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Abstract. The Box-Jenkins “airline” model is the most widely 
used ARIMA model for seasonal time series.  Findley, Martin 
and Wills (2002) examined a generalization of the airline model 
with a more restricted seasonal moving average factor that 
models only seasonal effects and with a second-order 
nonseasonal moving average factor.  Here, we generalize the 
seasonal factor further by associating a subset of the frequencies 
1, 2, 3, 4, 5 and 6 cycles per year (in the case of monthly data) 
with one coefficient and the complementary subset with a 
second coefficient. A generalization of Akaike’s Minimum AIC 
criterion is presented for choosing among subsets of a given size 
or, more generally, among generalizations of the airline model 
having the same number of coefficients. Properties of model-
based seasonal adjustment filters obtained from the new models 
are considered as well as forecasting performance relative to the 
airline model. 
 
 
1. Introduction  
 
Box and Jenkins (1976) developed a two-coefficient time series 
model, now known as the airline model, which is by far the most 
widely used ARIMA model for monthly and quarterly 
macroeconomic time series. (Fischer and Planas (2000) deem it 
adequate for 50% of 13,232 Eurostat time series.) The Box-
Jenkins airline model for a seasonal time series tZ  observed 

2s ≥  times per year has the form 
 

(1 )(1 ) (1 )(1 )s s
t tB B Z B Bθ ε− − = − − Θ        (1) 

 
When 0Θ > , the airline model can be written  
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Findley, Martin and Wills (2002) substituted a general 

MA(2) polynomial for 1/(1 )(1 )sB Bθ− − Θ  in (2), yielding a 
generalized airline model, 
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In this model the seasonal sum polynomial has a third coefficient 
c distinct from the coefficients associated with the other factors 
in the model.   

In the present paper, we investigate various generalizations 
of (2) and (3), which we call frequency-specific models. In these 

models, the final moving average factor, e.g. 
1
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decomposed into several factors with different coefficients. 
Restricting attention to monthly data, i.e. 12s = , the model (3) 

can be generalized by factoring 
11
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of 1, 2, 3, 4, 5 and 6 cycles per year to obtain a general 
frequency-specific model, 
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If the six ic ’s are distinct, this model has a different seasonal 
coefficient for each seasonal frequency, for a total of eight 
coefficients.  Eight moving average coefficients cannot be 
estimated reliably from macroeconomic time series of typical 
lengths. We shall consider instead the most parsimonious such 
generalizations of (2) in which there are only two distinct ic ’s. 
That is, the seasonal frequencies are divided into two groups, 
with all frequencies in a group having the same coefficient. This 
reduces the total number of coefficients requiring estimation in 
the model to four in general, and to three when we constrain the  
MA(2) in (4) to have a factor whose coefficient is one of the 
seasonal coefficients ic , in analogy with (2). 

We consider two types of four-coefficient models. The first, 
designated the 5-1(4) type, is the one in which five of the 
frequency factors in brackets in (4) have the same coefficient 1c  
and the sixth has a different coefficient 2c . There are six such 
models, an example being 
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The second type, designated 4-2(4), is the one in which four 
of the frequency factors in brackets in (4) have the same 
coefficient 1c  and the remaining two have a different coefficient 

2c . There are fifteen such models.  
We also consider the corresponding types of three-coefficient 

frequency-specific generalizations of (2), denoted 5-1(3) and 4-
2(3) models. An example of the former is 
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There are six 5-1(3) models and fifteen 4-2(3) models. We 
did not consider the twenty models that arise by grouping the 
frequency factors in (4) into two groups of three factors because 
it would increase the number of models to be compared from 22 
to 42. 
 These new models cannot be estimated with standard 
ARIMA modeling software.  We performed the estimation in the 
object-oriented matrix programming environment Ox (Doornik 
2001), using the state space functions in the SSFPack library 
(Koopman, Shephard and Doornik 1999). Some details are given 
in the Appendix. 

Before presenting our evaluation of the new models relative 
to the airline model for seasonal adjustment and forecasting 
using Census Bureau, we present our model selection criterion 
for deciding when one of the new models should be considered 
for replacing the airline model. This criterion is a generalization 
of Akaike’s Minimum AIC criterion (MAIC). 
 
 
2 A Modification of Akaike’s Minimum AIC Procedure for 
Multiple Fixed-Dimension Comparisons to a Nested Model 

 
For the airline model, let ˆAθ , dim Aθ , and ˆ( )AL θ  denote the 
estimated parameter vector, its dimension,  and the associated 
maximum log-likelihood value respectively. Let ˆFθ , dim Fθ , 
and ˆ( )FL θ  denote the corresponding quantities for a frequency-
specific model. Consider the AIC difference  
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Because the airline model is a special case of each type of 
frequency-specific model, when the airline model is correct, 
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asymptotically under standard assumptions; see Taniguchi and 
Kakizawa (2000, p. 61). Under (8), the probability that the 
frequency-specific model will have a smaller AIC and thus be 
incorrectly preferred by Akaike’s Minimum AIC criterion 
(MAIC) is 
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Thus the probability of incorrectly rejecting the airline model in 
favor of a frequency-specific model is 

{ }(4) 2
2 4 0.135p P χ≡ > =  for a four-coefficient model and  

{ }(3) 2
1 2 0.157p P χ≡ > =  for a three-coefficient model. 

We now describe a generalization of MAIC that is directed 
toward achieving the same type I error probabilities ( )ip  when 
the minimum AIC model from a set F(i) containing several i-
coefficient models more general than (2) is compared to the 
estimated airline model, for 3,4i = . Our criterion is to prefer 
this MAIC model over the estimated airline model for a time 
series of length N when, for a threshold ( ) ( ) ( ( )) 0i i

N N i∆ = ∆ ≥F  
with a certain property, the inequality  

( )
(i)

ˆ ˆ( ) min ( )A F i
F NAIC AICθ θ∈− > ∆F                      (10) 

holds. The property desired of ( )i
N∆  is 
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F NP AIC AIC pθ θ∈− > ∆ �F                        (11)  

when the airline model is correct. This is the property of ( ) 0i
N∆ =  

when F(i) contains only one model. We call the resulting 
generalization of MAIC the GMAIC criterion. 
 Such ( )i

N∆ ’s can be obtained from the empirical distribution 

of (i)
ˆ ˆ( ) min ( )A F

FAIC AICθ θ∈− F  when the models in F(i) are fit 
to simulated Gaussian time series of length N generated by an 
airline model, for example, the airline model estimated from the 
time series of interest, or from a nearby model for a series of 
approximately the same length.   In this paper, for illustrative 
purposes, we use the ( )i

N∆ ’s in Table 1 below.  These values were 
obtained from simulated series from a single airline model with 
coefficients θ = 0.5 and Θ = 0.5. These are fairly typical values. 
The lengths 120N =  and 150N = in Table 1 are close to the 
lengths of the Census Bureau series we model. 
  
 Table 1. Thresholds ( )i

N∆  for the Four Model Types. 
4-coefficient 3-coefficient Thresholds 5-1 4-2 5-1 4-2 

( ) , 120i
N N∆ =  1.9 2.0 1.8 2.3 
( ) , 150i
N N∆ =  1.6 2.1 2.3 1.5 



Note that the use of GMAIC always requires the fitting of the 
airline model to the series being modeled. 
 
Remark 1. While the ( )ip  values are large relative to 
empirically chosen significance levels of tests like .05, they are 
more fundamental quantities than such empirical choices 
because of ,A FAIC∆ ’s unbiasedness property as an estimator of 
the accuracy difference of the two models in the Kullback-
Leibler sense; see Akaike (1973) and Findley (1999). 
 
 
3. Preferred Models for 75 Census Bureau Series 
 
We fit the airline model and each of the four model sets defined 
by the 5-1(4), 4-2(4), 5-1(3) and 4-2(3) models to the logarithms 
of  75 Census Bureau series consisting of the value of shipments 
series from the monthly Survey of Manufacturers’ Shipments, 
Inventories and Orders beginning in January 1992 and ending in 
September, 2001 (length 117N = ) and of the Foreign Trade 
series from January, 1989 through December, 2000 (length 

144N = ). These are the Shipments and Foreign Trade  series 
for which an airline model had originally been chosen over other 
standard ARIMA models for the given time span.1  Table 2 
below gives the breakdowns for MAIC and GMAIC by model 
type of the frequency-specific models that are preferred over the 
airline model. For GMAIC, the ( )

120
i∆  values of Table 1 were used 

for the Shipments series and the ( )
150
i∆  values for the Foreign 

Trade series. Excluded from preference were models with an 
estimated 1c  or 2c  equal to one. Some problems with such 
noninvertible models are discussed in Section 6. 
 
 Table 2.  Numbers of Invertible Models of Each Type 
Preferred over the Airline Model by MAIC and GMAIC.  

4-coefficient 3-coefficient Models 5-1 4-2 5-1 4-2 
MAIC preferred  8 15 24 43 

GMAIC 
Preferred  4 7 9 24 

 
The first row of Table 2 applies to 47 series and the second 

to 27. (For some series, more than one frequency-specific model 
is preferred over the airline model.) Thus the use of GMAIC in 
place of MAIC reduces the percentage of the 75 series for which 
a frequency-specific model is preferred from 63 percent to 36 
percent. 

Among the 27 series, a 4-2(3) model has the minimum AIC 
for 16 series and a 5-1(3) model has the minimum AIC for 6 

                                                           
1 These are the two major categories of Census Bureau series for 
which an interesting number of series had a lower AIC for model 
(3) than for model (1); see Findley, Martin and Wills (2002).  
For other major categories (Retail Trade, Construction), airline 
models usually had Θ1/12 very close to 1. 

series. Among the remaining 5 series, the 4-2(4) model has the 
minimum AIC for 4 series, and a 5-1(4) model has the minimum 
AIC for one series.  For 7, 2, 2, and 1 of these models 
respectively, the largest or smallest seasonal spectral peak of the 
(differenced, log-transformed) modeled series occurred at a 
frequency associated with 2c . Thus the spectrum provides an 
interpretation of the GMAIC choice for almost half of the series, 
but for slightly more than half, the spectrum does not 
unambiguously indicate the distinctive nature of the frequency 
or frequency pair associated with 2c  (see Section 4 for two 
illustrative spectra). The three-coefficient models are by far the 
most favored of the frequency-specific models by GMAIC, 
being the preferred model for 22 of the 27 series, and therefore 
for 29 percent of the 75 series, a substantial percentage given 
that airline models were initially selected over other standard 
seasonal ARIMA models for these series.  

As we shall discuss in Section 6, the four-coefficient models 
have an unexpectedly strong tendency for the estimate of 1c  or 

2c to be equal to one. A consequence is that only the three-
coefficient models seem promising as frequency-specific 
generalizations of (2) for the purpose of the ARIMA model-
based seasonal adjustment procedure of Hillmer and Tiao (1982) 
and Burman (1980) that we shall refer to as the AMB procedure. 

 For data ,1tZ t N≤ ≤  regarded as having an additive 
seasonal decomposition, most simply t t tZ S A= +  with 
seasonal component tS  and a nonseasonal component tA , the 
AMB procedure is able to decompose most seasonal ARIMA 
models for tZ  into the sum of a noninvertible ARIMA 
(“canonical”) model for tS  and an ARIMA model for tA . With 
these models, Gaussian conditional mean calculations can be 
used to obtain optimal linear estimates ˆ

tA  of tA that form the 
seasonally adjusted series 
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(or ˆexp( ),1tA t N≤ ≤ when the tZ  are the logs of the data). 
Because of our interest in seasonal adjustment, for the 

remainder of the paper, we shall concentrate on the properties of 
the three-coefficient models. 
 
 
4. Seasonal Adjustment Properties of Two GMAIC Three-
Coefficient Models  

Fig. 1 shows the Airline and GMAIC 5-1(3) models’ AMB 
seasonal adjustments of the series U34EVS, Shipments of 
Defense Communications Equipment (January, 1992 through 
September, 2001) from the Census Bureau’s monthly 
Manufacturers’ Shipments, Inventories and Orders Survey. In 
the 5-1(3) model, the quarterly-effect frequency, 4 cycles/year, is 
associated with 2c . For this series 0.6604a =  and 1c  = 
0.9867, a value slightly larger than the twelfth root of the 



estimated airline model seasonal coefficient Θ 
( 12 0.7798 0.9795= ).  By contrast, 2 0.8925c =  

( 12 0.2554= ). 2c ’s frequency has by far the largest seasonal 
peak in the spectrum of the modeled series, see Fig. 2. By 
contrast, the peaks at 1c ’s frequencies are small to non-existent.  
Thus there is compelling evidence for treating quarterly 
components differently from the other seasonal components, as 
well as evidence supporting the treatment of the remaining 
seasonal components in a uniform way. This is what the GMAIC 
5-1(3) model does instead of treating all seasonal component 
uniformly the way the airline model does.   

Basic features of each model’s seasonal adjustment can be 
seen in the squared gain functions of the adjustment filters, 

21
, exp( 2 ) ,1t

t jj t N
a i j t Nπ λ−

= −
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Figure 1.  Airline and 5-1(3) model-based seasonal 
adjustment of Shipments  (U34EVS).  The GMAIC 5-1(3) 
model has 2c assigned to the frequency 4 cycles/year.  

 

 
Figure 2. Spectrum of first-differenced logs of Shipments 
(U34EVS) showing a dominant peak at 4 cycles/year. 
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Figure 3.  Squared gain of the finite concurrent 

model-based filters for logs of Shipments (U34EVS). 
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Figure 4.  Squared gain of the finite central (symmetric) 
model-based filters for logs of Shipments  (U34EVS).  
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 Figure 5.  Airline and 4-2(3) model-based seasonal 
adjustments for Imports (M40020).  The GMAIC 4-2(3) 
model has 2c  assigned to the. frequencies 1 and 5 cycles/year  

 



Figure 6. Spectrum of first-differenced logs of Imports 
(M40020).  The reason for the pairing of the peaks at 1/12 
and 5/12 with 2c  and the rest with 1c isn’t obvious. 
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Figure 7.  Squared gain of the finite concurrent model-based 
filters for logs of the Imports series M40020. 
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Figure 8.  Squared gain of the finite symmetric model-based 
filter for logs of the Imports series M40020.  

Fig. 3 shows the squared gains functions of the concurrent 
seasonal adjustment filters. These provide their model’s seasonal 
adjustment of the most recent month, ˆexp( )NA . Fig. 4 is the 
analogue of Fig. 3 for the central month’s adjustments, 

[ / 2]
ˆexp( )NA . The smaller value of 2c  results in the squared 

gains of the 5-1(3) model filters having wider troughs at the 4 
cycles/year frequency than the airline model filters. The wider 
troughs indicate more suppression of variance components in the 
neighborhood of this frequency by the new model. 
Consequently, the 5-1(3) model’s seasonal adjustment is 
smoother. (This is particularly visible in the last two years of the 
series in Fig 1.) Elsewhere, the squared gains of the airline and 
5-1(3) model’s filters are similar. (The rapid oscillations in the 
squared gains are essentially due to the high values of Θ and 

1c giving rise to filter coefficients that decay little over the 
relatively short length of the series. For further discussion, see 
Subsection 4.2.2 of Findley and Martin, 2003.)   

Figs. 5-8 present graphs analogous to those of Figs. 1-4.for 
the preferred 4-2(3) model for the Census Bureau series M40020 
of Imports of Apparel and Other Household Textiles. For this 
series the coefficient estimates are 0.20a = , 1 0.93c = , and 

2 0.99c = . The coefficient 2c  is associated with the frequencies 
of one and five cycles per year. Its near unit value, compared 
with 1/12 0.94Θ = for the airline model, indicates that the 4-2(3) 
model finds the seasonal components at these frequencies much 
more stable than does the airline model. As a result, its squared 
gains have sharper troughs at these frequencies, effecting less 
suppression of variability, and its seasonally adjusted series is 
less smooth than that of the airline model.  The frequency 1 
cycle/year stands out in the spectrum plot in Fig. 6 as having 
almost the highest peak, and it has the deepest trough in the 
spectrum of the differenced and seasonally difference log data 
(not show), but the reason for its pairing via 2c  with frequency 5 
cycles/year is not obvious, nor is the grouping of the other four 
seasonal frequencies with 1c . 

Now we turn to forecasting properties. 
 
 
5.  Forecasting Performance 
 
To obtain information about a model’s h -step-ahead forecasting 
performance, some number of observations at the end of the 
series can be regarded as future data to be forecasted from a 
model fit to the earlier data.  These forecasts can be compared to 
the actual series values (or, for series values identified as 
outliers, to the outlier-adjusted values).  The span of modeled 
data can be increased one observation at a time, to produce a 
sequence of h -step-ahead forecast errors.  Let , ,A h t he +  denote 

the error of an airline model’s forecast of t hZ + from a model 
fitted to ,1sZ s t≤ ≤  and let , ,G h t he +  denote the corresponding 



error of a specified generalized model. Given such errors for 
0t t T h≤ ≤ −  for both models, we graph the differences of 

squared forecast errors  

{ }
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2 2
, , , , 0,t

G h s h A h s hs t
e e t t T h+ +=

− ≤ ≤ −∑ , (10) 

and look for persistent upward movement or downward 
movement in the graph, the former indicating persistently better 
forecasts from the airline model, and the latter persistently better 
forecasts from the generalized model. 
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Figure 9.  Out-of-sample square forecast error diagnostic 
(10) for series U34EVS comparing the three-coefficient  5-1 
model and the airline model. 
 An example of this diagnostic graph is given in Figure 9, which 
shows the sums  (10) of differences of h -step-ahead squared 
errors ( 1,12h = ) of the 5-1(3) model and the airline model for 
the last years of the series U34EVS.  The generally descending 
dotted line indicates that the one-step-ahead forecast 
performance of the 3-coefficient 5-1 model is persistently better 
than that of the airline model.  The results for 12-step-ahead 
forecast performance are inconclusive, i.e. neither model is 
preferred.  For more information about the out-of-sample 
forecast error diagnostic, see Findley, Monsell, Bell, Otto and 
Chen (1998) and Findley (2001). 

We examined this diagnostic both for the 27 frequency-
specific models preferred by GMAIC over the airline model and 
also for the 24 three-coefficient 4-2 models similarly preferred 
over the airline model. The results are summarized in the Tables 
3 and 4.  The tables show GMAIC preference does not always 
yield out-of-sample forecast performance as good as or better 
than that of the airline model, but it preponderantly does. Table 4 
shows that the 4-2(3) model is the most broadly effective of the 
generalizations considered for forecasting. 

 
Table 3.  Comparative out-of-sample forecast performance 
between the airline model and the frequency-specific model 

most preferred over it by GMAIC for 27 series 
Preferred Model  1-step 

 forecasting 
12-step  

forecasting 
Frequency-Specific 10 7 

Airline 5 3 
None 12 17 

 
Table 4.  Comparative out-of-sample forecast performance 

between the airline model and the three-coefficient 4-2 
preferred over it by GMAIC for the 24 series of Table 2. 

Preferred Model 1-step forecasts 12-step forecasts 
 4-2(3) 13 8 
Airline 3 4 
None 8 12 

 
 
6. Issues with estimates of 1c  or 2c  equal to one.  
 
In addition to the 27 series discussed above, there were 18 others 
for which GMAIC preferred a frequency-specific model. The 18 
series (and 26 preferred models among the four frequency-
specific types) were excluded from Table 2 because the 
preferred model had one of its estimates of 1c  and 2c  equal to 
one. All but one of the GMAIC models excluded were four-
coefficient models. (The exception was a 4-2(3) model for one 
series.) We now discuss some of the issues posed by unit 
estimates. 

It is known that spurious unit coefficient estimates occur 
with positive probability for invertible seasonal moving average 
models, see Tanaka (1996). However, Tanaka’s Table 8.2 (p. 
313) of exact probabilities, which applies to simplified airline 
models with 0θ = (only Θ  is estimated), shows that these 
models will have estimates of one with probability less than 0.05 
when the true value satisfies 0 0.9≤ Θ ≤  with series of the 
lengths we consider.  Simulation experiments we have 
conducted by generating and estimating frequency-specific 
models, analogous those of the next Section, indicate that 
spurious coefficient estimates of one also occur for less than five 
percent with frequency specific models of each type we 
consider. Thus our observed percentage of unit estimates with 
the four-coefficient models with the 75 series is much higher 
than expected. (The percentage almost doubles if MAIC is used 
instead of GMAIC for comparisons with (2)). 

A partial explanation, which Table 5 below seems to support, 
is that some of the series are well modeled by a frequency 
specific model with a unit coefficient. However, theoretical 
support is lacking for our use of MAIC or GMAIC for any of 
these 26 preferred models for which the unit coefficient estimate 
is correct. For such a model, the r.h.s of (4) has a factor of 
degree at least one that coincides with a factor of the 
differencing operator on the l.h.s of (4). This imparts to the 
model a fixed seasonal effect: the common divisor of the 
polynomials on both sides of the ARIMA equation, denoted 

( )c Bδ , can be canceled from both sides and replaced by a 

periodic mean function ( )tµ  satisfying ( ) ( ) 0.c B tδ µ =  The 
resulting model is no longer a generalization of the airline 
model, and the large sample properties of maximum likelihood 
estimates, including rates of convergence, are quite different 



from the properties of such estimates for invertible models, see 
Tanaka (1996). Further, it is hard to conceive how such non-
standard properties could cancel out in the AIC differences (7) in 
such a way that a shifted chi-square asymptotic distribution 
results.  

Hence, in place of GMAIC, we turn to out-of-sample 
forecast error properties for confirmation of the models. Table 5 
shows that for about forty percent of 26 series, the non-invertible 
GMAIC models have a forecast advantage over the airline 
model, whereas the converse result holds for about fifteen 
percent of the series. 

Such forecasting analyses are time consuming and not easily 
automated. Further, it is not currently practicable to use a unit 
coefficient model, selected because of its forecasting advantage, 
for seasonal adjustment because no software is available to 
provide AMB seasonal adjustments from models with perfectly 
periodic seasonal components at some seasonal frequencies and 
evolving seasonality at others.  Due to such complications, it 
appears that GMAIC-preferred three-coefficient models, which 
are common and seldom have unit coefficient estimates, are the 
models that usefully generalize the airline model for purposes of 
seasonal adjustment. 
 
Table 5.  Comparative out-of-sample forecast performance 
between the airline model and the 26 frequency-specific 
models preferred over it by GMAIC but excluded from 
Table 2 due to a unit value estimate of 1c  or 2c . 
Preferred Model  1-step 

 forecasting 
12-step  

forecasting 
Frequency-Specific 10 10 

Airline 4 3 
None 12 13 

 
 

7. Estimation Variability of 2c  for 3-coefficient Models 
  

We observed in simulation results not presented here that the 
variability of estimates of 2c  in the frequency-specified models 
is substantially greater than that of 1c . Intuitively, this suggests 

1c  gains stability by estimating more frequency components 
than 2c . Here we demonstrate that the variability of 2c  is also 
tied to the number of frequency components it estimates by 
showing histograms of the estimates of 2c  for 5-1(3) and 4-2(3) 
models. We generated 1000 realizations of length 150 of 5-1(3) 
and 4-2(3) models with true coefficient values 0.50a = , 

1 0.96c = , and 2 0.93c = . (These are average values of the 
coefficients of a set of 21 MAIC preferred 5-1(3) models, of 
which 13 had 1c  or 2 1c = .)  The histogram of the 2c  estimates 
of the 5-1(3) model is given in Figure 10.  For 4% of the 
realizations, the 2c  coefficient was estimated as unity. Fig. 11 

shows the histogram of 2c  estimates from the 4-2(3) model. 
Only 0.5% of the estimates are unity and the tails of the 
histogram are thinner than in Fig. 10, indicating less variability. 
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Figure 10.  Distribution of 2c  estimates for 1000 realizations 
of the 3-coefficient 5-1 model with coefficients 0.50a = , 

1 0.96c = , and 2 0.93c = .  Forty coefficient estimates were 
one.  Sixteen were less than 0.85. 
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Figure 11.  Distribution of 2c  estimates for 1000 realizations 
of the 3-coefficient 4-2 model with coefficients 0.50a = , 

1 0.96c = , and 2 0.93c = . Five estimates were one.   
 
 
8. Conclusions  
 
 Airline model-based AMB seasonal adjustment filters treat 
variance components around all seasonal frequencies in a similar 
way. However, spectrum estimates like that of Fig. 2 
demonstrate the unsurprising fact that that seasonal economic 
series do not always have similar variance components at all 
seasonal frequencies. In this paper, we have examined 
generalizations of the airline model that divide the seasonal 
frequencies into two groups and provide for different treatment 
of each group with seasonal adjustment. The use of two groups 
chosen by our generalization of Akaike’s MAIC procedure was 
also shown to often lead better out-of-sample forecast than the 
airline model. 

Our three-coefficient airline model generalizations were 
preferred by GMAIC much more often than the four-coefficient 
generalizations. They are also much less likely to have 
coefficient estimates of one, which are problematic for seasonal 



adjustment at the present time. Deciding how often such unit 
root estimates are spurious is a topic needing further research.  

Another topic for investigation is whether, selecting between 
three parameter models and (1), instead of using a separate set 
F(i) to define separate thresholds ( )i

N∆  for the 5-1(3) and 4-2(3) 
models, a single set F(i) containing all 21 three-coefficient 
models (22 models if (3) is included) to define a unified 
threshold depending only on N and on the estimated airline 
model coefficients: for implantation for seasonal adjustment, we 
plan to use a more refined GMAIC procedure in which the 

( ) ( , )i
N θ∆ Θ  values used are taken from stored table covering a 

grid of ( , )θ Θ  pairs with , {0.1,0.3,0.5,0.7,0.9}θ Θ ∈ instead of 
just the ( ) (0.5,0.5)i

N∆  values of Table 1. The ( ) ( , )i
N θ∆ Θ  value 

used for a given series would be the one in the table whose N is 
closest to the series’ length and whose ( , )θ Θ  is closest to the 
parameter vector of the estimated airline model of the series. 
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Appendix. Estimation of the Generalized Models. 
 
The generalized airline models are defined in terms of products 
of moving average factors of degrees one or two rather than in 
terms of the full MA polynomial of degree 1s + . The latter is 
needed for the state space representation used to calculate the 
likelihood function and also to calculate the gain functions and 
seasonal adjustments, see Durbin and Koopman (2001) for more 
details on such calculations. The full MA polynomial could be 
obtained from the factors by coding a routine to carry out 
polynomial multiplication. However, Fast Fourier Transform 
functions are available in Ox and similar software, and these can 
be used to transform a product of polynomial factors into the 
coefficient sequence of the product polynomial (effectively, the 
convolution of the factors’ coefficients). Once the full MA 
polynomial is available, there are routines to produce the 
ARIMA model’s state space representation and implement 
filtering and smoothing algorithm for it to obtain maximum 
Gaussian likelihood values and AMB seasonal adjustments. 


