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Abstract

Cell suppression has been a commonly used method at the Census Bureau and at other agencies
for protecting sensitive cells in statistical tables whose cells contain magnitude data. In this
method, the sensitivity of each cell depends on the distribution of the respondent values which
are summed to form the cell value. Those cells determined to be sensitive are suppressed and
then a cell suppression program is run to determine which additional cells (called secondary
suppressions) need to be suppressed in order to protect the sensitive ones. In this study, we
compare two ways of protecting sensitive cells and their effects on the suppression patterns, i.e.,
the set of secondary ones. These ways are (1) fixed interval protection and (2) sliding protection.
In studies done over a decade ago by researchers at the University of Maryland, it was shown that
sliding protection often leads to fewer secondary suppressions than fixed interval protection.
Here we show that this result does not hold when the cell suppression program incorporates the
following assumption: if v is any respondent value, then any table user knows, from publicly
available information, that the value lies in the interval [0, 2*v]. In other words, respondent
values are known by interested parties to within 100% of their actual value.
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1. Introduction

We assume the reader has some knowledge of cell suppression, ways of determining sensitive
cells (primary suppressions) and the need for finding secondary suppressions (complementary
suppressions) that protect the sensitive cells after they have been suppressed. (See references [J]
and [M] for background material). Suppose one applies a linear sensitivity measure, such as the
p% rule, to determine which cells in a table about to be released by an agency, require disclosure
protection. Suppose that for a particular sensitive cell, ‘prot’ is the amount of protection
required. We use the term ‘fixed interval protection’ for a process which creates an uncertainty
interval for any sensitive cell that has at least ‘prot’ units on each side of the actual value. This
could also be called ‘two-sided protection’. Sliding protection is an alternative to fixed interval
protection. It requires only that the uncertainty interval created for each respondent value be at
least 2*prot units wide but does not specify any width for each side of the actual value. It has
some advantages and disadvantages with respect to fixed interval protection. In cell suppression
programs that implicitly assume that table users know only that respondent values are non-
negative, sliding protection requires fewer secondary suppressions but provides what some users
might consider a slightly weaker form of protection of respondent values. In this paper, we
compare fixed interval protection with sliding protection in cell suppression programs that
incorporate a reasonable assumption about knowledge that table users have about respondent
values prior to using the tables about to be released. It turns out that such an assumption affects
the relationship between sliding and fixed interval protection.

2. Mathematical definitions; policy issues

In fixed interval protection, after one determines that a cell is sensitive and how much protection
it requires (often accomplished using the p% rule), one uses a suppression program that finds a
complementary cell suppression pattern (i.e., the set of ‘C’ cells). The pattern that the
suppression program finds has the property that it provides the amount of protection required on
BOTH sides of the true value. For example, suppose there are only two contributions to a cell,
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say $200 and $80, and p=10. The p% rule says that protection required by the top contribution is
(p/100) time its value minus S where S is the sum of all the contributions starting with the 3™
largest to the smallest. Since S=0 in this example, the protection needed is (10/100)*$200 = $20.
The pattern found using fixed interval protection will ensure that the tightest interval that a table
user can derive from the table of the top contributor’s value is (180, 220). Often the actual
uncertainty interval (sometimes called a feasibility interval, derived from the term’s usage in
mathematical programming) will be somewhat larger or even much larger than this interval.
Often it will not be symmetric about the true value.

In contrast, if one uses sliding protection on the example above, the pattern created will create a
feasibility interval of the form (a, b) where a is less than or equal to 200, b is greater than or
equal to 200, and the width of the interval, (b-a), is at least 40. That is, the minimal width (of the
feasibility interval) for sliding protection is the same as the minimal width for fixed interval
protection; in the example above it is 40. The main difference with the protection methods is
that sliding protection often produces an interval is which one of the endpoints is less than the
protection distance (20, in the fixed interval example) from the true value.

There may well be occasions when the true value equals one of the end points of the protection
interval. Given this possibility, a policy decision must be made regarding whether sliding
protection provides adequate protection. If it is decided that it does provide adequate protection,
then one needs to see if there are some advantages to using it rather than fixed interval
protection.

3. Practical implementation issues

Currently our suppression programs have implemented fixed interval protection. Creating a
linear programming (LP) based suppression program that can implement sliding protection does
not require extensive program changes but the changes require delicate programming. However,
the suppression program that is used for much of the production work at the Census Bureau
(especially for large tables) is based on the network flow method, which is a very fast special
case of linear programming. For this program, implementing a sliding protection capability may
be a bit more complicated just because of the structure of the program (ref. [J]). The number of
variables required to implement sliding protection is twice the number required for fixed interval
protection. Since mathematical programs of a given complexity usually have runtimes that
increase at least linearly with the number of variables, the sliding protection programs are likely
to take longer than the comparable fixed interval program.

4. Problems explored in this study

Let us give a little historical background. In the early 1990's, the Census Bureau let a contract to
professors at the University of Maryland Business School, Bruce L. Golden and Arjang A. Assad
and a graduate student, James P. Kelly. They wrote some technical papers in which they did a
comparative analysis of fixed interval protection versus sliding protection under some general



conditions. In one of their papers [KGA, 1992], they found that sliding protection ‘can
significantly reduce the total amount of suppressed data’.

After trying unsuccessfully to replicate these earlier results, we noticed that there was a
difference between the KGA cell suppression program and the Census production program,
regarding how much ‘protection flow’ is allowed to flow through a given secondary suppression.
The upper bound on ‘protection flow’ is based on the assumption about table user knowledge of
respondent values. To test exactly how this knowledge assumption affects sliding protection, we
introduced a new parameter, ‘capmult’ (for ‘capacity multiplier’) that we could change before
each run. It was used to impose an upper bound on the flow variables;

ub(i) < capmult « capacity(i)
where ub(i) is the upper bound of protection flow allowed through the ith cell and capacity(i) is
the capacity of the ith cell to protect the sensitive cell being protected (ref. [J]). The simplest
case, which often occurs, is one where the capacity of a cell equals its value. Our main
observation is that this upper bound limits the amount of sliding that can take place. In particular,
the value capmult=1 corresponds to the case in which the table user can estimate any
respondent’s true value within 100% on the low or high side. Thus if the true value is ‘40", the
user knows only that the true value lies in the interval [0, 80]. A knowledge assumption that is
equivalent to setting capmult=1 is built into Census production suppression programs.

If one assumes that a table user will know only that a respondent’s true value is non-negative,
then one would set capmult equal to a very large value that represents infinity for computational
purposes. This is the case implicit in the KGA work. Of course, one should use a value of
capmult that seems to approximate the knowledge of respondent values that the most informed
table users are likely to have based on various data sources, both governmental and private.
Subject matter specialists may be able to suggest a realistic value of capmult. Ideally one could
conduct a survey of likely table users to estimate a reasonable value. In addition, it has been
suggested that a 2nd parameter is needed to reflect the lower bound of a table user’s a priori
knowledge of a respondent value more realistically than simply assuming the value is non-
negative. However, Census suppression programs do not currently do this and we do not discuss
this two parameter case in the paper.

One can show that for this value, no sliding of protection intervals is allowed, therefore fixed
interval protection (FP) is equivalent to sliding protection (SP) (i.e., FP = SP) when capmult=1.
The argument goes as follows. Using the capmult=1, leads to symmetric bounds on the
protection flow for each suppressed cell, i.e., the maximum amount of negative flow allowed
equals the maximum amount of positive flow allowed through each cell. This symmetry means
that any flow through the set of suppressed cells can be reversed. This reversibility of the flow
means that if we have x units of protection in one direction for a given sensitive cell, then we
must have x units of protection in the other direction for the same cell. That is, for the simple
example given in section 2, if we have 20 units of protection on one side of 200 we will also
automatically have 20 units of protection on the other side. Thus the protection created with
capmult=1 is guaranteed to have fixed interval (i.e., two-sided) protection.



Our proof of reversibility of protection flow for the case capmult=1, holds for the suppression
pattern generated for a single sensitive cell. When one protects a set of sensitive cells
sequentially, the feasibility interval may lose its symmetry but the cell still has fixed interval
protection with each side of the uncertainty interval having at least ‘prot’ units of protection. The
backtracking procedure, performed on a set of linked tables, can also lead to asymmetric intervals
but preserves fixed interval protection.

We decided it was worthwhile to explore the case capmult=100 to see if our results were
comparable to the earlier work done at the University of Maryland. To that end, we did the
following comparisons:

(1) FP vs SP comparison for 5 separate (i.e., unlinked) tables (i.e. column relations)

(i1) FP vs SP comparison when the column relations are linked; processed on a single run and
where, as usual, backtracking is used to provide consistent protection patterns

We also tested the effect of backtracking with linked tables on the FP vs SP comparison.

We tested the effect of SP on the percentage of primary suppressions (called ‘P cells’) that are
well-approximated by the midpoint of the feasibility interval. We computed the percentage of P
cells for which one endpoint of the feasibility interval is close to the cell value.

5. Results

In all these tables we set capmult=100 thereby making the sliding protection (essentially)
unconstrained. This unconstrained case is the one treated in the KGA references. As discussed in
the above section, the Census production suppression programs, in contrast, use, capmult=1 with
fixed interval protection.

The quantity we usually want to minimize is the total value of complementary cells (C’s). The
production cell suppression programs use network flow, which like linear programming, cannot
minimize that quantity but is able to minimize a rough approximation to it, viz., the sum over C
cells of value(i) * flow(i) where flow(i) is the flow through cell i. This explains why sometimes
SP has a larger entry in the ‘Total Value of C’ column than the FP entry. That is, if one used
integer programs in which we could minimize the sum over C cells of value(i), we would expect
that the Total Value of C for SP would never be greater than the value for FP.

Comments on Tables 1 - 4.

Tables 1 and 2 have results for the five tables when they are treated as independent tables and
processed on five separate runs of the suppression program.

Tables 3 and 4 have results for the five tables when they are treated as linked and suppressed on a
single run of the suppression program.



Comparing KGA’s results with ours

KGA found a decrease of about 12% in total value of C for a large number of tables, using
simulated Census-like data. With our quite limited set of tables we found SP sometimes had a
great decrease in Total Value of C’s compared to FP; however for some tables FP was lower (see
above explanation for this). Thus our result from our small set of tables seems to be consistent
with the Kelly et al. finding [KGA, 1990, p.25] that SP allows on average a 12% lower
information loss (= value of suppressed cells) based on a sample of over 1000 real-data tables.

Comparing FP with SP regarding vulnerability to the midpoint attack

One might suspect that SP has an advantage compared to FP. Since for SP, two-sided protection
is not required, one might guess that the uncertainty interval (i.e., feasibility interval) derived
from the complete suppression pattern, would be less likely to be vulnerable to a midpoint attack.
By this we mean that the midpoint of the uncertainty interval is less likely to be close to the true
value with SP than with FP. To test this we introduced a measure of closeness to the midpoint of
the uncertainty interval. We set z = abs(mid-val)/val and say the midpoint (of the uncertainty
interval) is ‘close to the value’ if z is less than some parameter value ‘sper’. We set sper=0.05 .
With our limited test set, there is no significant difference between SP and FP in the number of P
that are well approximated by the midpoint of their feasibility interval as calculated by the audit
program.

We also tested the sensitive cells that received sliding protection but did not receive fixed
interval protection to see if their value was close to the endpoint of the uncertainty interval. We
know that sliding protection allows, in theory, for the value to be close to or even equal to the
endpoint of the uncertainty interval. If this case occurs frequently, then sliding protection is
creating a great deal of uncertainty for the data intruder. However, we wanted to see how often
this case arises with real data tables. We set wu=(upper - value)/width and wl=(value-
lower)/width. If either of wu or wl is less than sper2 we say that the value is close to an endpoint
of the uncertainty interval. We set sper2=0.05 . For SP, only a small percentage of P’s seem to be
close to an endpoint of the feasibility interval. (See Results Tables below)

Recall that Tables 3 and 4 have results for the five tables when they are treated as linked and
when suppression patterns are found on a single run. A single run in general requires many
backtracking passes to ensure that the final suppression patterns in the tables are consistent in
cells that are common to two or more tables. It appears that the way backtracking is implemented
in our suppression program leads to a very large number of C’s for data tables 3 and 4 for SP. In
fact there are many more C’s for the SP case than for the FP case and the total value of the C’s is
also much greater for SP case. This contradicts the main reason for using SP; i.e., lower loss of
information. This situation needs to be explored more thoroughly to determine if the
backtracking procedure is not currently handling SP correctly.



Example 1: Five tables treated as unlinked by processing them on separate runs of a suppression
program.

TABLE 1 Number and Value of C’s
Fixed Interval vs. Sliding Protection

Fixed Interval Protection Sliding Protection
Data Table Number of C’s | Total Value of C’s | Number of C’s | Total Value of C’s
1 14 84,414 12 26,526
2 284 367,715 270 381,058
3 290 324,742 261 283,916
4 51 175,945 47 143,810
5 219 310,796 187 242,256
TABLE 2  Closeness of P to midpoint of protection interval
Fixed Interval vs. Sliding Protection
Fixed Interval Protection Sliding Protection
Data Table | Number of | % of P’s Number | % of P’s | Number of % of P’s
P’s close to of P’s close to P’s not (prev. col.)
midpoint midpoint receiving close to
fixed prot. endpoint
1 4 0% 4 0% 2 100
2 42 19% 42 26% 10 20
3 44 23% 44 23% 8 13
4 9 22% 9 22% 2 100
5 33 30% 33 21% 5 40




Example 2: A set of five linked tables ; processed on a single run; extensive backtracking

TABLE 3 Number and Value of C’s
Fixed Interval vs. Sliding Protection
Fixed Interval Protection Sliding Protection
Data Table # of Number Total Value | #of Number of Total
passes | of C’son | of C’s passes | C’s on final Value of C’s
final pass pass
1 1 14 84,414 1 12 26,526
2 1 284 367,715 1 270 381,058
3 5 427 628,785 12 1440 6.83E+7
4 5 167 358,217 11 507 4 44E+7
5 1 219 310,796 1 187 242,256
TABLE 4  Closeness of P to midpoint of protection interval
Fixed Interval vs. Sliding Protection
Fixed Interval Protection Sliding Protection
Data Table | Number % of P’s Number % of P’s | Number of | % of P’s
of P’s close to of P’s close to P’s not (prev. col.)
midpoint midpoint | receiving close to
fixed prot. | endpoint
1 4 0% 4 0% 2 100%
2 42 19% 42 21% 10 20%
3 44 9% 44 0% 3 100%
4 9 0% 9 0% 1 100%
5 33 27% 33 21% 5 40%




6. Conclusions

If the Census Bureau continues to feel that the value capmult=1 is a good reflection of table user
knowledge of respondents’ values, and that it should continue to be incorporated into the
production cell suppression programs, then FP is equivalent to SP and there is no reason to
implement SP. If the Census Bureau feels that other values of capmult should be explored, then
further testing of SP vs. FP with additional tables would probably make sense. If capmult is set to
a very large value, we could use the results of KGA together with our own results, to see what
the impact would be.
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APPENDIX: Mathematical aspects of protection models; programming details

Setup: Assume the protection is done sequentially; i.e. protecting one primary cell P at a time;

in descending order of required protection for the primaries. Suppose a certain P is ready for
protection processing. Assume its one-sided protection, denoted ‘prot’, has been calculated using
an acceptable rule, such as the p% rule. Note that in general, ‘prot” depends on the microdata
underlying the cell P; specifically ‘prot’ is a function of the distribution of the cell contributions.

The use of “prot’ for each of type of protection

1. For fixed interval protection (denoted FP), the goal is to ensure that the best estimate any table


https://www.census.gov/srd/papers/pdf/rr2001-01.pdf

user (other than contributor A) can derive for contributor A’s value (denoted x1), is an interval U
that contains the interval [x1*(1-p/100) , x1*(1+p/100)]. The value ‘prot’ is used to construct U
as follows.

(1) Create an upper protection flow (through the table) that perturbs the (original) value of the P
cell upward by ‘prot’.

(i1) Create, independently, a lower protection flow that perturbs the value of the P cell downward
by ‘prot’.

2. For sliding protection (denoted SP), the goal is somewhat less demanding than for FP. We
need only find an interval U that contains x1 and has a width of at least 2* prot; [2*prot is at
most (2*p/100)*x1; this occurs when there are only 1 or 2 establishments]. There is no
requirement on the percentage of this width that must lie to the right or to the left of x1.

The value ‘prot’ is used to construct U as follows. Simultaneously, create both upper and lower
protection flows (through the table) that satisfy all the constraints of the FP model plus the
following ‘coupling’ constraint:

Upper perturbation + Lower perturbation = (2*prot)

Flow properties

Let us consider the FP case in which the upper and lower protection flows are independent (such
flows may be called ‘decoupled’ in the language of dynamical systems theory).

For a single flow in which cells have only the two variables, xp(i) and xm(i), (xp=upwards
perturbation; xm=downwards perturbation) in each cell i, it is well known that at most one of
these two variables will be positive regardless of the form of the cost function being minimized.
This is a property of the simplex algorithm and network flow algorithms. It is based on the fact
that these algorithms always select a set of columns from the constraint matrix that form a basis.
A variable can be non-zero only if its column is in the basis selected at the end of the procedure.
However, the columns for xm and xp are negatives of each other; therefore these columns can
never both be in the final basis. Therefore, at most one of xm and xp can be positive in the final
solution.

Let the sensitive cell (i.e., P cell) have index jp. Then the upper protection flow is a flow that is
driven by requiring the conditions xp(jp)=prot and xm(jp)=0. Likewise, lower protection flow is
a flow that is driven by xm(jp)=prot and xp(jp)=0.

Definition:

We say the flow passes through cell j if at least one of {xp(j), xm(j)} is positive. Note that,
because of the constraints for the LP model, for some of the cells traversed (or passed through)
xm(i) > 0 and for others xp(i) > 0. In other words, it is either very rare or impossible for a flow
for the marginals LP model to involve only upward perturbations (or only downwards ones).
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Reversibility results

Definition: A flow is reversible if the values of xp(i) and xm(i) can be exchanged for all i, and
the resulting flow satisfies the model constraints.

Under what conditions can a flow be reversed ?

Let’s answer this question for marginal LP models. In these models, the bounds are:
ub( xp(i) ) = capmult * capacity(i)
ub( xm(i)) = capacity(i)

Case: capmult=1

Let  Sp(flow) = set of cells i for which xp(i) > 0
Sm(flow) = set of cells i for which xm(i) > 0

Reversal of flow is possible since reversal of flow involves the following reassignment:
If xp(i) lies in Sp and xp(i)=f(i); for reverse flow set xm(i)=f(i) and xp(i)=0.

Likewise if xm(i) lies in Sm and xm(i)=f{(1), for reverse flow set xp(i)=f(i) and xm(i)=0.
Thus we have:

Sp(reverse flow) = Sm(given flow)

Sm(reverse flow) = Sp(given flow)

Case: capmult > 1

Any flow that exploits the fact that capmult > 1 will not be reversible. By “exploits” we mean a
flow in which for at least one i, xp(i) > capacity(i).

Recall that with the standard bounds for the marginal LP model, xm(i) cannot be greater than
capacity(i). Thus the flow is not reversible.

A Fuzzy Result
A “nearly reversible” flow is usually possible if ‘prot’ is a small percentage k of value(P) and

most of the cells have capacity at least as large as ‘prot’.

Question: when will the upper protection (denoted UP) and lower protection (denoted LP) flows
be reverses of one another ?

Answer: Reversibility is guaranteed only if capmult=1.

Case: capmult > 1
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Note: If capmult > 1, it’s possible that one could reverse the optimal UP flow to get a possibly
not optimal LP flow, but could not reverse the optimal LP flow to get the optimal UP flow. (The
reverse of an UP flow might not be optimal if for some cell i in the UP flow, xm(i) = capacity(i).)

Thm. For case capmult > 1, to get the optimal UP and LP flows, we need to solve for 2
independent flows. We could create a large LP model and solve for them simultaneously but we
could just as easily solve for them sequentially since these flows are de-coupled for the FP
problem.

Review:

There is a basic problem when one uses an LP model to solve the optimization problem
associated with cell suppression. This is because the latter is inherently an integer programming
(IP) problem. If one wants to use an LP heuristic (i.e., an approximation to the IP model) in order
to get a faster running program, one needs to work with a cost function that is only an
approximation to the IP model cost function.

In the IP model, the cost function CostIP= Sum (over j) of c(j) * I(i) where I(i), an indicator
function, equals one only for cells within non-zero flow (is it zero otherwise). In the LP model,
the cost function CostLP = Sum {over i} of c(i) * x(i), where x(i) is the flow through cell i. If
one somehow knew a priori that the flows were likely to be equal (or nearly so) through all cells
with non-zero flow, then x(i) could be treated as a constant. In that case, minimizing CostLP
would be (nearly) equivalent to minimizing CostIP.
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