
Comparing Ways of Using ‘Protection Flow’ to Protect
Magnitude Data Tables from Disclosures

Paul B. M assell

Statistical Research Division

Room 3209-4, U.S. Census Bureau, Washington, D.C. 20233

paul.b.massell@census.gov

Abstract

We use the term ‘protection flow’ to describe any

solution to a mathematical programming model that

describes perturbations (i.e., modifications) of table cell

values that preserve table additivity. This term is meant

to generalize ‘network flow’. Network flow models

have been used to describe such perturbations for

simple two dimensional tables. Protection flow models

can be constructed for tables of any dimension and any

degree of hierarchy. Cell suppression is one way of

using the pro tection flow to construct a table with

sufficient protection for the sensitive cells. We compare

cell suppression with some new ways (e.g., controlled

tabular adjustment, variable base rounding, uncertainty

intervals) of using the perturbations to provide

disclosure protection.

Keywords: disclosure, confidentiality, mathematical

programming, protection flow, magnitude data tables,

cell suppression, controlled tabular adjustment

1. Introduction1

Let’s begin with an example that describes a situation

that arises frequently at statistical offices. Suppose a

statistical office (SO) would like to release a 2-

dimensional additive table. Additive in this setting

means that there is a sum row; i.e., a row that is the sum

of the other rows and a column that is the sum of the

other columns. If the sum row is the lowest row and the

sum column is the rightmost column then the grand

total cell will be the one in the lower right corner.

Suppose the SO determines that some of the cells are

sensitive according to some sensitivity measure. For

concreteness, let’s use the p% rule for all of our

examples. This rule is typically used with tables that

contain magnitude data, rather than count data. For

magnitude data, a cell value is usually the sum of the

contributions of at least a few contributors (e.g.,

companies). However, if there were only one

contributor and the cell value were released (i.e.,

published) and it was equal to the single contributed

value, it is likely that this would violate the

confidentiality guarantee that the SO pledged to all the

contributors.

Let assume the SO’s confidentiality pledge takes the

following form: any contribution will be protected in

the sense that the best estimate of a contribution ‘x’ that

is possible for any table user (other than the contributor

of ‘x’) to derive (using any standard mathematical or

statistical procedure and) using the published values in

the table is either (1) an interval containing x of width

at least 2*(p /100)*x; if “sliding protection” is being

used or (2) an interval of the form [x-a, x+b] where

both ‘a’ and ‘b’ are at least (p/100)*x ; if 2-sided

protection is being used. The value of p that is used is

based on a policy decision of the SO. In order to come

up with a sensible value of ‘p’, the SO may consult

with a sample of the organizations or individuals whose

data is being protected from exact disclosure.

Thus the goal is to ensure that there is an ‘uncertainty

interval’ of sufficient width about each contribution to

each cell. Sliding protection and two-sided protection

are two possible ‘position rules’; such rules determine

the placement of the uncertainty interval with respect to

the value being protected. Typically when there are

several contributions to a cell, the existence of the 3rd

largest and smaller contributions provide sufficient

protection to the largest contribution x1 so that the

contributor of x2 cannot determine x1 accurately.

However, this is not always the case; e.g., x3 may equal

zero. When the p% rule determines that a cell is

sensitive, it is saying that the uncertainty interval for the

largest contribution to the cell, x1, is not large enough

to protect it. One must determine how much

(additional) protection is needed and decide on a way to

provide that amount of protection. Recall that the table

is assumed to be additive. In general, whatever methods

are used to pro tect the sensitive cells, we still would

like the final table (i.e., the table after protection has

1
This report is released to inform interested

parties of ongoing research and to encourage discussion of
work in progress. The views expressed on statistical,
methodological, technical, or operational issues are those
of the author and not necessarily those of the U.S. Census
Bureau.

mailto:paul.b.massell@census.gov

been provided) to be additive. This implies that

changing a single cell value is not possib le.

1.1 Protection Flow

Let us now, d iscuss how ‘protection flow’ is generated.

In the case of a 2-dimensional tab le, changing one cell,

say in location (1,1) will force a change in at least one

other cell in row 1 (say (1,3)) and at least one o ther cell

in column 1 (say (3,1)). Those changes in turn will

force changes in at least one o ther cell (here (3,3)). This

‘domino effect’ is what generates ‘protection flow’.

Our general definition of ‘protection flow’ is the

assignment of changes to cell values of a given table for

the purpose of creating a specified amount of

uncertainty about the values of one or more of the

(sensitive) cells. Usually these changes satisfy the

additive structure of the given table.

The quantity that ‘drives (or forces) the system’ is the

protection requirement calculated by the p% rule.

Below we will be more precise about how to use the p%

rule to determine needed protection. Below we give

two examples for 4 by 4 tables (3 by 3 for the interior

cells). In table 1, there is a single (protection flow)

rectangle, also called a simple cycle. It involves only 4

cells. Table 2 is more involved; 8 cells are involved and

they lie in two overlapping rectangles. In bo th tables,

one sensitive cell, needing 5 units of protection, drives

the system. The other cells are selected in a way to be

explained below. However, note that the sum of

protection changes in each row and column is zero. One

could say the 5 units flow in each axis direction (row

and column in a simple 2-d table) in which the driver

cell lies. This flow is distributed to one or more other

rows, and one or more other columns, depending on the

protection pattern selected.

1.2 Geometry of Protection Flow

In 2-dim. tables, protection flow generates a set of

overlapping rectangles with flow on vertices. In 3-dim

tables, flow involves a set of overlapping 3-d

rectangles.

Table 1: A simple protection cycle

+5 (Driver) -5

-5 +5

Table 2: Two overlapping protection rectangles

+5 (Driver) -2 -3

-1 +1

-4 +1 +3

2. The M ajor Steps in Using Protection Flow to

Protect a Single Table

2.1 Brief Description

a. Determine which cells are sensitive and how much

additional protection they need

b. If protection of sensitive cells is to be done

sequentially, order them in some reasonable way,

perhaps by the amount of protection needed

c. Select a protection flow method to apply to the given

table; it should be expressible as an optimization

problem using standard mathematical programming

(MP) models

d. For each sensitive cell, determine how much

protection the other cells can provide to it.

e. Determine the bounds of the MP model; these put

limits on the amount of protection flow that can pass

through cells; they are based on assumptions of users’

prior knowledge of cell values.

f. Determine the constraints of the MP model; these

will probably reflect the condition that the protection

flow table is additive. This will ensure that the

protected table (which for some methods equals the

given table plus the protection flow table) is additive.

g. Determine the quantity to be minimized; it will

reflect information loss. It will be the objective function

(often called the cost function) of the MP model.

h. Run a program that implements the developed MP

model on the given table.

Evaluation steps

i. If the method used guarantees that sufficiently wide

uncertainty intervals will be created for each sensitive

cell, then there is no need to run an audit program.

Otherwise, one should run an audit program to check

the size of the uncertainty intervals. If some are too

small, one needs to devise a plan to bring them up to

required size.

j. The SO must make sure that the uncertainty intervals

are not vulnerable to a simple attack. That is,

sufficiently wide intervals do not guarantee full

protection. One needs to consider what strategies a

clever table user might employ to estimate the true cell

values that the SO is trying to hide. The simplest of

these is perhaps the midpoint attack. Here the table user

takes the uncertainty interval (UI) that the SO supplies

for a given cell and uses the midpoint of the interval as

an estimate for the true cell value. If the SO does not

supply the UI for the cell, the table user will generally

be ab le to derive such an UI himself.

k. One needs to assess the overall usefulness of the

protected table in the form in which it is released. In

particular, one must consider both the simplest uses of

the tables and statistica l analysis uses (e.g., modeling,

etc.).

2.2 Discussion of the steps

A. Assume (magnitude) contributions to a cell are given

in decreasing order...x1$ x2 $ x3...

Let ‘rem’ denote the sum of x3 and smaller

contributions (if they exist).

Then, according to the p% rule, the cell is sensitive if

rem < (p/100)*x1 and the amount of protection needed

is the difference (p/100)*x1 - rem .

B. Certain protection methods such as cell suppression,

are typically implemented in a way that protects the

sensitive cells sequentially. Sequential protection makes

sense if the amount of protection that a non-sensitive

cell can provide to a sensitive cell depends on the

sensitive cell. That is, for certain types of tabular data,

the ‘capacity’ of a cell to protect a sensitive cell is a

function of the sensitive cell. This functionality seems

to be required to provide protection to the sum of

contributions that come from a single source, e .g., a

company or more generally an enterprise. Companies

sometimes report data for two or more of their

establishments; these contributions may contribute to

two or more cells of a given table.

C. For very small tables or tables with only a few

sensitive cells it is sometimes possible to find a

reasonable protection flow with hand computation.

However, in general it is necessary to use a

mathematical model and the most successful models

used to date have been network flow models, linear

programming models, and more general mathematical

programming models.

In recent years, meta-heuristic methods have been used

to replace use of integer programming solution

methods; even in this case, one can describe the

problem as an integer program model, with either a

linear or non-linear objective function.

D. As mentioned in (B), the maximum amount o f

protection that a general cell can provide to a sensitive

cell x is called the ‘capacity’ of the cell to protect x.

E. In most MP protection models, there are (at least)

two variables associated with each cell, one represents

the amount of positive (i.e. upward) change in the ce ll

value that is allowed; the other the amount of negative

(i.e. downward) change. These bounds sometimes have

the same value; in that case the common value is the

capacity. Often this capacity equals the cell value. This

is based on the assumption that any table user knows

that the actual value of the cell is non-negative and the

best informed tab le users know that the true value of the

cell lies somewhere in the interval [0, 2*v] where v is

the actual cell value. If we assumed a smaller interval

but one that is still symmetric about v, say, [0.4*v,

1.6*v] the capacity would equal 0.6*v. If we assumed

an asymmetric interval such as [0.4*v, 1.7*v] then we

would need to have two capacities; one that bounds

downward change at 0.6*v and another one that bounds

upward change at 0.7*v.

F. The constraints in MP protection models are usually

simply an expression of the requirement that additivity

be preserved in the protected table. Additivity in a

simple 2d table is a property of each row and each

column. For each cell that is either being protected or

providing protection, one must include in the model a

constraint that expresses the additivity each shaft in

which it is contained. A ‘shaft’ generalizes the notion of

row and column to higher dimensions and/or

hierarchies. Since one does not usually know

beforehand which cells will be providing protection, the

protection models usually have an additivity constraint

for every row and column in the table. A table is not

‘simple’ if it has a hierarchical structure on top of its

basic structure. For example a hierarchy for row 3

means a decomposition of a row into two or more

“subrows” (e.g., a row 3 = row 3.1 + row 3.2).

Hierarchical structure imposes additional additivity

constraints.

G. An optimization problem requires an objective

function that expresses a quantity that is to be

minimized (or maximized). Typically protection flow

models minimize some notion of information loss. In

cell suppression, traditional measures have been the

sum of the values of the suppressed cell, or the number

of suppressed cells. These measures are easily to

implement in integer programs using binary variables,

that equal ‘1' when there is flow through a cell and ‘0'

otherwise. However, these loss functions cannot be

represented exactly in linear (continuous variable)

programs because binary variables are not available in

such programs. Recently, these loss functions have been

questioned. Since a table user is often able to derive an

uncertainty interval for a suppressed cell, the

information lost when a cell is suppressed does not

really equal the full cell value. Instead, information lost

for a suppressed cell could be measured by the

reciprocal of the width of the uncertainty interval, or,

for count data, in terms of the number of integer

patterns that “solve” the suppression pattern (ref:

Robertson & Ethier (2002)). This leads to more

complicated loss functions that require the program to

estimate the uncertainty interval as it is being created.

Such loss functions are non-linear. Another type of non-

linear loss function may arise when one tries to

minimize some statistical measure of the difference

between the original and modified cell values, such the

correlation between old and new cell values. Non-linear

loss functions can be handled in meta-heuristic

programs or by using certain traditional convex

programming methods. To date, there is limited

experience with the use of non-linear loss functions in

‘protection flow’ models. However use of statistical

measures may lead to increased use of such loss

functions in coming years.

H. The SO now runs the program that implements the

optimization model. If the table has no special features

one may be able to use general protection software

developed by an SO (ref: Argus) which is likely to be

free and downloadable or software developed by

consultants which is not likely to be free. If the data are

complicated and require either pre-processing or

protection with complicated requirements (e.g.,

protecting at the ‘company level’), the SO may need to

deve l o p i t s own so f tware. Ho weve r, the

computationally most costly segment of the program

can still be done with general purpose packages which

the SO-specific program would invoke (e.g., a general

linear program solver or an integer program solver).

Evaluation Steps

I. Some methods guarantee that the uncertainty interval

for a cell will be at least as large as that requested. For

example, network flow for cell suppression runs on

simple 2d tables have that property and therefore it is

not necessary to run an audit program to check the

results. However, network flow programs on 3d tables

occasionally fail to provide adequate protection. In that

case, an audit run is recommended. If it is discovered

that certain uncertainty intervals are not sufficiently

wide, the SO can expand the UIs by hand or try running

a program based on another method that does guarantee

full protection.

J. The SO should assess how vulnerable the protection

method is to simple attacks, specifically the midpoint

attack. This involves determining what type of UI the

table user could easily construct for a given sensitive

cell.

K. The SO should assess the overall usefulness of the

table after all disclosure protections have been applied.

For example, cell suppression creates holes in the table.

It takes effort by a user to replace these with the

corresponding UI. From there he needs to estimate a

single value if he wishes to use the table for either

simple purposes or for modeling. By contrast

Controlled Tabular Adjustment (CTA) provides single

values in each cell immediately. However, with CTA

the user might try to construct UIs to determine how

representative the published value is of the full range of

possible values.

3. Analysis of the M ajor Steps for Specific

Methods

CS = Cell Suppression

CTA= Controlled Tabular Adjustment

VBR=Variable Base Rounding

UI= Uncertainty Intervals

3.1 Cell Suppression (CS)

The application of network flow and linear program

models to the finding of cell suppression patterns began

in the 1970's. Our analysis refers to certain network

flow and linear programming implementations of CS

that have been used at the U.S. Census Bureau.

1. Sensitive cells are protected sequentially, i.e., not

simultaneously.

2. The order of protection is in descending order of the

amount of protection required.

3. Capacities are based on knowledge assumptions

which imply intervals of the form [kl*v, ku*v]

where kl < 1 and ku > 1. If capacity is a function of the

sensitive cell being pro tected, then adjust capacity

accordingly (e.g., protection at ‘company level’). This

code, which is based on careful analysis of various

cases, is quite complicated (ref: Jewett (1993)). One

needs to ensure that kl and ku are large enough to allow

for full protection; (e.g., given p, (1-kl) and (ku-1) must

be at least (p/100).)

4. Constraints reflect additivity of shafts

5. Cost func t ion : is l inear in most

implementations ; in integer programming (IP), the

cost function is often defined as the sum over all cells

of (the cost of the cell * delta(cell)) where delta is a

binary variable which equals 1 if the cell is in the cell

suppression pattern (has non-zero flow) and equals 0

otherwise. In a linear program (LP), since binary

variables are not available, the cost function is often

defined as the sum over all cells of (the cost of cell *

flow thru cell). T ypically the cost of each sensitive is

set to 0 since sensitive cells will be suppressed in any

pattern. The cost of a non-sensitive cell depends on

whether the cell has been selected to be suppressed.

After it is selected, its cost is set to 0 and is kept at 0 as

protection flow is calculated for the remaining sensitive

cells.

6. Incorporating preferences into a CS program. The

result of a run of a CS program is a suppression pattern.

All sensitive cells need to be suppressed. However,

there are typically many possible choices for the non-

sensitive cell that are feasible; i.e., satisfy the bounds

and constraints. Preferences can be implemented as

follows. If one would prefer not to suppress a cell, e.g.,

a marginal, one can greatly increase its cost; i.e., set

cost = k* value where k is large.

3.2 Controlled Tabular Adjustment (CTA)

This is a method that was developed recently (ref:

Dandekar and Cox (2002); Cox, Kelly, and Patil

(2005)). There are various ways to implement this

method; (1) with a Linear Program an Model and LP

Solver, (2) with an Integer Programs Model using an IP

solver, or (3) with Integer Program Model with a meta-

heuristic (tabu search) solver. We have more experience

with the latter two implementations; some of our

comments below will relate to those. Given a set of

sensitive cells and protection intervals for each, CTA is

a method for perturbing non-sensitive cells by

percentages of the same order as the protection

percentages used in the protection intervals. Often a

high percentage of the non-sensitive cells must be

perturbed ; in other words the modification pattern is

dense (with modified cells). The more limited the

perturbations are in percentage terms in comparison to

the protection percentages, the larger the number of

non-sensitive cells that must be perturbed. Additivity is

generally preserved. There is an option for preserving

marginals.

3.3 Variable Base Rounding (VBR)

This method was developed by Sande (ref: 2003) in

recent years. In this description, we take the key ideas

from his paper but many of the details may differ from

those given in his paper. Suppose a cell value is 44 and

the required protection interval (or range) is 44±8 or

[36,52] (as determined by some protection rule). In

other words, we are requiring that the uncertainty

interval be 2-sided and contain [36,52]. In VBR, we

use random rounding for two purposes (1) to give an

interval (Sande uses the term ‘range’) that is wide

enough; i.e., contains the protection interval ; (2) to

defend against a midpoint attack by releasing a cell

value that is usually at least a few units away from the

true value.

In this example, since the numbers are of order 10, we

begin by rounding both the true value 44 and the right

(and left) width of 8 to base 10; thus 44 rounds to 40

and 8 ‘up-rounds’ to 10 where by ‘up-round’ we mean

finding the smallest multiple of the base that is greater

than or equal to the given number. For simplicity, we

are using conventional rather than random rounding.

Next we form the interval that corresponds to a

published value of 40 to base 10, viz. [30,50]. This

interval is not quite wide enough since it does not

contain the pro tection interval. If it did contain it, we

would be done. Since it is not wide enough we must

increase the base. Suppose our next larger base is 20.

Then we still have 44 rounding to 40 (to base 20) but a

value of 40 now corresponds to an interval of 40±20 or

[20,60]. Since this ‘rounding interval’ does contain the

protection interval, the process terminates and we

would publish the value 40 in the cell and somehow

indicate that the base is 20. Sande recommends using a

system of fonts to indicate which base applies to a given

cell value; this scheme has the advantage that it

obviates the need for extra charac ters. We think it

might be easier for the table reader simply to see the

interval in the form 40±20 or [20,60]. Now the reason

why this method is called variable base rounding is that

one cannot predict which base (10, 20, etc.) will be

used for the published cell value, since the base used in

a given cell depends on the increasing sequence of

bases used in the algorithm and the true cell value.

Since the rounding process is applied to each cell

independently, it is very likely that a variety of bases

will be used in the published table, i.e., some cells will

use base 10, some 20, etc. For a given table, a list of

potential bases might be given initially; these depend on

the order of magnitude of the cell values. If the values

are in the range 20 to 500; a base sequence of 10,20,50,

...is reasonable. There are probably many reasonable

ways of selecting a sequence of rounding bases.

Recall that this method is designed to pro tect against a

midpoint attack. Rounding almost always provides a

symmetric uncertainty interval about the published

value; e.g., 40 ± 20 where 40 is the published value.

Thus to defend against the midpoint attack, rounding

must produce a published value which is often at least

some distance (e.g., a few units) from the true value. In

the above example, 44 was rounded to 40 in the final

base 20; if the true value were 34, it would still be

rounded to 40. Thus a table user who assumes the

rounded published cell value is the true value will be

wrong almost all the time and will be at least several

units off most of the time. Many SOs would consider

this sufficient protection against a midpoint attack by a

table user.

So far we have described the procedure only for

sensitive cells. Protection flow can be computed just as

in cell suppression, and we can then run an audit

program on the table to compute uncertainty intervals

for each cell that admits flow. Then we can app ly the

rounding procedure to the uncertainty interval to get a

rounding interval for the cell; this latter interval would

be published in either the format Sande suggests or the

one we suggest. One might view VBR as a method that

is between cell suppression and CTA. Like

suppression, the sensitive cells would be protected

sequentially; this allows for protection at the company

level (a feature which CTA does not currently have).

Like suppression, there may be several flows going

through a given cell. Publishing a rounding interval that

is wide enough to accommodate all these flows allows

for a more compact modification pattern than is the case

for CTA.

It is natural to ask if add itivity is preserved. Of course

to answer this, we need to define what we mean by

additivity when a subset of the cells are represented not

by a single value but by a rounding interval. A desirable

property would be for the sum of intervals to include

the interval of the sum point. It appears that this

property does hold for the VBR intervals. Note that

adding rounding intervals is similar to adding random

variables in that the uncertainty of a sum of intervals

increases as one adds more intervals just as the variance

of a sum of random variables increases as one adds

more random variables.

3.4 Uncertainty Intervals (UI)

This method is being developed by the author. We are

using the short expression 'uncertainty intervals' to

represent the more specific expression 'protection flow

based uncertainty intervals'. This method is closer in

spirit to VBR than to CS or CTA. The idea is that the

advantages of using VBR can be achieved more easily

computationally using the following procedure. One

constructs a (two-sided) flow interval by simply

tracking the pro tection flow through each cell as

sensitive cells are protected sequentially as in CS or

VBR. For each cell one defines a "flow meter" that

keeps track of the maximum and minimum directional

flow through the cell. For example, if for 7 sensitive

cells, the one-sided protection flows thru cell A had the

values, +3, +8 , 0,0, 0, -1, -4 then the one-sided

protection flow interval would be [- 4, +8] . We call

this interval one-sided because normally one "drives"

the constraint system by setting the upper protection to

a desired value. Then, one drives the system by setting

the lower protection to a desired value; often having the

same magnitude. Often this 2nd step is not needed

because certain assumptions are made about the

capacity of cells that lead to a symmetry of the upper

and lower flows. Above we assumed the 7 sensitive

cells were protected using their upper protections,

p1,....,p7 and led to a one-sided flow interval of [-4,+8].

Then, if the symmetry conditions hold, the set of lower

protections, (-p1),....,(-p7), would lead to a second flow

interval of [-8, +4]. The union of these two intervals,

[-8,+8], is the two-sided flow interval. Finally one

constructs the uncertainty interval UI about the value of

A (denoted v(A)), by adding v(A) to the 2-sided

protection flow interval; this yields [v(A)-8, v(A)+8].

So far, this is likely to be identical to the VBR

procedure although Sande (2003) is not explicit about

how the intervals (his 'ranges') are formed. Now if we

want to protect against a midpoint attack, we need to

create an interval that contains the computed flow

interval but is often asymmetric with respect to the true

value. We believe it is possible to construct a simple

algorithm that sometimes 'pads' the flow interval on the

left; i.e., creates an interval of the form [v(A)-8-x,

v(A)+8] where x is positive or otherwise 'pads' the flow

interval on the right'; i.e., creates an interval of the form

[v(A)-8, v(A)+8+x]. Actually, one possible algorithm

would be the rounding algorithm of the VBR procedure

that is described above. If the rounding algorithm is

selected, the only difference between VBR and the UI

methods would be the format of the published result; in

VBR a single value is published with a special font that

denotes its rounding base; in UI an interval is given that

contains the true value; i.e., two values (the UI

endpoints) are given for each cell. In fact, to make it

easy for a table user to adjust to using intervals; one

might decide to publish the interval in the form:

midpoint ± (1/2 * length(UI)). Since tables are

increasingly being published in a digital format and

released on websites, this extra "bulk" is not significant.

One can construct alternatives to the rounding

algorithm that are still fairly simple. It is easy to

construct intervals for which the direction and extent of

the 'padding' depends on the output from a random

generator. However, to make the computations more

readily reproducible, it is probably better to construct a

deterministic algorithm. One could base it on the final

digit on the right end-point; for example if [19,41] were

the initial UI (symmetric about the true value 30), one

could add 50% of the interval width to the right

end-point whenever there is a 1 in the final digit of the

right end-point. In this example, we get [19,52] with a

mid-point of 35. If the final digit were a 2, one might

add 50% to the left ; so an initial interval of [18,42]

would be transformed to [6,42] with a midpoint of 24.

One could easily specify various extension rules for the

other final digits, 0, 3,9. We suggest using the last

digit because it is deterministic but acts somewhat like

a random number generator in that it is hard to predict.

However, there are probably a variety of other simple

algorithms that would extend the initial flow interval by

less than 100% and defend against a midpoint attack. In

fact, each agency could decide on the details of the

algorithms so that a nice balance of additional

uncertainty and protection against the midpoint attack

is reached.

An interesting question is how much uncertainty the

protection flow based uncertainty interval introduces

compared with that from the audit interval. We raise

this question because agencies have sometimes

considered releasing the audit intervals for each

suppressed cell since these intervals could be computed

fairly easily by a data intruder who has some facility

with linear programming. We wouldn't expect the flow

and audit intervals to be equal because the audit

program does not use microdata as input and therefore

doesn't have the ability to compute capacities other than

the simplest case of setting the capacity of a cell to its

value. The suppression program does use microdata and

can compute complicated capacities such as those use

to protect at the 'company level'. Then the question

reduces to: how do the lower and upper end-points of

the flow interval (with one side extended to protect

against a midpoint attack) compare with the

corresponding points of the audit interval ?

We constructed a program that outputs those four

end-points side by side. We have results for a few small

test tables. In those cases, the UIs are often less than 1/2

as wide as the audit interva ls. If this result holds for

larger, more realistic tables, than it appears that

releasing the UI really would provide the user with

more information than a suppressed table, while

providing adequate protection of sensitive cells

including protection against a midpoint attack.

In general, a table user will have no need to add UIs

since a UI is supplied for every cell. However, the

following relationships do apply. Suppose in the

original table there are 3 cells, with values that satisfy:

 x1 + x2 = x3. Suppose we define the operation of

addition for intervals as: [a1, b1] + [a2, b2] = [a1+a2,

b1+b2]. Using this definition, we claim the following

property holds: UI(x3) #UI(x1) + UI(x2) where '#'

represents set containment.

This latter property we call 'subadditivity' since when

#and + have their usual meanings for real numbers, and

UI is replaced by a function on the reals, this is the

standard mathematical definition. In other words, when

a user derives the UI for a cell by addition rather than

using the UI supplied for the cell, he will, in general,

get a larger interval which gives a less precise estimate

of the value of interest.

In order to publish an associated traditional table; i.e.,

one with a single value (rather than an interval) for each

cell, we need to construct a representative value for

each cell interval. The simplest representative value is

the midpoint of the cell's interval. This representative

value is acceptable from a disclosure control point of

view, providing the midpoint is, in general, not equal to,

and not very close, to the true value. This desirable

property will hold if the interval has been 'randomly

asymmetrized '; i.e., intentionally made asymmetric

about the true value in a way that is unpredictable by a

user. This can be done in various ways; one such way

was described above. In order to ensure additivity of

this associated traditional table, it is probably easiest to

construct the representative value for each interior cell

and then to recompute marginals.

4. Additional Topics (Attacks and Comparison

with microdata noise methods)

4.1 Data Intrusion Attacks and Defending Against

Them

 What attacks does an SO need to be concerned

about ?

 For example, how should an SO protect against a

midpoint attack ?

 How asymmetric must an interval be to protect

against a midpoint attack ?

 Which of the above methods do an adequate job of

defending against an attack ?

4.2 Comparison with microdata noise methods

Compare VBR and UI to noise methods such as Evans-

Zayatz-Slanta (EZS) (ref: Evans, et al, 1998) that add

noise to microdata and then form tables from the noisy

microdata.

 VBR and UI advantages:

 1. VBR and U I make clear how much uncertainty

is associated with each cell value.

 2. VBR and U I always provide the required amount

of protection, whereas noise methods may provide the

required protection only a high percentage of the time.

 Advantages of the EZS noise method:

 1. Ensures consistency among linked tables without

need to backtrack.

 2. Easier to program; computationally less costly

(i.e., quicker and simpler).

5. Conclusions

All methods in this paper are useful in the right setting.

If an agency needs to protect data at the company level,

either VBR or its slight generalization UI are

acceptable ways to provide more information to the

table user than is provided by cell suppression. Both

methods provide the required amount of protection.

Both clearly indicate to table users which cells are not

assigned a single released true value but instead are

assigned a range of values in which the true value lies.

In the case of VBR, the range is given indirectly with a

rounded value to which an interval can be associated by

deriving the rounding base from the font in which the

cell value is published. In the case of UI, the

uncertainty interval is given directly. Thus both

methods do not publish a single perturbed (and false)

value but rather protect cells that would have been

suppressed under cell suppression by providing a range

of values. These methods may appeal to some SOs

more than CTA. However, if pub lication of specific

perturbed values (rather than intervals) is not

considered a negative feature by an SO, and if

protection of data at the company level is not required,

a SO should consider CTA since it has the convenience

of providing a full table of single values that can be

used easily by a table user.

References

Argus: Software website for free downloadable

software for cell suppression developed under the

CASC project funded by the European Union.

http://neon.vb.cbs.nl/casc/TAU.html

Cox, Lawrence H., James P. Kelly, Rahul J. Patil,

(2005) “Computational Aspects of Controlled Tabular

Adjustment: Algorithm and Analysis”, in conference

proceedings book :The Next W ave in Computing,

Optimization, and Decision Technologies, ed. By Bruce

L. Golden, S. Raghavan, Edward A. W asil, publ.

Springer

Dandekar, Ramesh A., Lawrence H. Cox, (2002)

“Synthetic Tabular Data - An Alternative to

Complementary Cell Suppression”, unpublished

manuscript.

Evans, Tim; Zayatz, Laura; Slanta, John; “Using

Noise for Disclosure Limitation Establishment Tabular

Data”, J. Official Statistics, Vol. 14, No.4, 1998

http://www.jos.nu/Articles/abstract.asp?article=144537

Jewett, Robert (1993), “Disclosure Analysis for the

1992 Economic Census”, unpublished Census report

1993.

Massell, Paul B.,”Comparing Statistical Disclosure

Control Methods for Tables: Identifying the Key

Factors”, Proceedings of the JSM2004

http://www.census.gov/srd/sdc/Massell.JSM2004.pap

er.v3.pdf

Massell, Paul B., “Statistical Disclosure Control for

Tables: Determining Which Method to Use” Statistics

Canada Conf. on Statistical Methodology, Oct. 2003

http://www.census.gov/srd/sdc/Massell%20StatCan%

20Meth%20Symp%20english.pdf

Robertson, Dale A., Richard Ethier (2002) “Cell

Suppression: Experience and Theory”, in Inference

Control in Statistical Databases, Josep Domingo-Ferrer

(ed.), Springer Lecture notes in Computer Science ,(vol.

LNCS2316)

Sande, Gordon, “A Less Intrusive Variant on Cell

Suppression to Protect the Confidentiality of Business

Statistics”, FCSM 2003 Conference.Proceedings.

http://www.fcsm.gov/03papers/Sande.pdf

http://www.jos.nu/Articles/abstract.asp?article=144537
https://www.census.gov/srd/sdc/Massell.JSM2004.paper.v3.pdf
https://www.census.gov/srd/sdc/Massell.JSM2004.paper.v3.pdf

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

