
RESEARCH REPORT SERIES
(Statistics #2005-05)

Evaluating String Comparator Performance for
Record Linkage

William E. Yancey

Statistical Research Division
U.S. Census Bureau

Washington, DC 20233

Report Issued: June 13, 2005

This report is released to inform interested parties of ongoing research and to encourage discussion of work in

progress. The views expressed are those of the author and not necessarily those of the U.S. Census Bureau.

Evaluating String Comparator Performance for
Record Linkage

William E. Yancey
Statistical Research Division

U.S. Census Bureau

June 9, 2005

Abstract

We compare variations of string comparators based on the Jaro-Winkler
comparator and edit distance comparator. We apply the comparators
to Census data to see which are better classifiers for matches and non-
matches, first by comparing their classification abilities using a ROC curve
based analysis, then by considering a direct comparison between two can-
didate comparators in record linkage results.

1 Introduction
We wish to evaluate the performance of some string comparators and variations
for use in record linkage software for Census Bureau data. For record link-
age, under the conditional independence assumption, we compute a comparison
weight for two records from the sum of the comparison weights of the individual
matching fields. If we designate that the values of a matching field agree for two
records by γ = 1 and that they disagree by γ = 0, then we define the agreement
weight for the two fields by

aw =
Pr (γ = 1|M)
Pr (γ = 1|U)

and the disagreement weight by

dw =
Pr (γ = 0|M)
Pr (γ = 0|U)

where the probabilities are conditioned by whether the two records do in fact
belong to the set M of true matches or the set U of true non-matches. If we
wish to use a string comparator for the matching field with alphabet Σ, we
generally use a similarity function

γ : Σ∗ ×Σ∗ → [0, 1]

1

where γ (α, β) = 1 when the strings α, β are identical. We then use an inter-
polation function w,

w : [0, 1]→ [dw, aw]

to assign a comparison weight w (x) to a pair of strings α, β where the interpo-
lation function is increasing with w (1) = aw.
We next describe the string comparator functions that we used for this study.

We then discuss the data sets that were used to test the comparators. Then
we discuss how we interpreted the results of this data to try to evaluate the
classification power of each of the string comparators. We also look at the
difference that the string comparator choice can make in a matching situation.

2 The String Comparator Functions
In the following, let α, β be strings of lengths m,n respectively with m ≤ n.

2.1 The Jaro-Winkler String Comparators

2.1.1 The Basic Jaro-Winkler String Comparator

The Jaro-Winkler string comparator [3] counts the number c of common char-
acters between two strings and the number of transpositions of these common
characters. A character ai of string α and bj of string β are considered to be
common characters of α, β if ai = bj and

|i− j| <
jn
2

k
,

the greatest integer of half the length of the longer string. A character of one
string is considered to be common to at most one character in the other string.
The number of transpositions t is determined by the number of pairs of common
characters that are out of order. The number of transpositions is computed
as the greatest integer of half of the number of out-of-order common character
pairs. The Jaro-Winkler similarity value for the two strings is then given by

x =
1

3

µ
c

m
+

c

n
+

c− t

c

¶
,

unless the number of common characters c = 0, in which case the similarity
value is 0.

Example 1 Consider the strings (b,a,r,n,e,s) and (a,n,d,e,r,s,o,n). The search
range distance d

d =
jn
2

k
− 1

for common characters is d = 3, since the longer string length is 8. The set of
5 common characters is thus {a,r,n,e,s}, which occur in the second string in the

2

order (a,n,e,r,s), so the middle 3 characters are out of position, which counts
as 1 transposition. Thus the basic J-W score is given by

x =
1

3

µ
5

6
+
5

8
+
4

5

¶
=
271

360
.
= 0.75280.

There are three modifications to this basic string comparator that are cur-
rently in use.

2.1.2 Similar Characters

The string comparator program contains a list of 36 pairs of characters that
have been judged to be similar, so that they are more likely to be substituted
for each other in misspelled words. After the common characters have been
identified, the remaining characters of the strings are searched for similar pairs
(within the search distance d). Each pair of similar characters increases the
count of common characters by 0.3. That is the similar character count is given
by

cs = c+ 0.3s

where s is the number of similar pairs. The basic Jaro-Winkler formula is then
adjusted by

xs =
1

3

µ
cs
m
+

cs
n
+

c− t

c

¶
.

For instance the strings abc and ebc have 2 common characters and the similar
pair (a, e), so that the new score is given by

xs =
1

3

µ
2

3
+
2

3
+ 1

¶
+
1

3

µ
0.3

3
+
0.3

3

¶
=

7

9
+
1

15

=
38

45

The adjusted score is 38
45

.
= 0.8444 instead of the basic score 7

9

.
= 0.778. In

our previous example the only unmatched character of the first string is b and
the only candidate unmatched character in the second string is d, and (b, d) is
not included in the similar character list, so no adjustment to the basic score is
made.

2.1.3 Common Prefix

This adjustment increases the score when the two strings have a common prefix.
If p is the length of the common prefix, up to 4 characters, then the score x is
adjusted to xp by

xp = x+
p (1− x)

10
.

3

2.1.4 Longer String Adjustment

Finally there is one more adjustment in the default string comparator that ad-
justs for agreement between longer strings that have several common characters
besides the above agreeing prefix characters. The conditions for using the
adjustment are

m ≥ 5

c− p ≥ 2

c− p ≥ m− p

2

That is,

1. Both strings are at least 5 characters long;

2. There are at least two common characters besides the agreeing prefix
characters;

3. We want the strings outside the common prefixes to be fairly rich in com-
mon characters, so that the remaining common characters are at least half
of the remaining common characters of the shorter string.

If all of these conditions are met, then length adjusted weight xl is computed
by

xl = x+ (1− x)
c− (p+ 1)

m+ n− 2 (p− 1)
In our example, the two names have no common prefix, but they satisfy the

conditions for the long string adjustment, so the adjusted score xl is given by

xl =
271

360
+

µ
1− 271

360

¶
5− 1

6 + 8 + 2

=
391

480
.
= 0.8146

2.2 Edit Distance String Comparators

We wished to compare the Jaro-Winkler string comparators with some string
comparators based on edit distance. All of the edit distance type comparator
values are computed using a dynamic programming algorithm that computes
the comparison value in O (mn) time.

2.2.1 Standard Edit Distance

The standard edit distance (or Levenshtein distance) [1] between two strings is
the minimum number of edit steps required to convert one string to the other,
where the allowable edit steps are insertion, deletion, and substitution. If we

4

let αi be the prefix of α of length i, βj be the prefix of β of length j, and ε
be the empty string, then we can initialize the edit distance algorithm with the
distances

e (αi, ε) = i

e
¡
ε, βj

¢
= j

e (ε, ε) = 0

indicating the number of insertions/deletions to convert a string to the empty
string. We can then build up the cost of converting longer prefixes by computing

e
¡
αi, βj

¢
= min

e
¡
αi−1, βj

¢
+ 1

e
¡
αi, βj−1

¢
+ 1½

e
¡
αi−1, βj−1

¢
if ai = bj

e
¡
αi−1, βj−1

¢
+ 1 if ai 6= bj

(1)

where ai denotes the ith character of α and bj is the jth character of β. The
final minimum edit cost is then given by e (α, β) = e (αm, βn).
While the edit distance function is a true metric on the space of strings, it

is not a similarity function. We note that the maximum edit length between
two strings is n (m substitutions and n −m insertions/deletions), so that the
comparator score

xe = 1− e

n

defines a similarity function for string pairs α, β where e is the edit distance
between the strings. One can check that in our example, a minimal edit path
has 6 edits, such as

(b, ε) a (r, n) (n, d) e (ε, r) s (ε, o) (ε, n)

resulting in an edit similarity score of

xe = 1− 6
8
=
1

4
.

We not that character order is important to edit distance, so that the three
common characters that are out of order result in three edits.

2.2.2 Longest Common Subsequence

The length of the longest common subsequence (lcs) of two strings can also be
computed by the same algorithm [1], except that this time the only possible edit
steps are insertion and deletion, so that the recursive function is

e
¡
αi, βj

¢
= min

e
¡
αi−1, βj

¢
+ 1

e
¡
αi, βj−1

¢
+ 1

e
¡
αi−1, βj−1

¢
if ai = bj

(2)

5

Clearly the longest possible common subsequence length for our strings is m, so
we can define a longest common subsequence similarity function by

xc =
l

m

where l is the length of the longest common subsequence of the two strings. In
our example, the maximum lcs (a, n, e, s) length is 4, so the similarity score is

xc =
4

6
=
2

3
.

2.2.3 Coherence Edit Distance

As we have seen, both edit distance and lcs length depend strictly on the order
of the characters in the strings. This is because the defining recursion functions
(1,2) that determine the cost of the current prefix pair depend only on the last
characters of the two prefixes, i.e. whether they are equal or not. There is no
checking to see whether one of these characters occurred somewhere earlier in the
other prefix. The Jaro-Winkler string comparator allows common characters to
be out of order with a penalty for transpositions. If the edit distance recursion
looked back over earlier characters in the prefixes, then a contextual edit score
could be given. In [2], Jie Wei uses Markov field theory to develop such a
recursion function, which looks like

C
¡
αi, βj

¢
= min

C
¡
αi−1, βj

¢
+ 1

C
¡
αi, βj−1

¢
+ 1

min1≤a≤N
1≤b≤N

©
C
¡
αi−a, βj−b

¢
+ Va,b

¡
αi, βj

¢ª
where Va,b

¡
αi, βj

¢
is an edit cost potential function and N is a number that

indicates the degree of coherence of the strings, i.e. the amount of context
that should be considered when computing the edit cost. For Va,b

¡
αi, βj

¢
, we

consider the substrings αi−a,i and βj−b,j and let c be the number of common
characters to these two substrings. Denoting t = a+b, we can express Jie Wei’s
coherence edit potential function as

Va,b
¡
αi, βj

¢
=

½
3
4

¡
t− 2

3

¢− c if t is even
3
4 (t− 1)− c if t is odd

He also chooses N = 4 as a reasonable coherence index for words. With this
choice of N we can display all possible values of (a, b) and the corresponding

6

range of Vab
(a, b) t maxVab max c minVab
(1, 1) 2 1 1 0
(1, 2) 3 1.5 1 0.5
(1, 3) 4 2.5 1 1.5
(1, 4) 5 3 1 2
(2, 2) 4 2.5 2 0.5
(2, 3) 5 3 2 1
(2, 4) 6 4 2 2
(3, 3) 6 4 3 1
(3, 4) 7 4.5 3 1.5
(4, 4) 8 5.5 4 1.5

Returning to our example, the coherence edit distance between barnes and an-
derson is 3.5. The edit sequence with the costs is¡

ba
a

¢ ¡
rne
nder

¢ ¡
s
so

¢ ¡
ε
n

¢
0.5 1.5 0.5 1

The coherence edit distance is always less than or equal to the standard edit
distance, so the maximum possible distance is still the length of the longer
string, and we can define a coherence edit similarity score by

xw = 1− C

n

where C is the coherence edit distance of the two strings. In the above example,
we have

xw =
4.5

8
= 0.5625.

2.2.4 Combination Edit Distance

When we began studying and evaluating string comparators using the approach
discussed in Section 5, we found that the edit distance similarity function did
not perform as well as the J-W comparator. This may be because it does not
use enough information from the strings. In particular, it does not consider the
length of the shorter string. Thus we tried combining the edit distance and the
lcs comparators by averaging them

xec =
1

2

µ³
1− e

n

´
+

l

m

¶
which seemed to produce better results. The example string pair has a combined
edit score of 1124

.
= 0.4583. There could be a more optimal weighting of the two

comparators.

7

2.2.5 Combination Coherence Edit Distance

We also considered the effect of combining the coherence edit distance and the
lcs comparators.

xwc =
1

2

µµ
1− C

n

¶
+

l

m

¶
.

The example produces a combined score of 5996
.
= 0.6146.

2.3 Hybrid Comparators

Our initial analysis of the results of our experiment led us to consider combining
a J-W comparator with an edit distance type comparator. We will consider
this development after we describe the experiment.

3 Data Sets
There does not appear to be any theoretical way to determine which is the best
string comparator. In fact, there does not appear to be a clear meaning of
“best” other than the comparator that performs best on a given application.
We therefore want to conduct an experiment to see which string comparator
does the best job for the application of record linkage of Census data. Since
the string comparator is just one component of the record linkage procedure,
we first try to isolate the string comparator’s contribution.
At the Census Bureau, we have some test decks that are pair of files where

the matches have been clerically determined. One large pair of files come from
the 2000 Census and the ACE follow-up. These files each have 606, 411 records
of persons around the country where each record of one file has been matched
with one record of the other. There are also three smaller pairs of files from
the 1990 Census and the PES follow-up. Each of these files is of persons in the
same geographic area where not all of the records have matches.
The data sets were formed by bringing together the records that were identi-

fied as matches and writing out the pairs of last names or first names whenever
the two name strings were not identical. We then removed all duplicate name
pairs from the list. From the 2000 data we obtained a file of 65, 325 distinct
first name pairs and 75, 574 distinct last name pairs. From the three 1990 files
combined we obtained three files of 942, 1176, and 2785 distinct first and last
name pairs.

4 The Computation
The purpose of the string comparator in record linkage is to help us distinguish
between pairs of strings that probably both represent the same name and pairs
of strings that do not. For the setsM of matched pairs, we will use data sets of
nonidentical name pairs from matched records. Our data sets do not necessarily
contain only string pairs representing the same name, since some records may

8

have been linked based on information of other fields than this name field.
However, they should tend to have similarities that one may subjectively judge
to suggest that they refer to the same name. For our sets U of unmatched pairs,
we will take the set of cross pairs of every first member name in the set paired
with every second member name other than its match. We may think of these
as unmatched pairs, but they are really more like random pairs, since there can
be pairs of names in U which match exactly. Thus we can never completely
separate the setM from the set U , but the test will be which string comparator
can include the most elements of M with the fewest elements of U .
For each string comparator under examination, we compute the string com-

parator value of each first member name with each second member name. The
sets of Census 2000 names are too large to store the resulting comparator values,
so we split each of the sets into 24 subsets of name pairs, The first name pair
subsets have 2722 pairs (2719 for the last one) and the last name pairs have
3149 pairs (3147 for the last one). Thus we compute the values of 13 string
comparators, 8 J-W comparators with all combinations of the three modifica-
tions and 5 edit distance type comparators, of all cross pairs of strings in 51
sets of name pairs to generate our string comparator output data.

5 Analysis of Scores
We now face the problem of determining how to use this data to measure the
performance of the string comparators. We can view the problem as a binary
classification problem: a string pair either belongs to M or it belongs to U .
One tool for analyzing classification effectiveness is the ROC curve. The ROC
(receiver operating characteristic) curve originated for use in signal detection,
but is now commonly used in medicine to measure the diagnostic power of
a test. A list of references can be found on [4]. If we let γ be a string
comparator similarity function, we measure the discriminatory power of the
string comparator with the parameterized curve

(Pr (γ ≥ t|U) ,Pr (γ ≥ t|M)) , t ∈ [0, 1]
in the unit square. The resulting ROC curve is then independent of the pa-
rameterization. This is sometimes referred to as plotting sensitivity against 1−
specificity. If we denote the probability density of the M condition by pM (t)
and the density conditioned on U by pU (t) so that

d

dt
Pr (γ ≥ t|M) = −pM (t)

d

dt
Pr (γ ≥ t|U) = −pU (t)

then we see that the slope of the tangent to the ROC curve is

dy

dx
=

dy
dt
dx
dt

=
pM (t)

pU (t)

9

the likelihood ratio of the two distributions. The diagnostic tool that is used
is the AUC, the area under the ROC curve. To interpret this AUC, we define
the random variables

X : M → [0, 1]

Y : U → [0, 1]

to be the string comparator value for a pair drawn from M or U respectively,
which have probability density functions pM and pU respectively, then

AUC =

Z 1

0

Pr (γ ≥ t|M) dPr (γ ≥ t|U) = Pr (X ≥ Y) ,

the probability that a randomly chosen element of M will have a higher score
than a randomly chosen element of U . Thus an AUC = 1 would indicate
that the string comparator γ is a perfect discriminator between M and U , and
an AUC = 1

2 would indicate that γ has no discriminating power whatsoever
between M and U . Hence the nearer AUC is to 1, the more effective the
discriminator between the two sets.
We used our data to compute the AUC for each of our string comparators,

but then we realized that for our application, the full AUC is not a very rele-
vant statistic. In our record linkage program, the string comparator similarity
score is linearly interpolated to produce an agreement weight between the full
agreement weight and the full disagreement weight. When the interpolation
value is less than the disagreement weight, the disagreement weight is assigned.
Thus all similarity scores below a cutoff value are treated the same, as indicat-
ing that the sting pairs are in U . The only discrimination happens for string
comparators above this cutoff. Thus for sufficiently small values of α ∈ [0, 1],
we instead looked at values of

1

Pr (γ ≥ tα|U)
Z α

0

Pr (γ ≥ t|M) dPr (γ ≥ t|U)

where ta ∈ [0, 1] such that Pr (γ ≥ tα|U) = α. SinceZ α

0

Pr (γ > t|M) dPr (γ ≥ t|U) =

Z 1

tα

Pr (γ ≥ t|M) pU (t) dt

=

Z 1

tα

Z 1

t

pM (s) pU (t) dsdt

we see that this is the probability that X ≥ Y and Y ≥ tα. Thus

1

Pr (γ ≥ tα|U)
Z α

0

Pr (γ ≥ t|M) dPr (γ ≥ t|U) = Pr (X ≥ Y |Y ≥ tα) .

As α % 1, then ta & 0, and we see that the interpretation agrees with the
standard one in the limit.

10

The weight interpolation function currently in use in the matching software
is

w = aw − 4.5 (aw − dw) (1− s)

where s is the string comparator score from the Jaro-Winkler comparator using
all three modifications. With this interpolation, we see that we will get the full
disagreement weight w = dw for

s_ =
7

9
.
= 0.778.

When we look at the J-W comparator scores as a function of the “error rate”
Pr (γ ≥ t|U) = α, we see that we are past this boundary score by the time
α = 0.02, sometimes by α = 0.01. Thus we are interested in only a small sliver
of the total area under the ROC curve. Moreover, the region corresponding to
a positive agreement weight is smaller still. For example, if we have parameters
that result in dw = −aw (i.e. Pr (γ = 1|M) + Pr (γ = 1|U) = 1), then the
agreement weight w = 0 when

s+ =
8

9
.
= 0.889.

Suppose that we designate by p+, p− the “error rate” probabilities for the full
Jaro-Winkler (all options) scores where for which Pr (γ > s+|U) = p+ and
Pr (γ > s−|U) = p−. These boundary error probabilities remain mostly consis-
tent within the related groups of data sets: the three sets of names from 1990,
the 24 sets of first names from 2000, and all but 3 of the sets of last names from
2000. The last three sets of last names are consistent with each other but have
a different error/score profile than the first 21 sets. This appears to be because
these last sets consist mostly of Hispanic last names and the random cross pairs
contain a higher proportion of incidental exact matches. Approximate values
of these cutoff error rates are given in the following table.

Data Sets p+ p−
1990 Names 0.0014 0.017
2000 First Names 0.0012 0.014
Main Group 2000 Last Names 0.0004 0.01
Subgroup 2000 Last Names 0.006 0.022

In all cases we see that for the given weighting function for the full J-W string
comparator results in a very small part of the range 0 ≤ Pr (γ > t|U) ≤ 1 is
relevant for the diagnostic power of the ROC curve. We will consider only such
restrictive ranges when comparing the relative strengths of the candidate string
comparators. That is, for restrictive values of xi, for the corresponding value
of ti, where

Pr (γ > ti|U) = xi

we consider the value of

1

Pr (γ > ti|U)
Z xi

0

Pr (γ ≥ t|M) dPr (γ ≥ t|U)

11

2021 3031 STL
JW000 0.417 0.420 0.458
JW001 0.408 0.407 0.442
JW010 0.433 0.438 0.481
JW100 0.420 0.431 0.470
JW011 0.425 0.426 0.462
JW101 0.428 0.436 0.472
JW110 0.434 0.447 0.487
JW111 0.440 0.452 0.489

Table 1: Sensitivity at Error Rate 0.0012

5.1 The Jaro-Winkler String Comparators

The basic Jaro-Winkler string comparator has three optional adjustments: com-
mon prefix, similar characters, and long string suffix. We wish to see what effect
these adjustments has on the performance of the string comparator. We de-
note the J-W variations by JWxyz, where x,y,z are Boolean values for the use
of respectively the

• prefix,
• similar character,
• long suffix adjustments

5.1.1 The 1990 Names

The three 1990 name files give similar results. Basically there is not much
difference between the string comparator variations. The weakest versions are
JW001 and JW011 which have the long string suffix adjustment without the
common prefix adjustment. Since the long string suffix adjustment is designed
to supplement the common prefix adjustment, these empirical results agree with
intuition. To illustrate, we can look at the graph of the average sensitivity with
the specificity for comparator values that should be in approximately the range
of positive agreement weight. We show the graph for the names from the data
set 3031 in Fig. 1. The other two sets are similar. At the high score end the
average sensitivity values are very close. In Table 1 we show numerical values
for specificity Pr (γ > t|U) = 0.0012, where there is some separation toward the
low end of the positive matching weight range. Except in the two cases JW001
and JW011 noted above, we can see that each of the three adjustments increases
the sensitivity with the smallest contribution. Thus the highest sensitivity is
achieved by JW111, although JW110 is very close. In Fig. 2 we show the entire
range of selectivity values over which anything more than a total disagreement
weight should result. The sensitivities are close with the usual two comparators
at the bottom. The sensitivity values for Pr (γ > t|U) = 0.01 around the middle
of the negative agreement weight range are given in Table 2. In this region, the

12

Figure 1: Positive Weight Range for J-W Scores from 1990 3031 File

2021 3031 STL
JW000 0.707 0.709 0.732
JW001 0.687 0.682 0.707
JW010 0.714 0.718 0.741
JW100 0.715 0.730 0.749
JW011 0.695 0.690 0.716
JW101 0.711 0.719 0.739
JW110 0.722 0.736 0.754
JW111 0.718 0.728 0.746

Table 2: Average Sensitivity at Error Rate 0.01

13

Figure 2: Full Weight Range for J-W Scores from 1990 3031 File

prefix adjustment increases the sensitivity, the similar character adjustment
increases the sensitivity slightly, and the long suffix adjustment decreases the
sensitivity slightly. Thus the JW100 comparator has the highest sensitivity,
with the JW111 sensitivity just slightly below.

5.1.2 The 2000 First Names

Looking at the 24 sets of first name pairs from 2000, we again see that there is
not too much difference among the J-W variations. There is strong consistency
between the JW111 score t and the specificity Pr (γ > t|U) across all of the
24 sets, so we present the average sensitivities across the 24 sets. The mainly
positive agreement weight range is shown in Fig. 3. The total weight range
is shown in Fig. We can compare sensitivity values for specificity values in the
positive and negative weight ranges in Table 3. We see that the prefix adjust-
ment increases sensitivities, the similar character adjustment slightly increases
sensitivities, and the suffix adjustment slightly decreases sensitivities. Thus the
comparator JW110 has the highest sensitivity, but all four comparators with the
prefix adjustment are barely distinguishable.

14

Figure 3: Positive Weight Range for Average J-W Scores for 2000 First Names

1− Specificity
0.0012 0.01

JW000 0.381 0.646
JW001 0.363 0.613
JW010 0.389 0.647
JW100 0.400 0.659
JW011 0.371 0.613
JW101 0.399 0.651
JW110 0.404 0.663
JW111 0.404 0.656

Table 3: Sensitivities for 2000 First Name Pairs

15

Figure 4: Total Weight Range for J-W String Comparators for 2000 First Names

16

1− Specificity
0.0002 0.005

JW000 0.266 0.699
JW001 0.266 0.682
JW010 0.275 0.700
JW100 0.274 0.705
JW011 0.274 0.681
JW101 0.280 0.704
JW110 0.280 0.706
JW111 0.286 0.705

Table 4: First Name Averages for J-W Comparators, 21 Sets

5.1.3 The 2000 Last Names

As mentioned earlier, the last three last name files have different ROC curve
results that the first 21 last name files. For the first 21 files, the specificity
bounds corresponding to positive and negative weight scores are quite low. For
these 21 sets, the positive weight range ends at about Pr (γ > t|U) = 0.0002 and
the whole weight adjustment range ends by Pr (γ > t|U) = 0.01. In Table 4
below we give the sensitivity values for the end of the positive weight range and
the middle of the total weight range. In the positive range, all three adjustments
produce some sensitivity increase, so the highest sensitivity is obtained by using
all three adjustments. In the middle of the negative weight range, the similar
character adjustment produces a very slight increase and the suffix adjustment
produces a very slight decrease, so the highest sensitivity is obtained by using
the prefix and similar character adjustments. However, except for the usual
two cases that use the suffix adjustment without the prefix adjustment, the
sensitivities are all nearly the same, as can be seen in Fig.5
The last three sets of last name pairs have a very different specificity/sensitivity

profile. The positive weight range ends about at Pr (γ > t|U) = 0.006 and the
negative weight scaling lasts until Pr (γ > t|U) = 0.017, considerably higher
values than for the first 21 sets. We can see sample values in the middle of
the positive and negative weight zones in Table 5 and the range of sensitivities
is shown in Fig. 6. In this case we see that the prefix adjustment results in
some improvement, but the the similar character and suffix adjustments result
in lower sensitivities. Furthermore, there is a greater difference between the
sensitivity values than there was for the other sets. The highest sensitivity be-
longs to the J-W comparator using the prefix adjustment, but the one using no
adjustments is not far behind. The other comparator with comparable values
uses the prefix and the similar character adjustments.
The comparator results for the first 21 sets of pairs of last names and for the

last 3 sets differ in a few ways. The same JW111 score results in higher values of
both Pr (γ > t|M) and Pr (γ > t|U). In the first 21 sets, the three adjustments
all seem to help, but they do not produce much difference. In the last three sets,
the only the prefix adjustment helps while the other two adjustments hinder,

17

Figure 5: Last Name Sensitivity Averages for J-W Comparators for 21 Sets

1− Specificity
0.002 0.01

JW000 0.520 0.806
JW001 0.394 0.696
JW010 0.457 0.778
JW100 0.557 0.817
JW011 0.357 0.643
JW101 0.443 0.775
JW110 0.494 0.796
JW111 0.399 0.750

Table 5: Last Names Final 3 Sets, J-W Averages

18

Figure 6: Averages of J-W Sensitivities for the Last Three Sets of Last Names

19

and there are large differences between the comparator sensitivities. The reason
for this appears to be that the last 3 sets consist of predominantly Hispanic last
names. A large source of error is that a lot of surnames are double names (e.g.
Garcia Marquez) which might appear in full in one file and only one of the names
(Garcia or Marquez) might appear in the other file. Another difference in the
statistics can be affected by the more limited number of distinct surnames, so
that when we form the set of all non-matched cross pairs, a higher proportion
of these are duplicate pairs. Also the double last names produce a lot of long
names. A pair of long names that differ by a character or two will get a higher
comparator score than a pair of short name differing by one or two characters.

5.2 The Edit Distance String Comparators

As discussed above, the coherence edit distance comparator is supposed to sup-
plement the basic Levenshtein edit distance comparator by considering character
transpositions. However, we found no evidence of it working better than the
basic edit distance comparator on our data sets in terms of average sensitivity
for given selectivity rates. The sensitivity values for the two comparators are
similar with the coherence comparator sensitivity values generally less than the
edit distance values. The only exception occurs in the problem three last name
files, where the coherence edit sensitivity is slightly higher than the edit dis-
tance sensitivity, but in this case both are considerably below the Jaro-Winkler
comparator sensitivities.
The longest common subsequence comparator was not thought to be a seri-

ous competitor, and indeed it substantially underperforms all of the other com-
parators on the relevant selectivity regions for these data sets. However, we
did wish to consider the combined edit/lcs and coherence/lcs comparators. We
look at the performance of the these two comparators along with the standard
JW111 comparator for reference. For the 2000 first name pairs, the average
sensitivities are given in Fig. 7. The LCSLEV comparator is close to the
JW111 comparator, starting out somewhat below and then catching up, while
the LCSCOH comparator has similar trajectory, but is considerably below the
other two. The results for the 1990 names are similar. For the first 21 sets
of 2000 last names, the JW111 comparator is very slightly above the LCSLEV
comparator in the positive weight range (Fig. 8). At around the zero weight
range, they agree and for the rest of the negative weight range, the LCSLEV
starts to surpass the JW111 (Fig. 9). The LCSCOH comparator starts out
considerably below the other two, but increases to meet the JW111 compara-
tor near the end of the negative weight range. In the case of the last three
sets of last names (Fig. 10), the JW111 comparator underperforms both of the
edit-type comparators, with the coherence edit distance still slightly below the
simpler Levenshtein edit distance sensitivities.
To summarize, the comparator based on coherence edit distance and the

longest common subsequence length never exceeds the performance of the com-
parator based on standard Levenshtein edit distance and longest common sub-
sequence length. This latter comparator generally performs comparably to the

20

Figure 7: Average Sensitivities for LCSLEV, LCSCOH, and JW111 for 2000
First Names

21

Figure 8: Positve Weight Range for Main Sets of 2000 Last Names for Edit
Type Compartors

standard JW111 comparator. Usually the LCSLEV comparator is slightly lower
in average sensitivity than that of the JW111 comparator in ranges correspond-
ing to positive matching weights and slightly higher in ranges corresponding to
negative matching weights. However, for our anomalous sets of last names,
the LCSLEV comparator significantly exceeds the performance of the JW111
comparator.

5.3 Hybrid Comparator

5.3.1 Differences Between the Jaro-Winkler and Edit Distance Type
Comparators

To understand how the performance of edit string comparators differs from that
of the Jaro-Winkler comparators, we chose a selectivity cutoff value and looked
at the pairs of names from matching records that are above the cutoff value for
one comparator and below the cutoff value for the other comparator. We simi-
larly looked at the analogous name pairs from non-matching records. Looking
at the name pairs which have an above cutoff value for the J-W comparator and
below cutoff value for the LCSLEV comparator, we did not perceive a pattern

22

Figure 9: Full Weight Range of LCSLEV and LCSCOH Average Sensitivities
for Main Last Name Sets

23

Figure 10: Last Three Last Name Sets for LCSLEV and LCSCOH

24

to the name pairs from either matching or non-matching records. However,
there was a similarity to the name pairs that exceeded the LCSLEV cutoff and
were below the J-W cutoff. These name pairs highlight some asymmetries of
the J-W comparator that can result in some low scores especially for double
names.
We can understand the major asymmetry of the J-W comparator as follows.

Let α, β be two strings both of length n with no characters in common and let
αβ be the concatenation of these two strings. If we use the J-W comparator
on the pair α, αβ, we get a fairly high score. Specifically, the two strings have
n common characters with no transpositions for a basic J-W score of

s =
1

3

³n
n
+

n

2n
+

n

n

´
=
5

6
.

If n ≥ 4, the prefix adjustment raises the score to

s =
5

6
+
4

10

µ
1

6

¶
=
9

10

We might expect this comparator score to result in a comparison weight some-
where near 0, perhaps slightly positive. On the other hand, if we compare the
strings β, αβ, the J-W comparator finds no common characters, since the search
window for common characters has radius

r =
2n

n
− 1 = n− 1.

Actually, for a basic score below 0.7, the comparator does not bother to compute
the J-W score adjustments, but in any case, we clearly should end up with a
comparator score resulting in a full disagreement weight. On the other hand, the
LCSLEV comparator results in the same score for either pair α, αβ or β, αβ.
The string transformation requires n insertion/deletion edits and the longest
common subsequence has length n. Thus the edit distance score is 1− n

2n =
1
2

and the LCS score is n
n = 1, which averages to a combined LCSLEV score of

s =
1

2

µ
1

2
+ 1

¶
=
3

4
.

The three last files of last name pair from 2000 especially contain a lot of His-
panic names where the surname from one file is reported as a double name and
the other file just has one of the two names, so this distinction in comparator
behavior can be relevant.
Another anomaly for the J-W comparator can occur when a common char-

acter occurs more than once. Since the common character search proceeds from
left to right within the search window, this can result in a high transposition
count. An example is the pair (sara,asara). The four common characters are
(s,a,r,a) and (a,s,a,r), which counts as two transpositions. The resulting score
is

s =
1

3

µ
4

4
+
4

5
+
2

4

¶
=
23

30
.
= 0.767.

25

There are no remaining similar characters and no agreeing prefixes. The strings
are too short for the suffix adjustment. A JW111 score of 0.767 results in a full
disagreement weight. On the other hand, the transformation from one string
to the other costs one edit and the longest common substring has length 4, so
the LCSLEV score is

s =
1

2

µ
4

5
+
4

4

¶
=
9

10
.

The fact that the J-W algorithm does not always find the minimum number
of transpositions for the common characters may have a modest role in distin-
guishing the performance of the two types of string comparators.

5.3.2 Selecting a Hybrid Comparator

The standard J-W comparator generally does well in our selectivity, average
sensitivity analysis. The combination Levenshtein distance and longest common
substring comparator performs comparably. However, in our extreme cases of
the last three sets of the last name pairs, the edit distance type comparator
does significantly better than the J-W comparator, probably because of the
more robust handling of the single name/double name pairs. We consider that
it might be advisable to use the J-W comparator except in those cases where
it gives a small value compared to the edit comparator. However, we need to
be able to compare the string comparator values from the J-W comparator and
the edit distance comparator.
We tried combining the JW110 comparator with the LCSLEV comparator.

We used the one without the suffix adjustment since this adjustment generally
made a small difference, sometimes this difference was negative, and we thought
of the LCSLEV comparator as offering a suffix correction. We considered
the values of the JW110 and LCSLEV comparators for the same selectivity
values, restricted to selectivity values in a range relevant to the assignment of
varying matching weights. The comparators show a strong and consistent linear
relationship in this range, where we estimated the regression coefficients to be

ŝ110 = 0.66slcslev + 0.38

and define the hybrid string comparator score by

sh = max (s110,min (ŝ110, 1)) .

This may not be the best way to combine the two string comparators. This hy-
brid string comparator has some unappealing formal properties. The minimum
value of sh is 0.38 instead of 0, but comparator values this low will be assigned
the full disagreement weight anyway. Also it is possible to have sh (α, β) = 1,
but α 6= β For instance, if α = a1a2a3a4a5a6a7a8a9 has distinct characters and
β = a2a3a4a5a6a7a8a9, then

slcslev =
1

2

µ
8

9
+
8

8

¶
=
17

18
.
= 0.944

26

which results in ŝ110 > 10. On the other hand, we have

s110 =
1

3

µ
8

9
+
8

8
+
8

8

¶
=
26

27

and

s111 =
26

27
+
1

27

µ
8− 1

8 + 9 + 2

¶
=
167

171
.
= 0.97660.

This is a high score but it would receive somewhat less than the full agreement
weight.

5.3.3 Assessing the Hybrid Comparator

The selectivity/average sensitivity values for the positive weight range for the
2000 first name pairs are shown in Fig. 11 and for the full weight range in Fig.
12. We see that in the highest selectivities, the hybrid comparator JWLEV2 has
average sensitivities very close to (within 0.01) the standard J-W comparator
and distinctly above the edit/lcs comparator. In the early stages it is very
slightly below the JW111 comparator, but catches up and by the negative weight
range, the sensitivities exceed (by more than 0.01) those of the J-W comparator.
The results for the 1990 names files look very similar. The results for the
standard last name files from 2000 are shown in Fig. 13 and for the full weight
range in Fig. 14. The positive weight range looks similar to that for the first
names, except that toward the end the hybrid comparator sensitivities exceed
(by at least 0.01) those of JW111 rather than just catching up. In the full weight
range, the JW111 sensitivities are exceeded by the edit/lcs sensitivities, but the
hybrid comparator sensitivities exceed both, exceeding the J-W comparator by
0.03. For the anomalous three last name sets, we see in Fig. 15 that the edit/lcs
comparator well exceeds the J-W comparator and that the hybrid comparator
is close to the edit/lcs comparator. Where the hybrid comparator average
sensitivity values are less than those of the LCSLEV comparator by between
0.02 and 0.03, they exceed those of the JW111 comparator by between 0.08 and
0.09.

5.4 Summary

The Jaro-Winkler string comparators perform similarly with the three adjust-
ments. The prefix adjustment always helps, the similar character usually helps
modestly, and the suffix adjustment generally either helps or hurts a small
amount. The adjustments do the most good in the higher score ranges, boost-
ing the scores of already similar string pairs. They have less effect with less
similar pairs, when the similar character and suffix adjustments begin to lower
rather than raise sensitivities.
The Levenshtein edit distance and coherence edit distance metrics can be

effective when combined with the longest common substring score. However,
the coherence comparator always does less well than the basic edit distance

27

Figure 11: Average Sensitivities for Positive Weight First Names for Hybrid
Comparator

28

Figure 12: Average Sensitivities for 2000 First Names for Hybrid Comparator

29

Figure 13: Average Sensitivities for Positive Weight Range of Last Name Pairs
for Hybrid Comparator

30

Figure 14: Average Sensitivities for 2000 Last Names for Hybrid Comparator

31

Figure 15: Sensitivities for Difficult Last Names for Hybrid Comparator

32

comparator, so there does not seem to be any justification for the extra com-
plexity for this application. One might experiment with different coherence
index other than N = 4, but this does not appear to be very promising.
The hybrid string comparator formed from the maximization of the J-W

comparator JW110 and the scaled edit/lcs comparator does as well as and
sometimes better than the standard JW111 comparator. It shows more ro-
bustness in our samples, doing about the same as JW111 for more similar pairs
and doing better for more problematic pairs. Specifically it does a lot better
with the sets of long Hispanic double last names. Of course, even if this en-
hanced performance persists in other examples, it does have the cost of extra
computational complexity, taking about three times as long to compute at the
standard Jaro-Winkler comparator.

6 Matching Results
We have analyzed several string comparators by examining their average sen-
sitivity over selectivity intervals, concentrating on intervals where the string
comparator values can have some influence on the matching weights for record
pairs in record linkage. We have seen some, mostly slight, differences between
these comparators. We would like to know if these measured differences are
enough to effect the final record linkage result.

6.1 Using Bigmatch on the 2000 Data

We first ran Bigmatch for the 2000 Census/ACE files, first using the standard
Jaro-Winkler comparator with all three options and then with the hybrid Jaro-
Winkler and Levenshtein distance/LCS comparator. We used three blocking
passes: cluster number and first character of last name, cluster number and
first character of first name, and cluster number where we used first and last
name inversion for matching computation. We cut off the output at matching
weight 0. We examined the output pairs sorted by decreasing matching weight.
We note that the Bigmatch program does not provide one-to-one matching,
although the files have 606,412 matching pairs.
The first blocking pass produces the bulk of the output pairs. When we

try to compare the results of the J-W comparator and the hybrid comparator,
the results are not conclusive. If we compare the number of matched pairs as
a function of the number of false match pairs, then the two outputs go back
and forth between which has the larger number of true matches for a given
level of false matches. After some initial volatility, the ranges settle down to
a difference of a few hundred matches either way, with the hybrid comparator
matcher generally averaging about 200 more matches. If we consider average
number of matches for a given level of false matches, it is difficult to tell the two
outputs apart. One way that this output could be used is to decide on a cutoff
matching weight level and take the links above this level as designated matches.
If we look at the number of false matches above a given weight, we see that

33

Cutoff Weight Description
A 13.5775 Disagree on first name, a missing middle initial
B 11.6947 Disagree on first name and middle initial
C 10.7901 Disagree on first name and sex, a missing middle initial
D 9.1807 Disagree on first name and sex, missing a middle initial

and relationship to head of household

Table 6: Possible Matching Weight Cutoff Points

Cutoff Matches Non-Matches New Matches New Non-Matches
A 432,992 439 1139 512
B 486,915 1975 87 113
C 505,736 2475 38 237
D 533,690 3808 45 150

Table 7: J-W Output at Cutoffs

there are a few weights where a relatively large number of false matches enter.
As it turns out, these matching weights are the same for both outputs since
they are not influenced by string comparator values. We could consider these
points as possible cutoff values. The points are described in Table 6, where the
records agree on all fields except the ones listed. In Table 7 we list the total
number of matches and non-matches above the cutoff point and the number
of new matches and non-matches that are included at this cutoff value for the
version of Bigmatch using the standard Jaro-Winkler comparator. In Table 8
we do the same for the output of Bigmatch using the hybrid string comparator.
There is some indication that the hybrid comparator is doing slightly better in
that at these levels it allows in a few more false matches (from 13 to 25) which
it has a larger number of true matches (initially almost 3000, settling down to
over 1000). Of course, from the point of view of the total number of matches,
these differences are a small proportion.
The second blocking pass used cluster number and first character of first

name. We sorted each output by matching weight, then accumulate the counts
of true and false matches for decreasing matching weights. We plot in Fig.
16 the number of true matches for a given number of false matches at the
same matching weight. The program using the hybrid matcher shows more
matches for a given number of false matches, generally averaging around 200

Cutoff Matches Non-Matches New Matches New Non-Matches
A 435,935 452 1026 514
B 488,696 1977 88 116
C 506,799 2500 35 236
D 534,797 3831 38 150

Table 8: Hybird Output at Cutoffs

34

Figure 16: Number of True Matches for Given False Matches Using JW111 and
JWLEV

more matches. As a fraction of the total number of matches found, this is very
small, so the match rate is not much changed. However, this consistent excess
is probably due to differences of string comparator evaluation for last names,
specifically double Hispanic last names.
By the third blocking pass, most of the matching record pairs have already

been culled out. However, the first and last name inversion does find some new
matches. Depending on the number of false matches that are tolerated for a
cutoff value, between about 3300 to 3700 new matches are found. At the same
level of false matches in this range, the hybrid comparator version finds about
40 more matches than the standard comparator version.

6.2 Using the One-to-One Matcher on the 2000 Data

One use of the Bigmatch program is to extract a file of likely matching records
from one of the two files at hand, so that the reduced file can be used with the
SRD Matcher to extract one-to-one matches. Since the Census and ACE files
have already been clerically matched one-to-one, using a one-to-one matcher
seems to be in order. We used the Bigmatch program twice, first extracting
subfiles of likely matches from one file, then extracting subfiles of likely matches
from the second file. We then use the one-to-one matcher on these pairs of
reduced files.
The largest files come from the first blocking pass which used cluster number

and first character of last name. The true matches against false matches for
the two outputs is shown in Fig. 17. Since the records have already been
selected as likely matches, we see that the scale of the true matches is very large
compared to the scale of the false matches. Furthermore, while the initial rate
of true matches to false matches slows down, there is a significant increase in

35

Figure 17: One-to-one Matching First Blocking Pass

true matches throughout. Comparing the two outputs, we see after some initial
instability, the hybrid comparator consistently has more true matches per false
matches throughout, although the difference gets smaller as we proceed farther
along. In general with matching results, we would choose a cutoff point above
which we accept all of the pairs as valid links and another cutoff point below
which we assume all of the pairs are false links. However, since these sets
are so rich in matches, we would probably not have a lower cutoff value and
would accept everything as at least in the clerical region. If we accept the
whole set as links, then there is not much difference between the sets. The
J-W comparator set has 560,556 true matches and 279 false matches and the
hybrid set has 560,571 true matches and 264 false matches, a difference of just
17 record pairs. On the other hand, if we chose our high cutoff value to include
only the rapidly rising true match region, we might comparably choose a cutoff
at around 38 false matches. If so, then the J-W set would have 458,835 true
matches and the hybrid comparator set would have 463,378 true matches. If
we take the rest of the sets to be (rather large) clerical regions, then the two
clerical regions have very similar proportions of false matches and the hybrid
comparator set has 4543 fewer records.
The second set of files result from blocking on cluster number and first

character of first name. These records are those with high matching scores
that have not already been collected in the first blocking pass sets. We see the
true/false matching values in Fig. 18. In this case, the hybrid true matches
more clearly exceed the J-W true matches throughout, although they come close
together at the end. If we again accept the complete sets as designated links,
then there is not much difference between them. The J-W set has 15,007 true
matches and 310 false matches, while the hybrid set has 15,013 true matches and
304 false matches. However, if we choose a high cutoff value for the region of
rapid true match increase, then we might compare the two at 16 false matches,

36

Figure 18: One-to-one Matching Second Blocking Pass

where the J-W set has 10,969 true matches and the hybrid set has 15,567 true
matches. If we take the remained of the sets as clerical regions, then the hybrid
set has 598 fewer records, about a 13.8% reduction in the size of the clerical
region.
The third set of files result from blocking on just cluster number and using

comparing the names using first and last name inversion. The true/false graph
is given in Fig. 19. The shape of the graph is not typical, probably because
the sets represent the residual record pairs not identified by the previous two
blocking passes. We used name inversion to try to pull out a few extra matches.
However, we see that the true matches never rise rapidly with respect to the
false matches, so one possibility is to regard the whole set as the clerical region.
In this case, the two outputs are similar, with the J-W comparator producing
3877 true matches and 84 false matches and the hybrid set producing 3881 true
matches and 82 false matches. If we wish to designate an upper cutoff, then
we see that it depends how high we choose to make it. Initially the hybrid true
count is a little above the J-W true count, but then the J-W true count exceeds
for most of the way. For example, if we choose a false match level of 15, then we
have 535 matches from the J-W comparator and 446 matches from the hybrid
comparator. The resulting clerical review regions have the J-W region reduced
by about 2.6% from the hybrid region.

6.3 Using the One-to-One Matcher on the 1990 Data

The 1990 data is somewhat different from the 2000 data. In addition to being
smaller sets, the records in one set do not necessarily have a match in the other
set. Thus it is likely that one would choose a lower cutoff as well as an upper
cutoff. We see the output of the 2021 set in Fig. 20. Again there is not much
difference in the total number of true matches in the two sets, the J-W having

37

Figure 19: One-to-one Matching Third Blocking Pass

3417 matches and the hybrid having 3419 matches, but the hybrid curve stays
above the J-W curve throughout. If we choose a high cutoff near the top of
the steep part of the curve, we might compare the results at 27 false matches.
Here the J-W matcher has 3318 true matches and the hybrid matcher has 3359
matches. If we choose a low cut at 83 false matches where the curves level out,
the total number of matches above the low cutoff is still close (3416 and 3417
respectively), but the clerical region with 56 false matches has 98 true matches
for the J-W set and 58 true matches for the hybrid set, a 26% reduction in the
size of the clerical region.
The true/false graph for the 3031 data set is shown in Fig. 21. The hybrid

curve is on top but the graphs are closer. Again the total number of matches is
similar, 3547 for the J-W matcher and 3549 for the hybrid matcher. If we take
the high cutoff around the top of the steep part, we can choose a level of 13 false
matches to compare, with the J-W matcher having 3442 matches and the hybrid
having 3473. If we take a low cutoff at 47 false matches, the clerical region has
34 false matches, the J-W output has 89 true matches, and the hybrid matcher
has 68 true matches. The result is that the hybrid matcher has a total of 10
more matches in the two regions and a clerical region reduced by 17%.
The graph for the STL data set is given in Fig. 22. The hybrid curve is

more separated above the J-W curve, similarly to the 2021 data set case. As
usual, the total number of matches in the output sets is similar, 9860 for the
J-W comparator and 9863 for the hybrid comparator. If we choose a high cutoff
at 39 false matches, then the J-W matcher has 9712 matches and the hybrid
matcher has 9785 matches above the high cutoff. If we take the low cutoff at
146 false matches, the J-W matcher has 9856 matches and the hybrid matcher
has 9859 matches above the low cutoff. This makes the clerical region have 105
false matches, the J-W matcher has 144 matches and the hybrid matcher has
74 matches for a 28% reduction in the size of the clerical region.

38

Figure 20: Matching the 2021 File

Figure 21: Match Results for 3031 File

39

Figure 22: Match Results for STL File

6.4 Summary

In the previous analysis using ROC curve values, we saw that the Jaro-Winkler
comparator with all three adjustments and the hybrid comparator which com-
bines the Jaro-Winkler comparator without the suffix adjustment and the com-
bination of edit distance and longest common subsequence comparator both
were good performers in classifying the Census name typographical error data.
The hybrid comparator appeared to generally do somewhat better. When we
use the two comparators in our matching software, the hybrid comparator con-
tinues to do slightly better in classifying the matches and the non-matches. It
finds very few extra matches, but it does tend to separate the matches from
the non-matches. The cost is that the hybrid matcher takes longer to run,
essentially performing three quadratic algorithms instead of one.

References
[1] Stephen, Graham A. String Searching Algorithms. World Scientific Pub-

lishing Co. Pte. Ltd., 1994.

[2] J. Wei. “Markov Edit Distance”. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol 26, No. 3, pp. 311—321, 2004.

[3] Winkler, William E. “String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage”. Proceedings of the
Section on Survey Research Methods, American Statistical Association, 1990,
pp. 354—359.

40

[4] Zou, Kelly H. Receiver Operating Characteristic (ROC) Literature Research.
http://splweb.bwh.harvard.edu:8000/pages/ppl/zou/roc.html.

41

	rrs2005-05t.pdf
	Page 1

