi j � ln xi j

,  V(Y) � Σ

where  is the variance/covariance matrix of variables x1, x2, . . . xp.  We generate the randomΣ
numbers following a multivariate normal distribution , where c is a positive numberN (0, cΣ)
between zero and one.  We denote the noise variables e1, e2, . . . ep.

Let  zi j � yi j � ei j

Thus  =  antilog of ui j zi j � exp(yi j � ei j)

 .� exp [ ln xi j � ei j ] � xi j exp[ei j ] � xi jhi j

The values of some variables such as adjusted gross income can be negative.  In that case, to be
able to take logarithms on the variable, we suggest adding a small number (same number to all
observations) to make all values positive.

3.2. Properties of the Masked Data in Logarithmic Scale

The multiplicative scheme such as  is usually converted to the linear form by takingy � ax
β1
1 x

β2
2

logarithms on both sides, i.e., .   lny � ln a � β1 ln x1 � β2 ln x2

In an additive regression model, when  is exponentially distributed,  is converted tox1 x1
 and  is built.  In this case, adding noise to the log-transformedz1 � ln x1 y � a � β1z1 � β2x2

variables makes perfect sense.  That is, the properties of the additive noise demonstrated in Kim
(1986) and Kim and Winkler (1995) hold in log-scale.  The mean is unbiased, the unbiased
variance/covariance in log-scale can be recovered and the unbiased subdomain estimates can be
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easily obtained from the masked data in log-scale.

3.  3. Properties of the Masked Data

3.3.1.   Expected Value of  u

We let σ2 = cV(ln x).  Recalling h = exp (e),

 due to the fact x and h are independent.E(u) � E(x) E(h)

  E [exp(e)] � �
�

��

exp(e) f (e) de

� �
�

��

exp (e) 1
2πσ

exp [� 1
2σ2

e 2 ] de

.� exp [ σ2/2 ] �
�

��

1
2πσ

exp[� 1
2σ2

(e � σ2)2 ] de � exp [σ2/2 ]

Then . (10)E(u) � exp [σ2/2 ] E (x)

On the average, the mean of the masked variable is  times that of the unmasked data.eσ2/2

In order to have an unbiased mean of the masked variable, we need the variance of the noise. 
The variance of noise can be recovered from the masked data by first taking a log-transformation
on the masked data, then by computing its variance and multiplying it by .   Then the meanc

1�cof the unmasked data can be calculated from equation (10) as follows.

Let .  From equation (10), an unbiased estimator for the mean of unmasked data isū �
� u i
n

.                                     (11)ū

exp[ σ
2

2
]

3.3.2.  Variance of  ū

V(u) � E(u2) � [E(u) ]2

� E(x 2) E[exp(2e) ] � {exp[σ2/2 ] E(x)}2

.� E(x2) E[exp(2e) ] � [E(x) ]2 exp[σ2 ]
Now

E [exp(2e)] � �
�

��

exp(2e) 1
2πσ

exp[� e2

2σ2
] de
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� �
�

��

1
2πσ

exp[� 1
2σ2

(e j � 2σ
2)2 � 2σ2 ] de� exp[2σ2 ]

Then V(u) � exp[2σ2 ] E(x2) � exp[σ2 ] [E(x)]2

and
E(x 2) � V(u)

exp[2σ2 ]
�

E(x)2

exp[σ2 ]

The variance of x can then be expressed as follows.

V(x) � E(x 2) � [E(x) ]2

.             (12)�
V(u)

exp[2σ2 ]
�

E(x)2

exp[σ2 ]
� [E(x)]2

3.3.3.   Covariance of  and , j  ���� j’.u j u j ����

Cov(uj,uj') = E(uj,uj') - E(uj)E(uj')

     = E(xj xj' fj fj') - E(xj fj)E(xjfj')

     . � E(x jx j �) E(f j f j �) � E(x j) E(x j �) exp[σ
2 ]

Now

E [exp(e j�e j �)] � �
�

�� �
�

��

exp[(e j � e j �) ]
1

2π 1�ρ2σ jσ j �
exp[� 1

2(1�ρ2)
(
e2j
σ j
2
� 2ρ

e j
σ j

e j �
σ j �

�

e2j �

σ j �
2
) ] de jde j �

� exp[
σ j
2
� 2ρσ jσ j � � σ j �

2

2
]

× ��
1

2π 1�ρ2σ jσ j �
exp ��1/2{( e j

1�ρ2σ j
�

ρe j �

1�ρ2σ j �
� σ j 1�ρ

2)
2
� [
e j �
σ j �

� (σ j � � ρσ j)]
2} �de j de j �

Let  andw �

e j

1�ρ2σ j
�

ρ e j �

1�ρ2σ j �
� σ j 1�ρ

2

.v �

e j �
σ j �

� (σ j � � ρσ j)

Then  d w  =   and   d v  =  
de j

1�ρ2σ j

de j �
σ j �
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The above equation becomes

.exp(
σ2j � 2ρσ jσ j � � σ j �

2

2
)��

1
2π

exp[�1/2(w2 � v2) ] dwdv � exp(
σ2j � 2ρσ jσ j � � σ j �

2

2
)

Then

 - .       (13)Cov(u j,u j �) � exp(
σ j
2
� 2ρσjσ j � � σ j �

2

2
) E(x j,x j �) exp(

σ j
2
� σ2j �
2

) E(x j)E(x j �)

The multiplier of  is different from that of  in the above.  TheE(x jx j �) E(x j)E(x j �)
covariance of  and  can be computed as follows.x j x j �

   .                             (14)Cov(x j,x j �) � {
� u i ju i j �

exp[(σ2j � 2ρσ jσ j � � σ
2
j �)/2]

�

nū j ū j �

exp[(σ2j � σ
2
j �) ]
} / (n�1)

The correlation coefficient  can be obtained from the noise-added variables. As the noise wasρ
generated to maintain the same correlation structure, the correlation between the noise-added
variables will be on the average the same as that between the unmasked variables in log-scale.
If , the covariance formula in (13) reduces toρ � 0

.Cov(u j,u j �) � exp(
σ j
2
� σ j �

2

2
) Cov(xj,xj �)

4.  A Numerical Example

4.1  Data to be masked

The data to be masked are eight income fields from the 1991 Internal Revenue Service (IRS)
1040 Tax Return File.  The eight fields are i) Wage and Salary Income, ii) Taxable Interest
Income, iii) Dividend Income, iv) Rental Income, v) Non-Taxable Interest Income, vi) Social
Security Income, vii) Total Income and viii) Adjusted Gross Income.

4.2    Numerical Example of Scheme I.

We tried the scheme that EIA once used.  That is, random numbers,  are generated from aej
normal distribution with mean 1 and variance .0225.  The generated random numbers are
truncated such that the resulting numbers  satisfy .   This translates into i). ej .01 � �ej�1��.6

 or  ii).  .    The density function of  is.4 �ej� .99 1.01 �ej� 1.6 ej
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 f (e j) �

1
.15 2π

exp[ � 1
.045

(e j � 1)
2 ]

Φ ( 1.6�1
.15

) �Φ ( 1.01�1
.15

) �Φ ( .99�1
.15

) �Φ ( .4�1
.15

)

Following equation (2),

E(e j) � 1 � .15
z(4)�z(.0667) � z(�.0667) � z(�4)
Φ (4)�Φ (.0667) �Φ (�.0667) �Φ (4)

Since Z(-x) = Z(x), the numerator becomes zero and  becomes 1. Thus the mean is unbiased. E(e j)
The following table shows the means from the unmasked and masked data.

Table 1.   Mean of Masked (Based on Scheme I) and Unmasked Data, n=59,315

  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked  23,821    1,825       583     1,189        337       945

Unmasked  23,799    1,825       587     1,190        342       947

As seen in the table, the estimates of the means from the masked data are all close to those from
the unmasked data.

E(e 2j ) � V(e j) � [E(e j)]
2
� .0225�1 � 1.0225

From equation (8),

V(y j) � E(x
2
j ) (σ

2
j � µ

2
j ) � [E(x j)]

2µ2j

�µ2j V(x j) � σ
2
j E(x

2
j )

.�µ2j V(x j) � σ
2
j {V(x j) � E[(x j)]

2 }

Since  ,E(x j) � E(y j)

V(x j) �
1

µ2j �σ
2
j

{V(y j) � σ
2
j [E(y j) ]

2 }

which is
1

1.0225
{V(y j) � .0225[E(y j) ]

2 }

Using the above expression, the standard deviation of Wage, Taxable Interest, Dividend, Non-
Taxable Interest, Rent and Social Security Income is calculated.  In the table below, these
estimates and the standard deviations of the unmasked data are shown.
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Table 2  Standard Deviation of Masked (Based on Scheme I) and Unmasked Data

  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked   40,423    8,069    6,131   22,089   15,568    3,202

Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

The standard deviations for four items obtained from the masked data are close to those from the
unmasked data.  However, for the remaining two items (Wage and Non-Taxable Interest), the
standard deviation of the masked data are close to 9 percent off from that of the unmasked data.

4.3.    Numerical Example of Scheme II

The masking scheme was applied with the c-values (as shown in section 3.1) of .01 and .10. 
Since many income fields have zero entry and logarithm cannot be taken on zero, 1.0 was added
to every entry in the data set and the resulting data are masked.  The variance and covariance
(hence correlation) are location-invariant. We need to subtract one (1) from the masked mean to
retrieve the mean of the original data. The means recovered from the masked data are as follows.

Table 3.   Mean of Masked (Based on Scheme II) and Unmasked Data, c=.01

  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked  23,787    1,846       588     1,162        337       952

Unmasked  23,799    1,825       587     1,190        342       947

The mean estimates from the masked data with c=.01 are all very close to those from the
unmasked data.

Table 4 shows similar data for the standard deviation.
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Table 4  Standard Deviation of Masked (Based on Scheme II) and Unmasked Data, c=.01

  Wage Taxab Int  Dividend     Rent N_Tax Int   SS Inc

Masked   29,887    8,101    6,262  15,600   15,080    2,944

Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

Difference   -32.4 %     1.5 %    -1.8 %   -29.1 %   -11.3 %    -8.1 %

The standard deviation is severely underestimated for Wage and Rent (32.1 and 29.1 percent,
respectively).  The estimated standard deviation for Non-Taxable Interest and Social Security
income is substantially low (11.3 and 8.1 percent, respectively).

Table 5.   Mean of Masked (Based on Scheme II) and Unmasked Data, c=.10

  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked  24,266    1,901       581     1,137        322       957

Unmasked  23,799    1,825       587     1,190        342       947

The means obtained from the masked data using c=.10 are in a fairly close range of those from
the unmasked data.  In comparison with those with c=.01, they are much farther off from the
mean of the unmasked data.  However, this can be expected as the new data have ten times
higher noise in the log-scale.

Table 6  Standard Deviation of Masked (Based on Scheme II) and Unmasked Data, c=.10

  Wage Taxab Int  Dividend     Rent N_TAX Int    SS Inc

Masked  74,732    8,122    4,936  10,388   10,324    3,000

Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

Difference    69.0 %     1.8 %   -22.6 %   -52.8 %   -39.3 %    -6.4 %

Except for Taxable Interest (and probably Social Security income), the masked data have the
standard deviation wildly different from the standard deviation of the unmasked data. 
Sometimes, the difference is more than 50 percent of the standard deviation of the unmasked
data.  This comparison is not in log-scale.

As noted before, the users are interested in these data in log-scale.  Thus, it is proper to compare
the unmasked and masked data in log-scale.  We will compare them when c = .01.
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    Table 7.   Mean of Masked (Based on Scheme II) and Unmasked Data in Log-Scale, c=.01

  Wage Taxab Int  Dividend     Rent N_TAX Int    SS Inc

Masked    8.296    3.928     1.246    0.766      0.269    0.912

Unmasked    8.297    3.928     1.248    0.768        0.270    0.911

The means of the masked data in log-scale are almost identical with those of the log-transformed
unmasked data.  

Table 8  Standard Deviation of Masked (Based on Scheme II) and Unmasked 
      Data, in Log-Scale c=.01

  Wage Taxab Int  Dividend     Rent N_TAX Int    SS Inc

Masked    3.552    3.306     2.600     2.445      1.437    2.707

Unmasked    3.569    3.321     2.623     2.462        1.445    2.719

Difference  -0.48 %   - 0.45 %   - 0.88 %  - 0.690%    - 0.55%  - 0.44%

The standard deviations of the masked data in log-scale are again almost identical with those of
the unmasked in log-scale.

The covariances between the masked variables in log-scale are very close to those between the
unmasked variables.  The correlation structure of the unmasked data carries over to the masked
data in log-scale. Thus, this masked data set almost perfectly satisfies the users' requirements.

5.    Re-identification of the Records in the File

As part of our original work with additive noise (Kim and Winkler 1995), we had to maintain
statistics such as means and covariances on pre-specified subdomains determined by age, race,
and sex.  The most easily re-identified records are those that are outliers in the point cloud
determined by the quantitative variables.  These types of outliers are typically both sample and
population outliers.  Our re-identification rates provide an upper bound 

Our matching metrics for individual quantitative variables are determined by the types of noise
that are added.  If additive noise is used, then the deviations between masked and original
variables are on the additive scale.  If multiplicative noise is used, then the deviations are on the
log scale.  The metrics adjust agreement weights downward as the masked variables differ from
the original (or intruders�) values by greater amounts.  Depending on the characteristics of the
data being matched, deviations between 10 and 20 percent typically get a full disagreement 
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weight.  If there are eight quantitative variables being matched, then it is possible that only three
variables may be needed to re-identify some outliers.

Our re-identification rates provide an upper bound on the re-identification rates an actual intruder
might obtain.  We match the masked sample file against the unmasked sample file because we do
not have the original population files of unmasked IRS data.  An intruder might construct a file
using various public and semi-public data sources and attempt re-identification.  The additive or
multiplicative noise are typically capable of effectively masking virtually all points in the interior
of the point clouds.  Few can be re-identified.  If we had the original population files the re-
identification rates would be much lower for the exceptionally small proportion of interior points
that are re-identified.  Most of the re-identifications are of outliers that can be re-identified
because they are population outliers.  Depending on the quality of the external files available to
an intruder, we expect an intruder�s re-identification rates to be slightly to substantially lower
than our re-identification rates. 

During matching, we used a d-metric for quantitative variables when additive noise was applied
and an l-metric when multiplicative noise was applied.  The software allows the user to specify a
value between 0.001 and 0.999 with the default being 0.20.  A full agreement weight is adjusted
downward toward the full disagreement weight as the proportional difference between the two
values being compared increases (see e.g., Yancey et al. 2002).  The EM algorithm is used to get
the optimal probabilities for separating matches (re-identifications) from non-matches (non-re-
identifications).  More details are given in Kim and Winkler (1995).  The other measure is the
same as the first, but difference is in log-scale.  The former is called d-metric and the latter l-
metric.  An efficient linear sum assignment algorithm forces 1-1 matching in a manner that
further increases the re-identification rate (see e.g., Winkler 1998).  The match rate is
summarized as follows.

Table 7. Match  Rate

      d-metric         l-metric

                  Scheme I            -           41 %

 Scheme II  with c = .01           8  %             8 %

 Scheme II  with c = .10           4  %           10 %

Scheme I has the highest match rate using l-metric, which is 41 percent. This is probably
predictable since around 49.5 percent of the noise multiplied to the unmasked data lies within the
range of .9 and 1.1.

It is surprising, concerning Scheme II, to find out that adding more noise does not necessarily
protect the file better.  That is, using l-metric we could re-identify the masked records more often
with c=.10 than with c=.01.  This is likely an artifact of how the actual sample of noise affects 
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the masked data.  With a different seed number for the random number generator, we would
expect the re-identification rate with higher amounts of noise to be somewhat lower.  The match
rate for the file masked by additive noise was 0.8 percent and with a combination of additive
noise and swapping of easily re-identified records was less than 0.1 percent (Kim and Winkler
1995).

6.    Concluding Remarks

Two forms of multiplicative noise have been examined.  The first is based on generating random
numbers that have a truncated normal distribution with mean 1 and small variance and
multiplying the original data by the numbers.  The second approach is to take a logarithmic
transformation, compute a covariance matrix of the transformed data,  generate random numbers
which follow mean 0 and variance/covariance c times the variance/covariance computed in the
previous step, add this noise to the transformed data and take the antilog of the noise-added data. 
Both schemes were tried on IRS income data.

Table 8.  Comparison of Means for the Schemes

  Wage Taxab Int  Dividend     Rent N_Tax Int  SS Inc

     Scheme I  23,821    1,825       583     1,189        337     945

Scheme II, c=.01  23,787    1,846       588     1,162        337     952

Scheme II, c=.10  24,266    1,901       581     1,137        322     957

    Unmasked  23,799    1,825       587     1,190        342     947

The above table shows that the first scheme has, in general, means closer to the means of the
unmasked data.  Means using Scheme II with c=.01 are always closer to the means of the
unmasked data than those from Scheme II with c=.10.

Table 9.  Comparison of Standard Deviations for the Schemes

  Wage Taxab Int  Dividend     Rent N_Tax Int  SS Inc

     Scheme I   40,423    8,069    6,131   22,089   15,568    3,202

Scheme II, c=.01   29,887    8,101    6,262  15,600   15,080    2,944

Scheme II, c=.10   74,732    8,122    4,936  10,388   10,324    3,000

    Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

Among the three schemes above, except for Dividend, Scheme I has the best standard deviations. 
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Comparing Scheme II with c=.01 to Scheme II with c=.10, we can notice that Scheme II with
c=.01 is better except for Social Security income.  

In terms of mean and variance, Scheme I looks best among the three schemes considered.   The
variance for some items for Scheme II is too unreliable.  However, the mean and variance in log-
scale for Scheme II are very close to those of the unmasked.  Thus if the users are interested in
the statistics in log-scale, then Scheme II is excellent in retaining the data utility.

In terms of match rate, Scheme I is worst.  This may be to a limited degree overcome if we use
normally distributed random numbers having a mean more than 20 percent from 1.  However, the
resulting numbers would be more different than the current ones from the unmasked, which some
users might not like.

In conclusion, Scheme I may be good if the data disseminator wants to make minor changes to
the original data.  However, this is in exchange for data security.  On the surface, this scheme
seems to change the data more than the additive noise mode, but by taking logarithms on the
data, it turns into an additive noise scheme.  Scheme II destroys data utility for some items.  It
should be noted, however, that Scheme II maintains the data utility well in log-scale.
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