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1. Introduction 
 

At present, the Small Area Income and 
Poverty Estimates (SAIPE) program at the U.S. 
Census Bureau estimates state, county, and 
school district poverty and state and county 
median household income (MHI).  The current 
county models of child poverty are Empirical 
Bayes models where the direct survey estimates 
of poverty and MHI are shrunk with weighted-
regression model-based estimates of poverty and 
MHI, respectively. 1  These weighted regressions 
assume that direct Annual Social and Economic 
Supplement (ASEC) estimates of county poverty 
and MHI are a function of administrative record 
and survey data.2  We address a fundamental 
assumption of regression models that is violated 
in this application: that the predictors are 
measured without error.  Practical experience, as 
well as past research (Gee, 2001) suggests that 
the data for small areas like counties are often 
measured with error for many reasons.  Recent 
developments in experimental SAIPE county-
level poverty models (Fisher, 2003) derive a 
measure of “true” poverty as a function of 
several independent measures of poverty, all of 
which are assumed to possess non-negligible 
variances; i.e., an “errors-in-variables” model.  
We adapt the method in Fisher (2003) to 
estimating the county number of related children 
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1 We estimate the number of children ages 5-17 in families in 
poverty.  For brevity, we often refer to them as simply 
children. 
2 Poverty estimates from the Current Population Survey 
(CPS) Annual Social and Economic Supplement (ASEC) are 
the official measures of poverty.  The ASEC was referred to 
as the CPS March Supplement in the past.   

ages 5-17 in poverty and MHI.  For brevity, we 
focus the discussion on estimating children ages 
5-17 in poverty. 

The Hierarchical Bayes (HB) model of 
children in poverty assumes that as statisticians, 
we do not observe the object of interest—the 
county number of related children ages 5-17 in 
poverty—directly.  We only observe measures of 
that object; all of which possess non-negligible 
variance conditioned on the object of interest.  
This leads us to an appealing quality of the HB 
model: the contribution from a particular source 
of data to the county estimates is determined by 
the precision of the data source.  Therefore, if 
decennial census data is conditionally a more 
precise measure of poverty than administrative 
records from the U.S. Food and Nutrition 
Service’s Food Stamp Program (FSP), then 
decennial census data will contribute more to the 
final estimate of poverty than will FSP data.  
Note that the relative precision of data sources 
can change according to population, sample size, 
and so on, according to our modeling 
assumptions.  

A second advantage to the HB model is 
the ability to model specific attributes or 
qualities of a data source as it relates to the 
object of interest.  For instance, the present 
SAIPE county number of children in poverty 
model, the model is linear in logarithms.  Since 
the sample size in a single county can be quite 
small in the ASEC, there are many counties with 
no sample children in poverty (resulting in a 
direct survey estimate of zero).  Consequently, 
these counties are treated as having no ASEC 
sample in the model, potentially biasing the 
regression estimates (Maiti and Slud, 2002).  The 
proposed model offers a straightforward method 
of controlling for such censoring.   

In this paper, we describe a theoretical 
model and outline some empirical results.  All 
empirical results are based on income-year 2000 
estimates; i.e., estimates that are about income 
and poverty during 2000.  The paper proceeds as 
follows: First, we discuss the generic form of a 
theoretical model.  Second, the specifics of the 
children in poverty are covered.  Third, we 
present model fit and general results.  Fourth, we 



  

discuss future work and provide concluding 
remarks.  
 
2. The Generic Model 
 
2.1 The Model 

Assume that there are M counties, 
indexed by i, for which we are interested in 
estimating µi.  We do not directly observe µi.  
Instead there are J measures, each of which is 
observed for some counties, related to µi.  
Denote the jth measure for county i as Xij.  
Conditioned on the µi and parameters aj and bj 
the Xij have a normal distribution: 

( )2,N~,,,| ijjijijjjiij abbaX σµσµ + . 
The θ-parameters describe the conditional bias of 
measure Xij conditioned on µi.  We therefore 
refer to them as the bias parameters for the 
remainder of the paper.  Although we specify a 
linear conditional relationship between the 
measure and µi in the above equation for 
convenience, other configurations are possible.  
The conditional variance parameters, σij, are 
typically modeled as being proportional to some 
function of sample size or total population.       

The object of interest, µi, conditioned 
on parameters η and σµ, has a normal 
distribution given by 

( )( )2,N~,| µµ σησηµ fi . 
The parameters η and σµ describe how the object 
of interest varies across counties.  In our 
proposed models, the function ( )⋅f  is always 
linear.   
 We can see the dependencies through a 
graphical representation of the model displayed 
in Figure 1.  Recall that we only observe the j = 
1, 2,…, J measures of the object of interest, µi, 
located at the terminal nodes of the diagram.  To 
describe the process in a perhaps overly simple 
manner, we postulate a relationship between µi 
and the J observed measures and apply Bayes 
Theorem to derive estimates of µi, as well as the 
other parameters of the model. 
2.2 Model Fit 

We use two methods to evaluate model 
fit.  In the first, we examine scatterplots of 
standardized Bayesian residuals based on the 
mean of the posterior distribution instead of the 
linear prediction (as in a regression) against 
various model inputs and total population.  In the 
second, we examine posterior predictive p-values 
(PPP-values) in a fashion similar to the 
aforementioned “residuals.” 

 Standardized Bayesian residuals are 
quite intuitive relative to the ordinary regression 
diagnostics.  Estimates of the mean and standard 
error are obtained through the parameter 
estimates of the posterior distribution.3   A PPP-
value is defined as 

( ) ( )( )dataXTXTp repreprepobs |,,Pr θθ <=  
where T( ) is some function chosen to evaluate 
an aspect of the model and θ is a vector 
containing the model’s parameters.  More 
simply, a PPP-value compares characteristics of 
the replicated data—data drawn from the 
hypothetical posterior distribution of the 
model—to observed data.  A simple example 
would be ( ) xxT =θ, .  One would calculate the 
probability that the replicated value is greater 
than the observed value.  We use two functions 
to evaluate the model for each measure of µi. 
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The straightforward interpretation of these 
functions allows one to examine T1 and T2 to 
make inferences about the first and second 
moments of the model, respectively. If one 
observes a predominate proportion of PPP-
values based on the function T1 that are close to 
0 or 1, that implies that the model is consistently 
underestimating or overestimating the variable in 
question.  If a large majority of PPP-values 
based on the function T1 is either above or below 
½, then we can infer that the model is biased 
upward or downward respectively.  A similar 
observation with the function T2 implies that 
estimates of the variable’s variance are suspect.  
More generally, we can apply the PPP-value 
concept to test virtually any aspect of the model.4   

During the development of the original 
SAIPE poverty and MHI models, counties were 
classified according to 1990 Census 
characteristics.  The models’ residuals and 
differences from the 1990 Census were 
examined for each category such that 
dependencies or biases relative to the decennial 
census or other model failure might be detected.  
The methodology described in this paper is 
somewhat different, but analogous evaluations 
can be done by examining PPP-values for the 
various categories with the expectation that some 

                                                 
3 The definition of a standardized Bayesian residual is 
analogous to a standardized residual from regression.  See 
Carlin and Louis (2000) for more details. 
4 For an in-depth discussion of PPP-values, see Gelfand 
(1996), Gelman and Meng (1996), or Meng (1994). 



  

model failures would be detected in the event 
that PPP-values are extreme for some variable in 
some category.  Based on those original 
categories, we developed new categories from 
the Census 2000.  The bases for these county 
categories are  

• Percentage of the population who is 
Black 

• Percentage of the population that is 
Hispanic 

• Whether the county is classified as 
metropolitan or non-metropolitan 

• Total population 
• The associated Census 

Division/Region 
• Percentage of the population living at 

rural addresses 
• Percentage of the population residing 

in Group Quarters 
• Percentage of the population in 

Poverty 
For each set of categories, we examined box 
plots of the PPP-values for the various response 
variables.   
 
3. Child Poverty Model 
  
3.1 Data 
 We use measures of poverty that are the 
same predictors in the current SAIPE county 
child poverty model.   The county measures of 
the number of children in poverty, prefixed by 
the abbreviations used in all subscripts, are the 
following:  

1. ASEC—Direct survey estimates of 
child poverty from the Annual Social 
and Economic Supplement (ASEC) of 
the Current Population Survey (CPS). 

2. CEN—Estimates of the number of 
children in poverty from the most recent 
decennial census. 

3. ACS—Direct survey estimates of 
number of children in poverty from the 
American Community Survey (ACS).  
These estimates are based on data 
collected in a single year.5   

                                                 
5 Broadly speaking, the ACS is a rolling survey designed to 
imitate the decennial long-form survey.  ACS questionnaires 
are mailed to households during the entire year.  In that the 
reference period for the ACS income question is the previous 
twelve months before completing the survey, using data 
collected over a twelve-month period implies that there is a 
“reference-error” associated with the ACS estimate.  That is, 
surveys completed in January are theoretically about income 
earned during the previous January through December.  

4. TAX—Tabulations of Internal Revenue 
Service (IRS) 1040 tax return child 
exemptions with income below the 
poverty threshold.6  

5. NF—The number of nonfilers defined 
as the child population minus the total 
number of IRS tax return child 
exemptions. 

6. FSP—The number of the Food Stamp 
Program (FSP) recipients. 

We use demographic resident child population 
estimates from the Census Bureau’s Population 
Division.7 
3.2 Model 
 Past work has shown that the 
assumption that the conditional expectations of 
the measures are linear functions of poverty 
generally fit well.  Therefore, all of the measures 
and the objects of interest are in logarithms.  For 
this section, we denote the object of interest, the 
logarithm of the number of children ages 5-17 in 
poverty—as LNPi for some county i.  This leads 
to an important digression from the generic 
model in its application to the log number of 
children ages 5-17 in poverty.  A county’s 
sample size in the ASEC and ACS can be quite 
small, often resulting in no sample children in 
poverty.  A direct estimate of zero children in 
poverty is problematic due to the logarithmic 
transformation.  In past SAIPE models, we 
omitted counties with ASEC sample children but 
with zero sample children in poverty from the 
regression, thus treating them like counties 
without ASEC sample.  However, as discussed 
in Maiti and Slud (2002), omitting the counties 
exposes the model to the well-understood bias 
associated with censored data.  The new model 
allows us to address the concern directly.  For j 
∈ {ASEC, ACS}, the conditional distributions of 
Xij are  
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Surveys completed the following month, however, are about 
income earned during the previous February through January.  
Hence, some of the income refers to a period outside the 
targeted income year.   
6 Henceforth, we refer to the measure as “tax poverty.” 
7 See the website http://eire.census.gov/popest/estimates.php 
for more information on demographic total resident 
population estimates. 



  

where φ denotes the standard normal density 
function. If the observed number in poverty in 
the sample is zero, leading to an undefined value 
of Xij, we assume it was censored so we know 
that Xij  < γij.  The censoring threshold γij is 
modeled simply as 

( ) ( )ijiij kpop loglog −=γ  
where popi is the number of 5-17 related children 
and kij is the sample size for county i.  Poverty 
status in the ASEC is determined by the family’s 
income relative to its size and composition.  
Consequently, either an entire family is in or out 
of poverty.  Consider that the smallest 
observable value of the number of children in 
poverty is the number of children in an in-sample 
family.  Thus, our threshold model, γij, is the 
average sum of the sample weights for the 
children in a single family in logarithms.   
 In the Monte Carlo Markov Chain 
(MCMC), discussed later, it is straightforward to 
replicate the survey result conditioned on the 
event that it fell below the threshold.  
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where Φ denotes the standard normal 
distribution function.  In the MCMC, it is 
straightforward to replicate the unobserved direct 
estimate from this truncated distribution. 
 A second difference between the 
generic and child poverty models is that the 
relationship between LNPi and the log number of 
FSP recipients, Xi,FSP, is modeled to be quadratic 
such that 

( )2
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Conditioned on the data and all parameters, the 
posterior distribution of LNPi is not Normal.  We 
can show that the posterior distribution of LNPi 
conditioned on the data and parameters is a N3 
density as discussed by Cobb, Koppstein, and 
Chen (1983).   
 The function f( ) for the poverty models 
is of the form ( ) ( )ipopf log+=ηη  where popi 
is the number of related children 5-17.  In this 
form, the parameter η can be interpreted as the 
log national poverty rate while 2

µσ  describes the 

variation of log county child poverty rates 
around the national average.   
 Motivated by the fact that the direct 
survey ASEC estimate is the official measure of 
poverty, we constrain the log ASEC bias 
parameters—{aASEC bASEC}—to be zero (aASEC = 
0) and one (bASEC = 1) respectively.  
Furthermore, the constraint allows us to identify 
the bias parameters for the other measures of 
poverty. 
 The current SAIPE county poverty 
models distinguish between a random effect—
the deviation of “true” child poverty around the 
regression model—and the sampling error 
associated with the ASEC.  We preserve a 
similar quality in the proposed model.  Notice 
that we model the observed log ASEC measure, 
XiASEC, conditioned on the “true value” of LNPi.  
Therefore, the estimate of σiASEC is the measure 
of ASEC sampling error around true child 
poverty.  We can also obtain the variance of 
LNPi through its replicated values; i.e., an 
estimate of its model-error or random-effect 
variance.  The variances of the other measures of 
LNP, other than the log decennial census 
estimate of child poverty, are modeled with a 
single parameter.  In these cases, we need to 
either assume that there is no sampling error—a 
reasonable assumption with IRS tax return 
data—or that the single variance term comprises 
both sampling and modeling error.  Models for 
the variance terms appear below.   

1. The conditional variance of the direct 
ASEC measure is inversely proportional 
to the square root of sample size.  We 
arrived at this form through a series of 
empirical studies.8       

2. The conditional variance of the 
decennial census measure has two 
components.  The first component is a 
coefficient times a function that mimics 
the decennial census generalized 
variance function in the logarithmic 
scale.  The second component, 
motivated by the idea that time has 
passed since the last decennial census, 
is a fixed constant.   

                                                 
8 There are strong reasons to begin with the assumption that 
the variance is proportional to the inverse of 
sample/population.  However, a long series of SAIPE 
research beginning with Fisher and Asher (2000) has 
consistently resulted in a form proportional to the square root 
of sample/population. 



  

3. The conditional variance of the direct 
ACS measure is inversely proportional 
to the square root of sample size.   

4. The conditional variance of tax child 
poverty is inversely proportional to the 
square root of the population.  

5. The conditional variance of the number 
of nonfilers is inversely proportional to 
the square root of population.   

6. The conditional variance of the number 
of FSP recipients is a constant.  

In Figure 2, one can view a graphical 
representation of the children in poverty model.  

We chose the model on the basis of 
experience with the data, as well as experimental 
runs with similar county data for earlier income 
years. 
3.3 Priors 
 The hyperparameters were chosen 
through a combination of our theoretical 
relationships between the observed data and 
empirical trial and error.   In formulating our 
priors, we began with what we considered broad 
and unrestrictive priors.  We fit the models with 
these priors and basic model assumptions with 
data from previous income years and, finally, 
applied them to model and results presented in 
this paper.  This avoids, somewhat, the problem 
of fitting models to the same data from which 
estimates are formed.  Although we took care 
while choosing the priors, the abundance of data 
made the results extremely robust to our choices 
of priors.9  This property allowed us to maintain 
the unrestrictive priors and preserve the cross-
sectional quality of the estimates.  That is, the 
estimates from one year are independent of the 
relationship between the measures of poverty 
from a previous year, which allows us to avoid 
having to model how the relationships change 
over time. 
 Since all of the measures are directly 
related to poverty, we give normally distributed 
priors for the bias parameters centered on each 
measure being unbiased—i.e., (a,b) = (0,1)—and 
give them a large enough variance such that we 
feel comfortable labeling the priors as 
noninformative.  As for the variance-parameter-
priors, we relied more heavily on initially 
choosing unrestrictive priors and making 
changes after viewing the results from earlier 
years of data.  We use noninformative (in our 

                                                 
9 In our experimental runs, we would often change the priors 
with little effect on the posterior estimates of number of 
children in poverty.   

opinion) gamma priors for the variance 
parameters.  Tables listing our priors are 
available upon request. 
 
4. Results from the Children in Poverty model 

 
Our initial assessment is that the model 

fits the data—at least its first two moments—
well.  Tables with the posterior means and 
standard deviations are available upon request. 

In general, the PPP-values failed to 
indicate serious failure in the model; for each of 
the response variables they are close to 0.5, 
ranging from 0.48 to 0.52.  Plots of the PPP-
values versus the variables described in the 
section on MHI model fit failed to show 
correlation with those variables with the 
following exceptions.  There may be a negative 
correlation between the T1 PPP-values for XTAX 
and percent Hispanic, between the T1 PPP-values 
for XFSP and percent Hispanic, between the T1 
PPP-values for XFSP and percent Black, and 
between the T1 PPP-values for XCEN and percent 
Hispanic.  Previous research by Gee and Fisher 
(2003) found evidence of demographic effects—
the percent of the county that is Hispanic, non-
Hispanic White, and non-Hispanic Black (by 
omission)—on the Food Stamp Program 
participation and county poverty within the 
context of the new model.  The aforementioned 
research suggests that addressing these issues 
will improve the reliability and precision of the 
final county-level estimates.   

The mean posterior standard deviation 
of LNP under the proposed model for income 
year 2000 is 0.104.  The estimated standard error 
for the analogous quantity under the current 
random-effects regression model is 0.145.  These 
two quantities are not strictly comparable, but 
the interpretations of the numbers are similar.  
These numbers should not be used to discrim-
inate between the models, since a better estimate 
of the variances or a better fitting model may 
produce a more realistic larger posterior SD or 
standard error. 

 
5. Conclusions 
 
 Overall, we feel that the proposed HB 
model potentially represents a meaningful 
improvement over the current SAIPE production 
models.  To begin, the new model both 
characterizes the data well and simulates the way 
people interpret the data in a natural and intuitive 
manner.  Consider how an ardent baseball fan 



  

might make inferences on the major league 
performance of a rookie player.  The fan would 
observe the player’s performance in high school 
and the minor leagues.  He or she might read 
sportswriters’ opinions on the upcoming 
season’s prospects.  The fan would have an idea 
of the attributes and characteristics of an 
average, all-star, and “bench-warmer” major 
league baseball player.  The fan would also 
understand that none of these measures are 
perfect; e.g., performance in the minor leagues is 
not a perfect predictor of performance in the 
major leagues.  The fan would consider all of 
these measures of ability, weighting these 
measures according to their accuracy, compare 
them to the average player, and then make some 
prediction on future performance.  While an 
average fan might not go through the process 
described above explicitly, we would argue that 
the fan does so implicitly.  Now consider how 
the new county models mimic the baseball fan’s 
implicit model of rookie performance.  For the 
object of interest, county number of children in 
poverty and median household income, we have 
several measures of each object of interest.  After 
several years of observing these measures, we 
have a good understanding of their relationship 
and realize that the measures possess a non-
negligible variance relative to their global 
relationship.  There is a general understanding of 
the relative accuracies associated with the 
measures.  We possess good estimates of the 
national child poverty rate.  Moreover, we have 
experience and beliefs regarding the across-
county distribution of child poverty.  In our 
county model, however, all of the intuitive 
machinery that underlies the ardent fan’s final 
prediction of major league potential is made 
explicit.    
 In our view of the world, the proposed 
model accounts for far more attributes and 
characteristics of the data than does the current 
SAIPE production model—such as measurement 
error and censoring—such that they represent a 
meaningful improvement in of themselves.  But 
the proposed model has several other advantages.  
One, the proposed model provides bias-
parameter estimates that are far more 
interpretable than the coefficients of the current 
regression-like model.  A major concern with 
any production process is its associated quality 
assurances.  The proposed model has an intrinsic 
quality assurance in that radical and unexpected 
bias-parameter estimates imply that either the 
relationship between the measures suddenly 

changed or that an error occurred sometime 
during the estimation procedure including data 
collection and processing.  Two, ignoring the 
definitional differences between a standard error 
from a frequentist and Bayesian model, the 
proposed model produces estimates with greater 
precision.  Three, the proposed model can handle 
unbalanced—meaning that a source of data is 
only available for a subset of all counties—data 
sources easily.  In our experimental runs we 
demonstrated this ability by using both ASEC 
and ACS data as measures of child poverty.  
Theoretically, we could apply this to any data 
source that ostensibly is related to our objects of 
interest.  Hence, if there is a precise and highly 
correlated measure of poverty only captured in, 
say, Western states, we could incorporate it into 
the model.    
 There are several extensions of the 
model that we need to address.  Previous work 
by Fisher and Gee (2003) demonstrated that 
much of the FSP participation variation around 
poverty could be explained by other observable 
county characteristics.  We now have evidence 
that some of the other measures might suffer 
from a similar bias.  Refining these relationships 
will allow more precise measurements of the 
underlying county poverty.  Further research is 
needed to isolate and control for these effects.  
The present program fails to allow for values of 
zero in the measures of poverty other than ASEC 
and ACS.  This results in approximately 30 
counties omitted from the model.  Given the 
small number of counties involved and their 
relatively small size, we plan on modeling these 
counties as possessing randomly missing data, 
since there is little information to be gained.  
Important future research includes refinements to 
the variance models.  In particular, we can 
consider models where the variance depends on 
the replicated mean given the ease that they are 
implemented in simulated-based models.  
Furthermore, there may be advantages to 
modeling the true number of children in poverty 
as a binomial or Poisson distribution, which 
leads to a different variance function than the 
one we use now.  More research on the 
conditional variances of the survey measures 
could be conducted and perhaps improved.  Such 
research might shed light on the question of why 
the variances are such surprising functions of the 
sample sizes.  Lastly, there is some research 
needed with regards to the censoring threshold.  
One, as opposed to using the average number of 
children in a household, it would be more 



  

accurate to assume a distribution of the number 
of children in a household.  Two, we are looking 
for methods to test the model fit and effects of 
the censoring threshold. 
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7. Appendix 
 

Figure 1: Graphical Representation of the 
Generic Model 

 

Figure 2: Graphical Representation of Log 
Number of Children Ages 5-17 in Poverty 

 

 
 

 
 


