RESEARCH REPORT SERIES
(Statistics #2004-02)

An Adaptive String Comparator for Record Linkage

William E. Yancey

Statistical Research Division
U.S. Bureau of the Census
Washington D.C. 20233

Report Issued: February 19,2004

Disclaimer: This reportis released to inform interested parties of ongoing research and to encourage discussion of work
in progress. The views expressed are those of the author and not necessarily those of the U.S. Census Bureau.

An Adaptive String Comparator for Record
Linkage*

William E. Yancey
U.S. Bureau of the Census

March 4, 2004

Abstract

We develop a string comparator based on edit distance that uses vari-
able edit-step costs derived from training data. Using first and last
name data from Census files, we compare the performance of this string
comparator with one without variable edit step costs and with the Jaro-
Winkler string comparator, which is standardly used in the Census Bu-
reau’s record linkage software.

1 Introduction

A string comparator is a function that returns a numerical comparison value
for a pair of strings. Specifically, if ¥ is an alphabet of characters and ¥* is
the set of strings (finite character sequences) from this alphabet, then a string
comparator is a function ¢ where

c: X" x ¥ =R,

One uses different string comparators for different purposes. For example, the
C computer language utility stremp(sy, s2) applied to strings sp, s returns an
integer whose absolute value is the position of the first character pair that dis-
agrees and whose sign is given by the lexicographical order of these disagreeing
characters. This string comparator is useful for sorting a set of strings into
lexicographical order or for searching for a given string in a set of sorted strings.
The study of approzimate string matching is generally directed toward a some-
what different application. Instead of searching a set of strings for an exact
match of a given key string, one wants to search a set of strings for those strings
that “nearly” match a given string. In this case, one wants a string compara-
tor that is a metric that computed the “distance” between two strings, so that

*This report is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. The views expressed are those of the authors and not necessarily
those of the U. S. Census Bureau.

one can retrieve all of the strings within a given distance of the key string. A
candidate for such a metric is edit distance, which is discussed below in Section
3.2.

For record linkage, the application is somewhat different. Instead of a
searching task, we have a decision problem. Given two strings, we must decide
whether they agree, where by “agree” we really mean that the two strings were
both intended to represent the same word. Of course it is not going to be pos-
sible for the algorithm to determine intent. We want a number that represents
a degree of similarity between the strings where increasing similarity will be
interpreted as our increasing confidence that the two strings both represent the
same underlying entity.

The Census Bureau’s record linkage software has a string comparator that
is used for probabilistic record linkage. Below we develop another string com-
parator based on edit distance which can be trained to adapt its evaluations
to a body of data. Below we describe the record linkage application for the
string comparator, then we describe the current Census Jaro-Winkler string
comparator, then we describe a string comparator based on edit distance, and
then we describe the adaptive version of this string comparator. We then com-
pare the performance of these string comparators applied to the record linkage
application.

2 Record Linkage Application

For Fellegi-Sunter record linkage theory, under the conditional independence
assumption, the comparison weight of two records is computed as the sum of
the comparison weights of the individual comparison field values. For a given
comparison field, the agreement weight is computed as

Pr(y=1|M)
®Pr(y=110)

a, = lo

and the disagreement weight is given by

Pr(y=0[M)

dy =1
o8 Pr(v=0]|U)

where v = 1 indicates that the field values of the record pair agree and v = 0
indicates that they disagree. ~The probabilities are conditioned on M, the
two records are a match (i.e.in truth represent the same entity) and U, the
two records are not a match. The agreement probabilities Pr(y =1|M) and
Pr(y=1|U) are given as input parameters to the record linkage procedure.
The assignment of either agreement weight or disagreement weight is straight-
forward if, for instance, the given comparison field represents a categorical vari-
able such as sex or race, but when the field contains strings, the linkage can
be more robust if we allow more than two possible results. Suppose we con-
sider v to be the value of a string comparator that takes the value 1 when the

two strings are identical and the minimum value 0 when the strings are totally
different. We can then assign a field comparison weight to a string field pair of

Pr(y=xz|M)
where w (1) = ay, w (0) = dy, and w (x) is an increasing function on [0,1]. If
the string comparator value effectively reflects our level of confidence that the
two strings both represent the same underlying word, then an approximation of
w can produce a comparison weight that can interpolate between full agreement
and full disagreement weights and quantitatively reflect the level of likelihood
that the field values are a match.

We will next present three candidate string comparators. Later we will
compare their results from applying them to real data to try to determine to
what extent we are confident that we can use them to compute comparison
weights for record linkage.

3 String Comparator Functions

3.1 Jaro-Winkler String Comparator
3.1.1 The Basic Comparator

The Jaro-Winkler string comparator [Winkler| is the comparator developed at
the U.S. Census Bureau and used in the Census Bureau record linkage software.
The basis of this comparator is the count of common characters between the
strings, where a character is counted as common if it occurs in the other string
within a position distance that depends on the string length. That is, suppose
we are comparing the two strings

a=(a1,a2,-..,an)
ﬁ: <b17b27"'7bn)

where m < n. The search range distance d is defined to be

i3]

less than half the length of the longer string. Generally speaking, for 1 <i < m,
the character a; will count as common with the character b; when a; = b;
provided

1—d<j<i+d

and
1<j<n.

Characters are counted as common only once, so that (z, a, b, ¢) and (z, z, w, y, 2)
have just one common character. For example, with (b, a,r,n, e, s) and (a,n,d, e,r, s,0,n),

we have d = 3, so that a,r,n,e,s are common for a count of 5 common charac-
ters.

The value of the string comparator is further determined by a count of
transpositions. Transpositions are determined by pairs of common characters
out of order. The above example would count one transposition since the
corresponding common characters (r,n), (n,e), (e,r) are out of order, so these
three contain one pair. If ¢ is the common character count and ¢ is the number
of transpositions of the strings «, 3, then the basic Jaro string comparator score

sy is computed by
1/c c c—t
sj==|—+—+ .
3\m n c

We can see that if the strings are identical, then we have m =n = ¢ and ¢t = 0,
so that s = 1. If the strings are not identical, then we must have either ¢ < m
or¢c <mnort>0,sothat s < 1. For all compared pairs of strings, we have
s > 0. For the above example, the basic score is

1/5 5 4\ 271
=—(24242) === =0.752.
5 3<6+8+5> 2o = 0-7528

A further enhancement to the score computation due to Winkler is based on
the observation that typographical errors occur more commonly toward the end
of a string, so that strings that agree on prefixes (1 to 4 characters) are given
a higher comparison score. Specifically, the algorithm considers the first four
prefixes of each string and lets p be the length of the longest prefix pair that
agree exactly (a; = b;). The adjusted Winkler comparison score sy is given by

D (1 — SJ)
Sw =85+ 10 .
Note that this formula preserves the property that 0 < syy < 1 and sy = 1 <
sy =1< a= . In practice, this score adjustment is only applied to pairs of
strings that are reasonably similar, specifically s; > 0.7. In this example, since
the strings differ in the first character, none of the prefixes agree, so p = 0, and
there is no change in the score.

3.1.2 The Adjusted Comparator

There are two relatively recent enhancements to the Jaro-Winkler string com-
parator that are currently used by default, but can be optionally omitted. One
option is intended to augment the score for some longer strings. It is applied
if the strings are sufficiently long and the substrings beyond the common pre-
fix have enough common characters and a high enough proportion of common
characters. If the string pair meets the requirements, the adjustment can only
increase the score.

The other adjustment is designed to account for commonly occurring char-
acter subtitutions that occur in typographical error. The program has a list

of pairs of similar characters, which represent common typographical substitu-
tions, based on common spelling mistakes, visual similarity, or keyboard prox-
imity. The current version uses 36 such pairs. After the common characters
have been matched, the program looks through the unmatched characters to see
if an unmatched character in one string is similar to an unmatched character in
the other string, allowing character in the other string to be similar to at most
one character from the first string. If s is the total number of similar character
pairs counted, then the adjusted count ¢, of common characters is given by

cs =c+0.3s

and if this adjustment is in force then the basic Jaro score s; is actually com-

puted by
1 /cs ¢ c—1t
sy==(=+=+ :
3\m n c

In our example, the only unmatched character in the first string is b, and the
only characters similar to b in the list of similar characters are v and 8, which
do not occur in the second string, so no similar character adjustment is made.

3.2 Edit Distance String Comparator

Another approach to string comparison is based on edit (or Levinshtein) dis-
tance. These measures are determined by the minimum number of edit steps
required to convert one string to the other. We will call edit distance the
method that uses insertion, deletion, or substitution for possible edit steps. An-
other possibility is to restrict the edit steps to just insertion or deletion. The
minimum number of edit steps can be computed using a straightforward dy-
namic programming algorithm with complexity O (n2), where n is the length
of the strings. The idea of the dynamic programming algorithm is to compute
the shortest distance for all prefix pairs, where we compute the cost of the cur-
rent prefix pair from the minimum of the previous minimal prefix costs plus the
cost of the edit step that converts the earlier prefix to the current one. Since
the strings representing Census names are fairly short (generally less than 20
characters), the algorithm executes very quickly. These distance measures have
the property that they are metrics. It is clear that the distance functions are
reflexive and symmetric, and the triangle inequality can be verified by induction
on the length of the strings. In our studies, we have used edit distance since
this seems to capture an appropriate edit process. Many misspellings involve
substituting one letter for another.

In order to use one of these distance functions as a string comparator and
to compare its performance to the Jaro-Winkler string comparator, we see from
(1) that it is helpful to convert the distance value to a number between 0 and 1,
with 1 representing complete agreement. The resulting function may be called a
similarity function [Navarro]. We do this by considering the maximum number
of edit steps possible to convert one string to another. For edit distance, if the
strings of length m and n with m < n have no characters in common, then the

minimum edit sequence is to do m substitutions followed by n —m insertions or
deletions, for a total of n edit steps. Thus we can scale edit distance into our
[0,1] comparison measure by letting the comparison value x be given by

r=1-— é
n
where d is the edit distance between the two strings and n is their maximum
length.

When first experimenting with this edit similarity function, we found that it
could be too severe, penalizing a string pair for every difference without giving
sufficient credit for common features. For example, the pair {Stan, Stanley}
has an adjusted Jaro-Winkler score of 0.9142 while this edit distance similarity
function evaluates the pair at 0.5714. We decided to modify the edit distance
similarity score by taking into consideration the length of the longest common
subsequence (Ics) of the two strings. This length can be computed similarly as
the edit distance by counting the number of identity steps (no edit required)
in the shortest edit sequence. However, this is only necessarily true when the
available edit steps are restricted to insertion and deletion [Wagner]. This can
be done with a separate but parallel distance computation. Since the maximum
possible length of an Ics is m, the length of the shorter string, we can get an lcs
similarity score y from

y=—
m

where [is the length of an lcs. We derive a modified edit distance similarity
score Seqq¢ taking the average of these two scores

T4y
Sedt = .

2

We note that the modified edit distance score for {Stan,Stanley} is 0.7857.

3.3 Adaptive String Comparator

The edit distance metric counts the minimum number of character edits required
to convert one string to another, each edit having a unit cost. We consider the
problem of having the edit cost function, instead of being constant, depend on
the characters involved. If we are trying to decide whether two strings both
represent the same word, then edit changes that represent common misspellings
or typographical errors could cost less than rare changes, so that the score
might better reflect the plausibility that the two strings are equivalent. Sources
of typographical error could be written misspelling, phonetic misspelling, key
stroke errors, or scanning errors. Since different data sets might be subject
to different proportions of these error sources, it might be helpful if the edit
cost function could adapt to the data sets at hand. We describe a method for
assigning these costs and define an adaptive string comparator based on the edit
comparator model.

But first we should be aware that there are some theoretical drawbacks
involved in any string distance function that varies with the characters. The
main one is that the resulting “distance” function may not be a metric. It is
reflexive and the cost function can be defined to be symmetric, but the triangle
inequality may fail. For example, for three one character strings, o = (a), 8 =
(b),v = (g), it may be that the cost function

c:Ax A—-R"
where A is the character alphabet (including the null character), could have
c(a,b) +c(b,g) <c(a,g)

if (a,b) and (b, g) happen to be common substitutions while (a,g) is a rare
substitution.

In order to compute the variable costs, we use a probability model to compute
cost values based on maximum likelihood. For characters a;,a; € A, let

pij = Pr((a;,a;) | M),

the probability that the edit step (a;, a;) is used in a minimum cost edit sequence
converting a pair of matched strings. A connection between cost and probability
(frequency) can reasonably be modeled as

¢(a,b) = —klogPr((a,b)| M)

where by Pr((a,b) |[M) we mean that, given an edit has occurred in converting
matched strings, the probability that it was the edit (a,b),a,b € A. We
introduce a scale factor k£ > 0 because there does not appear to be any analytic
reason determining the use of the natural logarithm. We may wish to choose a
base that produces a conveniently scaled cost function. For example, suppose
that the alphabet A has n characters and we a trying to estimate the costs for
in(n+ 1) different edit steps. We initially would probably set all of the edit
steps to have equal cost, so that initially we have

c(a,b) = —H].Og m

Thus it might be convenient to let

1
K= —
log

2
n(n+1)
so that all initial costs are set to equal 1.

To estimate these probabilities, we can use a set of training data consisting
of pairs of strings that are likely matches. Using this data, we can compute
the maximum likelihood values for these probabilities using an EM algorithm
approach.

3.3.1 Maximum Likelihood

For each edit step (a;,b;) € S C C* x C*, we want to maximize
L= HPI‘ ((ai7 bj)l M)nij
4,J

where the data n;; is the count of times the edit step was used and the param-
eters are Pr((a;,b;)| M), which is the probability of using the edit step (a;, b;)
in a minimum cost edit of a pair of strings which both represent the same word.
For a given count of the edit steps, the maximum likelihood occurs for

Tis

Pr (o, by)| M) = 22)
where N is the total of all edit steps used. That is, we count the edit steps
used in the least cost edit path for all pairs of likely matching strings. Ristad
[Ristad] also uses a probabilistic approach, but counts all edit step through all
possible paths. Using the least cost path seemed to be the more reasonable
model for this application.

Using the EM algorithm to maximize likelihood, we can initialize the param-
eter values with equal probabilities; for the E-step, we can count the number
n;; of each edit steps used; for the M-step, we use the edit frequencies to revise
the edit probability parameters according to (2).

3.3.2 Developing a Similarity Score

While the above calculation is simple and converges quickly, the resulting costs
may lack some rationality. For example, for a given pair of characters (a,b),
we may get a cost function ¢ where

c(a,b) > c(a,e) +c(e,b)

that is, the cost of substitution can exceed cost of the equivalent insertion and
deletion. We modify the cost function by replacing the substitution cost by the
minimum of these two. For a given pair of strings, we can then use the dynamic
programming algorithm to compute their adaptive edit “distance”. To convert
this to a comparison score, we still need to divide by the maximum distance.
The concept of maximum distance between two unrelated strings is less clear.
Instead of simply counting the maximum number of edit steps, we have to decide
on what costs to assign to each step. By analogy to the edit step count, we
compute a maximum distance m, by

My = Zc/ (ak, bg) + Z c(bg,€)
k=1 k=m-+1

where (.b) Fat
/ | c(a,b ifa#bd
C<“’b)_{ 1 ifa=b

If ¢, is the total minimum adaptive edit cost, we compute an adaptive similarity

score Sqqp by
1/ c, n [
Sadp == | — + —
=9 Mg M

where [is the Ics length as before.

3.3.3 The Training Data Set

In order to calculate our maximum likelihood costs, we need a set of training
data. To produce a training data set, we run the matching software on the test
files and get a printout of matched record pairs sorted by match score. As with
standard matching procedure, we examine the list and choose a cutoff score
above which all the pairs are designated matches. We then read in the pairs
of designated matched records and write out the pairs of first or last names
where neither name is blank and the names are not identical strings. This
forms the initial training data set of pairs of names that come from matched
records but have some spelling discrepancy. We want pairs of strings that likely
both represent the same name. This file is edited further to eliminate the most
unlikely agreeing pairs. We read in these name pairs and compute the standard
Jaro-Winkler string comparator score. We then sort the pairs by this score
and eliminate low scoring pairs that do not appear to be different spellings
of the same name. The result is a set that represents pairs of strings that
are matched but which have spelling errors. This procedure could be used to
produce training data from any pair of files designated for record linkage.

4 Testing the String Comparators

Our test data consists of the three 1990 Census/PES file pairs that have been
clerically reviewed. So far we have used the largest set (STL) to explore the
methodology for our comparison tests. In the future we can apply the same
methods to the other two sets to see if the results are consistent. We use the
Census Bureau matcher software to produce our training data and test data.
The standard blocking strategy for these sets has been to use the cluster number
and the first character of the last name. We used this to produce the first name
data, but it presumably introduces a bias for the last name data, so we reran the
software blocking on cluster number and first character of first name to produce
the last name data.

Specifically, for each of these two runs, we ran the counting program and
used the output of the EM algorithm to obtain parameter estimates for the
agreement probabilities. Then we used these parameter estimates to run the
matching program. As described above, we used the output of the matcher
to produce training data sets. For the test data, we considered every record
pair brought together by the blocking criterion. When blocking on last name
character, we printed out every pair of first names from these record pairs.
Since we had clerically reviewed truth data, we printed these first name pairs

to two different files, depending on whether the pair came from a match pair or
a non-match pair. We did the analogous thing for last names under the other
blocking criterion.

4.1 Linear Regression

Although we have scaled all of the string comparator functions to produce scores
between 0 and 1, these scores are not modeled as probabilities. The specific
scores have no particular significance. It does not make much sense to compare
the scores of two string comparators directly. However, increasing comparator
scores are supposed to indicate increasing confidence of string pair matching.
Thus valid string comparators should exhibit a common trend. Thus we com-
pare two comparators by computing a linear regression of the scores of one onto
the other.

We computed separate regressions for first name pairs and last name pairs.
In both cases, we used the set of pairs that came from the designated match
records. We reduced the sets by eliminating all identical string pairs and all
repetitions of the same string pairs to arrive at a set of unique, unequal string
pairs. We then computed residuals for both the sets from match pairs and from
non-match pairs.

4.1.1 The Jaro-Winkler String Comparators

We compared the results of the Jaro-Winkler string comparators, with and
without the two adjustments for long strings and similar characters. We did
this partially to try to perceive the effects of the adjustments and partially to
get a baseline for similar string comparators.

Not surprisingly, the two J-W versions are highly correlated (0.99) and the
linear regressions are a tight fit, the last name pairs slightly better than the first
name pairs (first R? = 0.98, last R? = 0.99). The first name pairs have very
few residuals greater than 0.1, the last name pairs have none (first 99.8%, last
100.0% have |r| < 0.1).

4.1.2 Edit Distance and Adaptive String Comparators

When we compare the edit distance and adaptive string comparators, the results
are very similar. The are similarly correlated (0.99) and the regression fit is
about as good (first R? = 0.97, last 0.99). There are only slightly more residuals
larger than 0.1 (first 99.4%, last 98.8% have |r| < 0.1).

4.1.3 The Jaro-Winkler and Edit Distance String Comparators

We compared the adjusted Jaro-Winkler string comparator to both the edit
distance string comparator and the adaptive string comparator. Although these
still show strong similarities, they are not as similar as the previous comparisons.
The J-W and edit distance comparators are strongly correlated (first 0.93, last
0.95) and have good regression fits (first R? = 0.86, last R? = 0.90). The

10

number of larger residuals is greater (first 91.9%, last 90.0% have |r| < 0.1).
The J-W and adaptive string comparators are almost as correlated (first 0.92,
last 0.94) and slightly less good regression fits (first R? = 0.85, last R? = 0.89)
with slightly fewer large residual pairs (first 92.8%, last 90.5% have |r| < 0.1).

4.2 Comparison Weight Function

We have so far compared the string comparator functions by regressing one of
their scores on the other, observing how much one set of scores explains the
other, and examining cases where the actual and predicted score most differ.
We note that for pairs where the scores were low, a larger residual probably did
not matter for the record linkage application. This is because in the record
linkage application, we use the comparator scores to evaluate a comparison
weight function
w(z) = log Priy==|M)
Pr(y=z|U)

to assign a comparison weight. To evaluate the performance of a string com-
parator for the record linkage application, we need to compare the results of
the comparison weight function. In order to do this, we need an appropriate
comparison weight function for each comparator.

As we see from its definition, the evaluation of the comparison weight func-
tion depends on probabilities that are conditioned on the true match status of
the records. While this may not be known in general, we take advantage of
our Census test decks with reviewed match status to approximate a reasonable
comparison weight function for each comparator. For first and last names,
we use the full sets of pairs from matches and pairs from non-matches, not re-
moving duplicates or exact matches. We calculate the string comparator value
for each pair and count the number of pairs whose values fall within each cell
of a partition of [0,1]. To summarize the results, we see by inspection that
generally the cell values of w (x) decrease as = decreases from 1, until = gets to
a point ¢ where the values of w (z) tend to level out. This corresponds to our
notion that string comparator scores below a certain level should indicate total
disagreement. In the region [c, 1] where w (x) seems to be increasing, we fit a
straight line. The final approximated comparison weight function is a straight
line truncated below by the total disagreement weight and truncated above by
the total agreement weight.

For this data set, we found that for all four comparators, the first names
resulted in a better fit than the last names. The worst fitting cases suggest
that a logistic curve might be a better fit. The regression lines for all of the
J-W cases were similar and those of the edit and adaptive methods were all
similar. The J-W slopes were greater than the edit or adaptive slopes. This is
consistent with the score regressions, where edit or adaptive scores the predicted
by the J-W scores are always larger than the original edit or adaptive scores on
[0, 1].

11

4.3 Matching Weight Comparison

We compare the performance of the string comparators by comparing the agree-
ment weights assigned to string pairs, using the estimated comparison weight
function for each comparator. We looked at the four sets of first and last name,
match and non-match records separately. Again our sets are reduced to the
unique, non-identical pairs. We compute the weight differences between pairs
of comparators, the same pairs for which we computed regression lines.

Again, as we might anticipate from the regression results, on the whole, the
differences are not great. To give a snapshot example, suppose we consider a
substantial weight difference to be 1.75. For the first and last name agreement
and disagreement weights, this represents roughly 25% of the length of the total
weight interval. The following is a table shows the percentage of pairs in our
data sets for which [A] < 1.75, where A is the difference between the two weight
assignments.

First Mat First Non Last Mat Last Non

Basic & Adjusted J-W 99.1 99.8 99.9 99.8
Edit & Adaptive 100.0 99.9 99.8 99.9
J-W & Edit 96.1 97.8 98.0 99.2
J-W & Adaptive 96.4 98.0 97.8 99.3

®3)
Table (3) indicates that the string comparators assign agreement weights that
are fairly similar for the preponderance of the sample data pairs. The non-
matches have a lot of agreement since most of the pairs have very little similarity
and thus get assigned the full disagreement weight.

The weight difference distributions suggest very modest differences between
the basic and adjusted J-W comparators, which is not too surprising since they
are highly similar. If anything, the differences between the edit and adaptive
comparators are even less. This calls into question the benefit of all of the extra
work involved in calibrating and computing the variable edit weights. Although
the results are similar, the edit and adaptive string comparators show somewhat
greater differences with the adjusted J-W comparator. This reflects that they
have different structures.

On the one hand this is reassuring that reasonably valid string comparators
should all provide fairly consistent results to the record linkage algorithm. On
the other hand, it does not help us to choose between them. The different
comparators might significantly affect the record linkage results for the cases
with the most extreme differences, so we considered these individual cases.

Subjectively there does not appear to be a strong case for favoring the results
of any of these comparators over the others. In general when one looks at the
extreme cases for a matched pair set, the comparator assigning the higher weight
appears to be doing a better job. When one looks at the extreme cases from
the non-match pairs, the comparator assigning the higher weight appears to be
doing worse.

12

For example, when we look at the differences between the basic and adjusted
J-W comparators, as the Table (3) suggests, there are not many cases of large
changes. The changes that improve the matching are countered by similar
changes that do not improve the matching. Likewise, comparing the edit and
adaptive comparators, there are even fewer large changes. Among these, the
comparator giving the better weight assignment is fairly evenly balanced. In
these direct comparisons, there does not appear to be a case for using the
character specific adjustments.

When we compare the adjusted J-W comparator to either the edit or adap-
tive comparator, we do see more sizable differences. These differences point out
the distinct properties of the two types of string comparator, but they do not
clearly establish which comparator is doing the better record linkage job. The
basic difference is that the J-W string comparator is good for identifying pairs
of strings with permuted common characters, while the edit-based comparators
are good for finding pairs of strings with significant common substrings.

To cite some specific examples, there are cases where the J-W compara-
tor assigns the full disagreement weight and the edit and adaptive weight are
more than 5 points higher, resulting in a strong agreement weight. The J-W
comparator is exacting on short strings, so that pairs such as {UZ, U Z} and
{JK, JIK} that receive full disagreement weight from J-W almost or more than
6 points higher weights from the edit and adaptive comparators respectively.
Likewise, the substring property gives similarly strong weight increases to {Ivy,
Ivory}, {Sara, Asara}, {Tony, Anthony}, {Dale, Lyndale}, and {Leroy, Roy},
which are subjectively credible as positive agreement weight pairs. On the
other hand, these comparators give similar weight increases to { Amy, Tammy},
{Randy, Ray}, and {Tracy, Ray}, which appear to be less likely matched names.
Likewise among last names, the edit and adaptive comparators give a weight
increase of from 3 to 5 points to double names like {Shell Gladney, Gladney} or
{Cohee-Wheeler, Wheeler}. On the other hand, there are also strong increases
for {Edwards, Ward}, {Hermann, Mann}, and {Ore, Moore}.

The differences where the J-W weight exceeds the edit or adaptive weight
are not as large as the largest of the above differences. On the positive side, the
J-W exceeds the others by around 3 points for {Tolando, Talonda}, {Bilenda,
Belinda}, and Louanda, Lavonda}, but also less convincingly for {Geraldine,
Regna}, {Cornelius, Rocile}, and {Lenora, Veronica}. Actually there are
smaller differences for the last name match pairs, and the largest difference
last name non-match pairs appear to be awarding slightly positive agreement
weight to unlikely agreement pairs. By just looking at the largest weight differ-
ences for last name pairs, the edit and adaptive comparators appear to perform
a little better than the adjusted J-W comparator.

By just subjectively evaluating the comparators’ performance on some ex-
amples, we can get an idea about how they perform differently, but it does not
provide convincing evidence for evaluating their relative performance for the
record linkage application. Of course, the relevant test for that would be to
compare the effects of the different comparators on the linkage of the record
pairs. Since many other factors are involved in the record linkage, it would be

13

difficult to isolate particular comparator effects. Since it is difficult to observe
definitive evidence of superiority by examining the comparator results directly,
it would be even harder to discern when masked by many other contributions.

5 Summary

We have length of the longest common substring along with edit distance to de-
fine a string similarity function to compare with the Jaro-Winkler string com-
parator. We create an adaptive variation on the edit distance cost function
to adjust edit costs based on frequency of use. We compare the results of
the different comparators on first and last name pairs from Census files. Re-
gression analysis shows that they all have strong common linear trends. By
developing a record linkage weight assignment function for each comparator, we
can examine differences in weight assignments between the comparators. In
both the Jaro-Winkler case and the edit/adaptive case, we do not detect any
real advantage from using either adjustment for commonly used substitutions.
While largely very similar, the Jaro-Winkler comparator does have some large
weight differences with the edit or adaptive comparators. There is some slight
indication that the edit approach is doing more good than harm, but this would
have to be confirmed using other data sets.

References

[Navarro] Navarro, G. “A Guided Tour to Approximate String Matching.”
ACM Computing Surveys. Vol. 33, No. 1, March 2001, pp. 31-88.

[Ristad] Ristad, E. S. and Yianilos, P. N. “Learning String Edit Distance.”
IEEE Transactions on Pattern Analysis and Machine Intelligence.
1998, 20(5):522-532.

[Wagner] Wagner, R. and Fisher, M. “The String to String Correction Prob-
lem.” Journal of the Association for Computing Machinery. Vol. 21,
No. 1, January 1974, pp.168-173.

[Winkler] Winkler, W. E. The State of Record Linkage and Cur-
rent Research Problems. Statistics of Income Division, In-
ternal Revenue Service Publication R99/04. Available from
http://www.census.gov/srd /www/byname.html.

A Appendix

A.1 Linear Regression

We provide a sample of the linear regression graphs of the scores from one string
comparator onto the scores of another. In Fig (1) we see a strong linear relation

14

Figure 1: Basic and Adjusted Jaro-Winkler Scores

between the Jaro-Winkler scores with and without the adjustments for similar
characters and longer strings.

In Fig (2), the edit scores with and without adjusted costs also show a strong
linear relation. Several of the more outlying points have scores low enough that
they likely both receive full disagreement weight.

In Fig (3), the adjusted Jaro-Winkler and adaptive edit scores show a domi-
nant linear relationship, but there are more outliers and some of these represent
scores high enough to result in some significant weight differences.

A.2 Comparison Weight Function

In Fig (4) we have plotted the binned comparison weights adjusted Jaro-Winkler
scores for first names. The weights appear to line up well for scores above 0.6.
In Fig (5) we plot the regression line for these points.

In Fig (6) we plot the last name comparison weights for edit distance. The
weights for scores above 0.4 are not as linearly aligned, but the linear regression
in Fig (7) provides a fair approximation.

A.3 Matching Weight Comparison

As we have seen in Table (3), using the computed weight comparison functions,
the different string comparators assign weights of small differences to the bulk
of name pairs. To give a little idea of where the comparators differ the most,
we give some tables representing the largest differences.

15

Figure 2: Edit and Adaptive Scores

Adaptive and J—W Regression

Firgt Nome Wotch Foire

hdoptive Seor

]
|
I
I
I
I
1
1
1
1
1

loro-Kinkler Store

Figure 3: Adjusted Jaro-Winkler Score and Adaptive Edit Score

16

agrwgt

hdjusted J—VW Comparison Weights

oo

=01

00

01 02 03 04 05 06 07 08 09

center

Figure 4: Adjusted Jaro-Winkler Comparison Weights

17

Adjusted J—W Weight Regression Line

Where center GT 06
6_
/D/
41 0
/D",’D,
5] /,/
= o
Z ’/,,
CN L
IS
-2 _.a
,’E//,
-4 o -
I I I I I I I I I
080 065 070 0.5 080 085 080 095 1.00
center

Figure 5: Adjusted Jaro-Winkler Weight Regression Line

Figure 6: Edit Distance Comparison Weights

18

Figure 7: Edit Distance Weight Regression Line

A.3.1 The Jaro-Winkler String Comparators

In Table (4) we are looking at the last name pairs coming from matching records
where the adjusted J-W weight most exceeds the basic J-W weight. Even the
largest differences produced by the adjustments are not too dramatic and it is
not clear that all of the pairs should have their comparison weight increased.

Adjusted Weight > Basic Weight

Last Name Match Pairs J-W Scores J-W Weights
Name 1 Name 2 Basic Adj Basic Adj Diff
GRICE GRIFFIN 0.6762 0.7973 —2.8908 —0.6981 2.1927
GORDON JORDAN 0.7778 0.8778 —0.6127 1.1317 1.7444
HAMER HAYMOND 0.6762 0.7684 —2.8908 —1.3566 1.534
JONES JAMES 0.7600 0.8488 —1.0114 0.4726 1.4839
THOMPSON JOHNSON 0.7131 0.8011 —2.0632 —0.6127 1.4504
CURRUTHERS CORORRETHRS 0.7832 0.8697 —0.4915 0.9474 1.4389
(4)

In Table (5) we see the last name pairs coming from non-matching records
where the adjusted J-W weight most exceeds the basic J-W weight. Here the
largest differences arise from raising basic weights at or near full disagreement
weight to adjusted weights that are still negative but nearer zero. Again it is

19

not clear that these adjustments would be helpful for the matching.

Adjusted Weight > Basic Weight

Last Name Non-Match Pairs J-W Scores J-W Weights
Name 1 Name 2 Basic Adj Basic Adj Diff

MASEK MASCARE 0.6762 0.8213 —2.8908 —0.1522 2.7386
GARANZINI GARAVAGLIA 0.6852 0.8238 —2.6891 —0.0966 2.5925
THURMAN THOMPSON 0.6905 0.8167 —2.5704 —0.2583 2.3121
MCCULLOUGH MCCASKILL 0.6852 0.8092 —2.6891 —0.4285 2.2606
SCHMIDT SCHUH 0.6762 0.7973 —2.8908 —0.6981 2.1927
COLEMAN KOMADINA 0.6905 0.8113 —2.5704 —0.3810 2.1894
GRIFFIN GREEN 0.6762 0.7958 —2.8908 —0.7327 2.1580
JACKSON JAMES 0.6762 0.7958 —2.8908 —0.7327 2.1580

(5)

Since the J-W adjustments can only raise the basic score, the basic weight
exceeds the adjusted weight most in cases where the adjustments had no effect
and the scores remained the same. Tables (6) and (7) list the largest weight
differences for match pairs and non-match pairs respectively. There a several
other pairs with weight differences of size about 0.5. These differences should
have small effect on the record linkage.

Basic Weight > Adjusted Weight

Last Name Match Pairs J-W Scores J-W Weights

Name 1 Name 2 Basic Adj Basic Adj Diff
STUBBS STUDES 0.8444 0.8444 0.8823 0.3735 —0.5088
BOYD BOLDY 0.8267 0.8267 0.4836 —0.0309 —0.5145
DOWD DOWELL 0.8250 0.8250 0.4462 —0.0688 —0.5150
VAUHNS VAUGHER 0.8222 0.8222 0.3839 —0.1320 —0.5159
COAD JACOAD 0.8056 0.8056 0.0102 —0.5110 —0.5213
TIMM TZMMS 0.8050 0.8050 —0.0023 —0.5237 —0.5214
BUNCH BUNTIT 0.7900 0.7900 —0.3386 —0.8649 —0.5263
HEE YEE 0.7778 0.7778 —0.6127 —1.1429 —0.5302

(6)

20

Basic Weight > Adjusted Weight

Last Name Non-Match Pairs J-W Scores J-W Weights
Name 1 Name 2 Basic Adj Basic Adj Diff
ALT BALL 0.7222 0.7222 —1.8585 —2.4065 —0.5480
ORE COLE 0.7222 0.7222 —1.8585 —2.4065 —0.5480
WARD EDWARD 0.7222 0.7222 —1.8585 —2.4065 —0.5480
KEY HUEY 0.7222 0.7222 —1.8585 —2.4065 —0.5480
OGE LOVE 0.7222 0.7222 —1.8585 —2.4065 —0.5480
RICHARDSON CARR 0.7167 0.7167 —1.9831 —2.5329 —0.5498
BILL WILLIAMS 0.7083 0.7083 —2.1700 —2.7225 —0.5525
HALL CHANDLER 0.7083 0.7083 —2.1700 —2.7225 —0.5525
MCDOWELL COLE 0.7083 0.7083 —2.1700 —2.7225 —0.5525
HULL FULLAURD 0.7083 0.7083 —2.1700 —2.7225 —0.5525
WILLIAMS HILL 0.7083 0.7083 —2.1700 —2.7225 —0.5525
KERR MAYBERRY 0.7083 0.7083 —2.1700 —2.7225 —0.5525

A.3.2 Adaptive and Edit Weight

(7)

The differences between edit weight and adaptive weight are generally smaller

but more symmetric than between the two forms of J-W weight.

For the last

name pairs where the adaptive weight most exceeds the edit weight, we see that
for the match pairs in Table (8) and non-match pairs in Table (9), the largest
adaptive weight differences do not generally appear to benefit record linkage.

Adaptive Weight > Edit Weight

Last Name Match Pairs Scores Weights

Name 1 Name 2 Adapt Edit Adapt

Edit

Diff

POLK POKE 0.8600 0.7000 2.3178

YABER YORBRO 0.6175 0.4667 —1.4263 —2.9108

GANES GAINS 0.8539 0.7333 2.2246

JONES JOHNSON 0.7690 0.6476 0.9129 —0.4490

0.3345 1.9833

1.4845

0.8332 1.3914

1.3619

YATES YAT 0.8943 0.8000 2.8487 1.8304 1.0183
(8)
Adaptive Weight > Edit Weight

Last Name Non-Match Pairs Scores Weights

Name 1 Name 2 Adapt Edit Adapt Edit Diff
BAKER BLACK 0.7083 0.5000 —0.0242 —2.6572 2.6330
HARRIS SHEARER 0.7598 0.5714 0.7716 —1.5887 2.3603
OWENS BROWN 0.6735 0.4667 —0.5616 —2.9108 2.3492
BLASE SIEBELS 0.6725 0.4381 —0.5763 —2.9108 2.3345
YATES BRYANT 0.6699 0.4833 —0.6161 —2.9065 2.2904
PHILLIPS HEMPHILL 0.7261 0.5417 0.2508 —2.0339 2.2847
AWLS WELLS 0.7557 0.5750 0.7084 —1.5353 2.2437

(9)

In Tables (10) and (11) we have examples of last name pairs where the edit

21

weight most exceeds the adaptive weight. Again in the match pair and non-
match pair cases, the differences are fairly small and do not appear to indicate
generally better weight assignment for matching.

Edit Weight > Adaptive Weight

Last Name Match Pairs Scores Weights
Name 1 Name 2 Adp Edit Adp Edit Diff
BLEIN KLEIN 0.7616 0.8000 0.7993 1.8304 —1.0311
HAYES BANES 0.5586 0.6000 —2.3359 —1.1613 —1.1746
WEST WEBB 0.5570 0.6000 —2.3605 —1.1613 —1.1992
HEE YEE 0.5819 0.6667 —1.9755 —0.1641 —1.8114
(10)
Edit Weight > Adaptive Weight
Last Name Non-Match Pairs Scores Weights
Name 1 Name 2 Adp Edit Adp Edit Diff
PEPPERS SELLERS 0.5058 0.5714 —2.9108 —1.5887 —1.3221
MAIER LABER 0.5482 0.6000 —2.4963 —1.1613 —1.3350
REEDER KREIGER 0.6122 0.6667 —1.5082 —0.1641 —1.3441
JORDAN MORGAN 0.6095 0.6667 —1.5493 —0.1641 —1.3852
WILSON DIXSON 0.6078 0.6667 —1.5764 —0.1641 —1.4123
REEDER KRIEGER 0.5999 0.6667 —1.6983 —0.1641 —1.5342
WARNER PARKER 0.5965 0.6667 —1.7498 —0.1641 —1.5857
TINKER BINGER 0.5943 0.6667 —1.7836 —0.1641 —1.6195
TEIBER BERNER 0.5283 0.6071 —2.8028 —1.0545 —1.7483
BOND BOXX 0.4822 0.6000 —2.9108 —1.1613 —1.7495
PALMER WALKER 0.5824 0.6667 —1.9678 —0.1641 —1.8037
(11)

A.3.3 J-W and Edit Weight

There are larger differences between either edit or adaptive weight and basic
or adjusted Jaro-Winkler weight than are found between either pair of similar
comparators. In Table (12) we see the largest weight differences for last names
from matched pairs. Here we see one of the properties of edit score is that it
gives credit for large common substrings even when they do not occur in the
same parts of each string. For last names, this picks up some cases of double last
names where the other string just has the second part of the name. Instead of
total disagreement weight, they get assigned a small positive agreement weight.
Incidentally, for the first name pairs, the largest weight differences involved short
strings, especially initials. When comparing, for example, “L C” and “LC",
the J-W comparator results in a low disagreement weight while the edit and
adaptive comparators produce a high agreement weight.

22

Edit Weight > J-W Weight

Last Name Match Pairs Scores Weights Diff

Name 1 Name 2 Edit J-W Edit J-W
COHEE-WHEELER WHEELER 0.7692 0.6264 1.3701 —2.9108 4.2809
SHELL GLADNEY GLADNEY 0.7692 0.3352 1.3701 —2.9108 4.2809
STRUB-TURNAGE TURNAGE 0.7692 0.4860 1.3701 —2.9108 4.2809
JONES-ATKINS ATKINS 0.7500 0.5500 1.0825 —2.9108 3.9933
FOSTER-ARNITZ ARNITZ 0.7308 0.4021 0.7948 —2.9108 3.7056
JONES GOSBY GOSBY 0.7273 0.5855 0.7425 —2.9108 3.6533
JONES PARKER JONES 0.7083 0.4561 0.4592 —2.9108 3.3700
SKAGGE SLOAN SLOAN 0.7083 0.5506 0.4592 —2.9108 3.3700
COAD JACOAD 0.8333 0.8056 2.3290 —0.5110 2.8401

(12)

In Table (13) we see the last name non-match pairs for which the edit weight
most exceeds the J-W weight. While these pairs may not be matches, the edit

comparator is registering a recognizable similarity between the strings.

Edit Weight > J-W Weight

Last Name Non-Match Pairs Scores Weights
Name 1 Name 2 Edit J-W Edit J-W Diff

ORE MOORE 0.8000 0.5644 1.8304 —2.9108 4.7412
WARD EDWARD 0.8333 0.7222 2.3290 —2.4065 4.7356
EDWARDS WARD 0.7857 0.6905 1.6167 —2.9108 4.5275
HERMANN MANN 0.7857 0.5821 1.6167 —2.9108 4.5275
WOODARD WARD 0.7857 0.6345 1.6167 —2.9108 4.5275
WARD STEWARD 0.7857 0.0000 1.6167 —2.9108 4.5275
BAUER WOLFBAUER 0.7778 0.0000 1.4980 —2.9108 4.4088
BELL CAMPBELL 0.7500 0.4958 1.0825 —2.9108 3.9933
WARD POWLLARD 0.7500 0.5333 1.0825 —2.9108 3.9933
MAY MCNALLY 0.7143 0.6508 0.5482 —2.9108 3.4590

(13)

In Table (14) we see the last name match pairs where the J-W weight most
exceeds the edit weight. The differences here are not as large as in Table(12),
and although these pair come from match records, only about half of them look
like likely matching strings, so that the justification for the higher weight is not

obvious..

23

J-W Weight > Edit Weight

Last Name Match Pairs Scores Weights
Name 1 Name 2 Edit J-W Edit J-W Diff
JONES JOHNSON 0.6476 0.8738 —0.4490 1.0419 —1.4909
THOMPSON JOHNSON 0.5357 0.8011 —2.1230 —0.6127 —1.5102
HAINES HAYMES 0.6667 0.8880 —0.1641 1.3642 —1.5283
DOLIE DOYLE 0.7333 0.9347 0.8332 2.4257 —1.5925
GANES GAINS 0.7333 0.9347 0.8332 2.4257 —1.5925
JONES JAMES 0.6000 0.8488 —1.1613 0.4726 —1.6339
WRATHY WORTHY 0.7500 0.9475 1.0825 2.7176 —1.6351

CURRUTHERS CORORRETHRS

COVINGTON COUTION
CHEATHER CHEETMA

0.6227 0.8697 —0.8214 0.9474 —1.7688

0.5794 0.8463 —1.4700 0.4168 —1.8868
0.5893 0.8932 —1.3216 1.4821 —2.8037

(14)

In Table (15) we have the largest differences with the J-W weight exceeding

the edit weight for non-match last name pairs.

Here most of the differences

are larger than in Table (14), generally raising a near total disagreement edit
weight to a near zero to slightly positive J-W weight. The name pairs generally

look convincingly unmatched.

J-W Weight > Edit Weight

Last Name Non-Match Pairs Scores Weights

Name 1 Name 2 Edit J-W Edit J-W Diff
ADAMS KAMADULSKI 0.4833 0.8216 —2.9065 —0.1468 —2.7597
CARNAGHI CUNNINGHAM 0.4500 0.8252 —2.9108 —0.0644 —2.8464
OWENS JONES 0.5000 0.8375 —2.6572 0.2155 —2.8727
LEWIS WILLIS 0.4667 0.8274 —2.9108 —0.0153 —2.8955
WILSON LEWIS 0.3833 0.8274 —2.9108 —0.0153 —2.8955
HOLLINS ALLISON 0.4464 0.8286 —2.9108 0.0124 —2.9232
STEWART ATWATER 0.4464 0.8286 —2.9108 0.0124 —2.9232
THOMPSON MCPHERSON 0.4792 0.8332 —2.9108 0.1174 —3.0282
BEANS BASKIN 0.4167 0.8347 —2.9108 0.1525 —3.0633
WALKER FOWLER 0.5000 0.8516 —2.6572 0.5360 —3.1932
FOWLER WALTER 0.5000 0.8516 —2.6572 0.5360 —3.1932
STOKER KUSTER 0.5000 0.8516 —2.6572 0.5360 —3.1932
SPINKS PERKINS 0.4762 0.8405 —2.9108 0.2844 —3.1952
HAMILTON HOLMAN 0.4375 0.8458 —2.9108 0.4044 —3.3152

NICHOLSON JOHNSON

0.5079

24

0.8636 —2.5385

0.8088 —3.3472
(15)

