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1. Introduction

The Census Bureau’s Small Area Income and
Poverty Estimates (SAIPE) program produces state
age-group (0-4, 5-17, 18-64, 65+) poverty ratio es-
timates from Bayesian treatment (Bell 1999) of a
Fay-Herriot model (Fay and Herriot 1979) applied
to direct state poverty ratio estimates from the Cur-
rent Population Survey (CPS) Annual Social and
Economic Supplement (ASEC, formerly known as
the CPS March income supplement). The mod-
els borrow information from regression variables re-
lated to poverty that are constructed from admin-
istrative records data, as well as age group poverty
ratio estimates from the previous decennial census.
Estimates are identified by the “income year” (IY),
which refers to the year for which income is reported
in the ASEC. Since 2001, the CPS ASEC sample
size has been about 100,000 households. Further
information is available on the SAIPE web site at
www.census.gov/hhes/www/saipe/index.html. For
simplicity, in what follows we shorten references to
“CPS ASEC” to just “CPS.”

In recent years supplementary surveys for the
American Community Survey (ACS) have also pro-
vided state poverty estimates. The ACS asks es-
sentially the same questions as previous decennial
census long form surveys, and is replacing the long
form, but with the data collection spread contin-
uously throughout the decade. The supplemen-
tary surveys have had sample sizes of about 800,000
addresses, significantly larger than the CPS. Fur-
ther information on the ACS may be found at
www.census.gov/acs/www/.

The ACS procedures for collecting income data
differ from those of the CPS. ACS collects income
data continuously with a reference period of the pre-
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vious 12 months (at the time income is reported),
whereas the CPS collects income data in February—
April with a reference period of the previous cal-
endar year. Annual ACS state estimates use data
collected over a full year, and thus involve income
reports that cover different 12 month time frames
extending over a period of nearly two years. These
data collection differences, and other differences,
produce systematic differences between ACS and
CPS poverty estimates (Bishaw and Stern 2006).
Since the CPS provides the official direct poverty
estimates at the national level, to date SAIPE has
striven to estimate poverty as defined by the CPS.1

In Huang and Bell (2004) we reported results of
an empirical study investigating the potential ben-
efits to the SAIPE state poverty models of using
data from the ACS supplementary surveys. (These
results covered IYs 2000-2001. We have since ex-
tended this work to include results for IY 2002, and
also revised the calculations. It is these revised
and extended results that we report on here. For
IY 2000-2001 the reported numbers changed slightly
from those given in Huang and Bell (2004), but not
enough to change any overall conclusions.) The re-
sults assess the potential benefits of using the ACS
data by comparing prediction error variances from
the current state poverty ratio models with vari-
ances from bivariate models that use data from both
CPS and ACS for the given IY. The results show lit-
tle benefit from using ACS data in an unrestricted
bivariate model (discussed in Section 2), but more
substantial benefits from using a restricted bivari-
ate model that assumes common regression coeffi-
cients between the two equations (CPS and ACS).
However, the results also show occasional instances
of large posterior variance increases from use of ei-
ther bivariate model, which turn out to correspond
to large regression residuals from the ACS equation.
If these few data points are rejected as “outliers,”

1Full production ACS estimates are being released starting
this year, including direct poverty estimates for all states. In
future years, ACS will produce direct poverty estimates for
all U.S. counties and school districts (based on 3- or 5-year
data collections for smaller counties and school districts). In
light of this, SAIPE is considering switching to basing its
estimation on ACS results in future years.



we could fall back on the (CPS equation) univari-
ate model results for these particular observations to
avoid the higher posterior variances of the bivariate
model. However, empirically detecting and rejecting
outliers, and then reporting lower posterior variances
calculated as if these certain data points were known
in advance to be outliers, is a statistically unprin-
cipled approach (absent concrete explanations as to
why the points in question indeed should be regarded
as outliers). As a more principled approach to deal-
ing with this issue, it was suggested to us by Alan
Zaslavsky that we try using the t-distribution for
the model errors (state random effects) in the ACS
equation. Lange, Little, and Taylor (1989) explored
use of the t-distribution as a useful general extension
of the normal distribution for statistical modeling of
data sets with longer-than-normal tails. They ap-
plied models with t-distributed errors to a variety of
problems.

In this paper, we apply the idea of assuming
errors follow a t-distribution to the unrestricted bi-
variate model developed in Huang and Bell (2004)
for the CPS and ACS state poverty ratio estimates.
This model has four error components — state ran-
dom effects (model errors) and sampling errors in
each of the two equations — any of which could be
assumed to follow a t- rather than a normal distri-
bution. We consider all four possibilities here (in-
dividually, i.e., only one of the four errors in any
given model is t-distributed), examining both the
interpretation of these models and their empirical
results, particularly the effects on posterior means
and variances of various quantities, including poste-
rior variances of the state poverty ratios in the CPS
equation.

Section 2 reviews the bivariate models in Huang
and Bell (2004) for the CPS and ACS state poverty
ratios, and the empirical results motivating the con-
sideration here of the t-distribution. Section 3 dis-
cusses the extension of these models to allow one of
the error terms to follow a t-distribution, and offers
some comments on the interpretation of the resulting
models. Section 4 presents empirical results from ap-
plying the models to CPS and ACS state poverty ra-
tio estimates of school-age children for IY 2002. We
find that, overall, the models behave somewhat as
expected, and the models assuming a t-distribution
for one of the error components in the ACS equa-
tion do something to address the motivating issue —
the occasional large posterior variance increases that
arise with the bivariate models.

It should be noted that in using the t-
distribution we fix the degrees of freedom parameter
at various values. This contrasts with the paper of

Lange, Little, and Taylor (1989), who used maxi-
mum likelihood estimation of the degrees of freedom
in models with multivariate t errors. Here we fix the
degrees of freedom because of the difficulties in mak-
ing inferences about this parameter in models with
multiple error components.

2. Bivariate Models for State Poverty
Ratios using CPS and ACS Data

The general (unrestricted) bivariate model of
Huang and Bell (2004), labeled “Model A,” is as
follows. We illustrate using the model for the age 5-
17 poverty ratios. For any given IY and age group,
let Y1i and Y2i be the “true poverty ratios” (num-
ber poor / population) for state i that are being
estimated by the CPS and ACS, respectively, for
i = 1, . . . , 51 (including the 50 states and the Dis-
trict of Columbia). Note that due to data collection
and other differences between the CPS and ACS, this
model assumes that Y1i 6= Y2i, in general. Let y1i
and y2i be the direct sample estimated poverty ra-
tios for state i from the CPS and ACS, respectively.
Then we have

y1i = Y1i + e1i (1)

y2i = Y2i + e2i, (2)

where the survey errors e1i and e2i are assumed to
be independently distributed as N(0, vji), j = 1, 2.
Typically the survey errors are assumed to be sam-
pling errors (ignoring possible nonsampling errors)
with the vji assumed known, though the vji are ac-
tually estimates of the true sampling variances. In
the case of CPS, the direct sampling variance esti-
mates are smoothed using a sampling error model
(Otto and Bell 1995) to get the v1i. In the case of
ACS, we use the direct sampling variance estimates
as the v2i. Finally, we assume Cov(e1i, e2i) = 0, be-
cause the CPS and ACS use independent samples.

The models for the true poverty ratios are:

Y1i = x0iβ1 + u1i (3)

Y2i = x0iβ2 + u2i, (4)

where the βjs are vectors of regression parameters,
x0i is a row vector of regression variables for state
i, and (u1i, u2i)0 are independently and identically
bivariately normally distributed with zero means.
Note the same vector of regression variables x0i is
used in both the CPS and ACS equations since the
two estimates are assumed to refer to the same IY
(though only approximately, due to data collection
differences). We write

Var(u1i) = s11, Var(u2i) = s22, Corr(u1i, u2i) = ρ.



The regression variables in x0i for IYs 2000-2002 in-
clude a pseudo state poverty rate constructed from
Internal Revenue Service (IRS) tax data, a tax non-
filer proportion constructed from IRS data and state
population estimates, and the Census 2000 esti-
mated state age 5-17 poverty ratios. For more infor-
mation see the SAIPE web site mentioned earlier.

Noninformative independent prior distributions
for the model parameters are assumed as follows:

β = (β01, β
0
2)
0 ∼ N(0, cI)

s11 ∼ U(0,m1) and s22 ∼ U(0,m2)

ρ ∼ U(−1, 1).

The values of c, m1, and m2 were chosen to be suf-
ficiently large so that the priors could effectively be
regarded as flat on (−∞,+∞) and (0,+∞) as ap-
propriate. We used c = 1, 000 for all age groups
and chose values for m1 and m2 separately for each
age group so that the likelihoods (for the univariate
models discussed below) were effectively zero beyond
m1 and m2. (E.g., for age 5-17, m1 = m2 = 20.)

Notice that if ρ = 0, then Model A reduces to
univariate models (Model U) that can be fit sepa-
rately. This univariate model for the CPS data is the
current SAIPE production model. The restricted bi-
variate model mentioned earlier is a special case of
Model A where the regression coefficients (except the
intercept) are assumed the same in both equations.
We shall not consider this restricted bivariate model
here, however.

To obtain posterior means and variances of the
true state poverty ratios (Y1i and Y2i) from Model
A we proceeded as follows. We used Gibbs sam-
pling via WinBUGs (Spiegelhalter, et al. 2003) to
simulate 10,500 (first 500 discarded as burn in) sets
of model parameters from their joint posterior dis-
tribution, p(β, ρ, s11, s22|y) where y = {(y1i, y2i),
i = 1, . . . , 51} is the observed data. The posterior
means and covariance matrices of Yi = (Y1i, Y2i)

0

were then approximated by averaging results over
the simulations of (ρ, s11, s22|y) to approximate the
following formulas (5) and (6). (Note that we don’t
actually use the simulations of β.) For brevity we
let Ŷi = E(Yi|y, ρ, s11, s22). Then we have

E(Yi|y) = Eρ,s11,s22|y[Ŷi] (5)

Var(Yi|y) = Eρ,s11,s22|y[Var(Yi|y, ρ, s11, s22)]
+ Varρ,s11,s22|y[Ŷi] (6)

In equations (5) and (6) Ŷi and Var(Yi|y, ρ, s11, s22)
can be readily calculated from standard formulas
that account for the effects of uncertainty about β.
(See, e.g., Bell (1999), for univariate results that

generalize in a straightforward way to the bivari-
ate case.) The same approach was used to produce
posterior means and variances under the univariate
model (Model U) by holding ρ = 0 fixed through
the whole process, and just using the simulations of
(s11, s22).

As noted in the Introduction, in Huang and Bell
(2004) we compared posterior variances for the Y1i
from the bivariate and univariate models over IYs
2000-2001 and the four age groups. (We also did the
same comparisons for the Y2i, but that is not of inter-
est here. Both sets of results were later extended, as
noted earlier, to include IY 2002.) We examined the
percent differences between these variances, which
can be expressed as

100× Var(Y1i|y, Model A)−Var(Y1i|y1, Model U)
Var(Y1i|y1, Model U)

(7)

where y1 = (y1,1, . . . , y1,51)
0. We found that

the average percent difference was only a few
percent, and though it was in favor of the bivariate
model, this was not enough to represent a worth-
while improvement. Larger percent differences
were obtained with the resricted bivariate model
(the model that assumed β1 = β2 apart from the
intercepts). However, both bivariate models led
to occasional large values for (7). Table 1 shows
the instances of posterior variance increases for the
unrestricted bivariate model A that were 25 percent
or greater. Of particular concern is the 52 percent
increase for age 5-17 for Alaska (AK) in IY 2002.
(There were no increases of over 25 percent for the
65+ age group.)

Table 1. Large (≥ 25 percent) posterior variance
increases from bivariate Model A compared to the

univariate model for the CPS equation

Age IY 2000 IY 2001 IY 2002
0-4 HI(29%) AK(32%)

WA(30%)
5-17 AK(52%)
18-64 OR(32%)

AK(40%)
KS(40%)
NC(41%)

The reason for these occasional posterior vari-
ance increases lies in the second term in (6),
Varρ,s11,s22|y[Ŷi]. With the generalization of the re-
sults in Bell (1999) to the bivariate case we can write
Ŷ1i as

Ŷ1i = x0iβ̂1 + h11,i × r1i + h12,i × r2i



where r1i = y1i − x0iβ̂1 and r2i = y2i − x0iβ̂2 are the
regression residuals in the CPS and ACS equations,
β̂1 is the generalized least squares estimate of β1,
and h11,i and h12,i are functions of (ρ, s11, s22) as
well as v1i and v2i. As a crude approximation, if
we ignore the dependence of x0iβ̂1, r1i, and r2i on
(ρ, s11, s22), then we would have

Varρ,s11,s22|y[Ŷ1i] ≈ Varρ,s11,s22|y(h11,i)× r21i

+Varρ,s11,s22|y(h12,i)× r22i.

This suggests that Varρ,s11,s22|y[Ŷ1i] could be large
whenever r1i or r2i is large in magnitude. The
analogous formula for the univariate model (ob-
tained by fixing ρ = 0) would have a term anal-
ogous to Varρ,s11,s22|y(h11,i) × r21i, so a large |r1i|
would boost the posterior variance of both the uni-
variate and bivariate models. But the formula for
the univariate model would not include a term like
Varρ,s11,s22|y(h12,i)× r22i, and indeed the value of r2i
would not matter to the CPS equation results in
the univariate model. So we conjecture that large
values of |r2i| could lead to large posterior variance
increases for the bivariate relative to the univariate
model.

Empirical results bear out the last conclusion.
To illustrate, Figure 1 plots the percent differences
in posterior variances from (7) against correspond-
ing values of r2i (actually, against r2i/

p
Var(r2i) ,

which is a rescaling that facilitates interpretation)
for age 5-17 poverty ratios in IY 2002. The point
to the extreme left is the 52 percent posterior vari-
ance difference for Alaska, which corresponds to a
standardized residual in the ACS equation of about
−3.1. The point to the extreme right is the 18
percent posterior variance increase for North Car-
olina, which corresponds to a standardized residual
in the ACS equation of about 2.1. We can also dis-
cern evidence of a quadratic shape in the remain-
ing points, with the minimum occurring around an
ACS equation standardized residual of zero. Simi-
lar plots for other age groups and/or other IYs also
show quadratic shapes with the minima near zero
and with the variance differences increasing as one
moves to the right and left of zero.

As noted in the Introduction, a large value of
r2i could be taken as an indication that the corre-
sponding ACS estimate, y2i, is an “outlier.” If y2i
is then “rejected” (dropped from our observations),
the prediction of Y1i would fall back on the univari-
ate model, which would likely have a lower poste-
rior variance. But absent an explanation of why y2i
should be rejected as an outlier, this is a statistically
unprincipled approach that would misstate statisti-

−3 −2 −1 0 1 2

−2
0

0
20

40
60

ACS std residuals−SS02

Va
ria

nc
e 

%
 d

iffe
re

nc
e

Figure 1: State posterior variance percent differ-
ences (for CPS equation poverty ratios for age 5-17,
IY 2002) of the unconstrained bivariate model versus
the univariate model plotted against corresponding
ACS equation standardized residuals

cal uncertainty. In the following section we exam-
ine whether using a t-distribution for error terms in
the bivariate model can accomplish the same thing
without the somewhat arbitrary nature (and the all-
or-nothing aspect) of outlier detection and rejection.

3. Bivariate Models Using the
t-distribution

Combining equation (1) with equation (3), and
equation (2) with equation (4), we can write the
bivariate model of Section 2 as

y1i = Y1i + e1i = (x
0
iβ1 + u1i) + e1i (8)

y2i = Y2i + e2i = (x
0
iβ2 + u2i) + e2i. (9)

In this section we examine what happens when one
of the error terms above is assumed to follow a t-
distribution. This can be assumed for u1i, e1i, u2i,
or e2i, leading to four different possible models, all
of which we will examine. For simplicity we assume
only one of the error terms in a given model is t-
distributed; the other errors remain normally dis-
tributed with the same assumptions as before.

We will assume that the degrees of freedom, ν,
of the t-distribution is known, though we will exam-
ine results for different values of ν (ν = 3, 4, 5, 8,∞,



where ν = ∞ puts us back at the normal distri-
bution). Estimating, or making inferences about,
unknown degrees of freedom can be very difficult
in models such as ours that involve multiple error
components. From the Bayesian perspective, given
a mildly informative prior about ν the posterior
for ν may not be much more informative than the
prior. (Note that some form of informative prior
for ν would be needed to deal with the fact that t-
distributions for “large” values of ν, e.g., ν = 1, 000,
10, 000, 100, 000, and so on, are all approximately
normal). More worrisome, experience we’ve had
with similar models suggests that, when ν is un-
known, MCMC (Markov Chain Monte Carlo) sim-
ulations (e.g., from WinBUGS) may have difficulty
converging.

To specify a t-distribution for u1i it is conve-
nient for our purposes to do so in the following way2:

u1i|s11, θi ∼ N(0, s11θi) (10)

1/θi ∼ Gamma(
ν

2
,
ν − 2
2

). (11)

where these distributions are independent over i.
As before, we assume a flat prior on s11 (s11 ∼
U(0,m1)). With the specification in (10) and (11),
the distribution of u1i conditional on just s11 is
tν(0,

ν−2
ν s11), a t-distribution with mean zero, scale

ν−2
ν s11, and ν degrees of freedom (Gelman et al.
2000). The factor ν−2

ν in the scale arises from using
ν−2
2 in the Gamma distribution in (11) instead of

ν
2 , and we do this because the variance of the scaled
t-distribution is ν

ν−2 times the scale, so that from
(10) and (11) Var(u1i|s11) = ( ν

ν−2)(
ν−2
ν s11) = s11.

So with this specification s11 remains the variance
of u1i for any value of ν, facilitating comparisons
across models. Note that (11) requires that ν > 2,
ruling out the t-distributions with 1 (Cauchy) and 2
degrees of freedom, for which the variance does not
exist.

When ν is small the distribution of u1i will
have a long tail, allowing for possible outliers. Since
E(θi) = 1 (which leads to the result for Var(u1i|s11)
just noted), the θi can be regarded as distributed
around 1, and so possible outliers can be thought of
as corresponding to large values of θi. Thus, pos-
terior means of θi from the MCMC simulations can
be examined to look for large values as evidence of
outliers in u1i.

2The specification in equation (11) is equivalent to θi ∼
(ν−2)/χ2ν . Specifying models this way in version 1.4 of Win-
BUGS was found, however, to lead to incorrect results appar-
ently due to some program bug. More plausible results were
obtained using the inverse Gamma specification in (11).

To instead specify a t-distribution for u2i, we
obviously set u2i|θi ∼ N(0, s22θi) and make the
same assumption about θi as in (11). To specify a
t-distribution for e1i we assume e1i|θi ∼ N(0, v1iθi),
where we still take the survey error variances v1i as
known. Similarly, to specify a t-distribution for e2i
we assume e2i|θi ∼ N(0, v2iθi), where we still take
the survey error variances v2i as known. Note that
for the latter two cases the (unconditional) survey
error variances remain fixed at Var(e1i) = v1i and
Var(e2i) = v2i, respectively.

The motivation for assuming one of the survey
error components follows a t-distribution with low
degrees of freedom, allowing for possible outliers in
the survey errors, may seem unclear given that con-
ventional survey estimation typically bases inference
on some form of central limit theorem that would
suggest the sampling error should be approximately
normally distributed. This, however, ignores non-
sampling error, and if nonsampling errors are signif-
icant and differential across states this could poten-
tially lead to outliers in e1i or e2i. (Note that the
models for Y1i and Y2i take no explicit account of
nonsampling error.) Thus, for the model (8), if y1i
contains a large nonsampling error for a specific state
i, corresponding to a large e1i, this could produce a
large regression residual, y1i−x0iβ1 = u1i+e1i. Sim-
ilarly for the model (9). This is not to say that any
large regression residuals should simply be assumed
to arise from large nonsampling errors in y1i or y2i.
But it is one possible explanation.

Another model assumption worth considering
involves the correlation (or covariance) between the
model errors u1i and u2i. Section 2 assumed that
Corr(u1i, u2i) = ρ had a uniform prior on (−1, 1).
We maintain this assumption here, conditional on
θi, for the cases where either u1i follows (10)-(11),
or where we make the analogous assumptions for u2i.
In these two cases we then have that

Cov(u1i, u2i|θi) = ρ
p
s11s22θi.

It can then be shown that, under (11), the uncondi-
tional covariance of u1i and u2i is

p
(ν − 2)/2{Γ[(ν−

1)/2]/Γ(ν/2)}ρ√s11s22. The conditional covari-
ance depends on θi and the unconditional covari-
ance depends on ν, as does the unconditional
correlation. An alternative would be to specify
that Cov(u1i, u2i|θi) = s12 ≡ ρ

√
s11s22 so that

Corr(u1i, u2i|θi) = ρ/
√
θi. The latter approach

could lead to complications with MCMC simula-
tions, though, as small values of θi could easily pro-
duce values of the conditional correlation exceeding
1 in magnitude.



Allowing any of the error terms to follow a t-
distribution as discussed above, and with a low value
of ν, will allow for possible outliers in that error
component. Whether an outlier in, say, u1i, pro-
duces a detectable outlier in the corresponding ob-
servation y1i will depend on the magnitude of u1i
relative to e1i. Similar comments apply to using a
t-distribution to account for possible outliers in e1i,
u2i, or e2i. But whether or not these component
outliers can be detected in the observations, we can
consider the implications of component outliers in
general terms:

• An outlier in u1i signifies that x0iβ1 is not a very
good regression predictor of Y1i. This presents
a difficult situation because the objective is in-
deed to predict Y1i, and since the motivation
for using the small area model is generally high
levels of sampling error in the direct estimates,
falling back more heavily on the direct estimate
y1i for the prediction may not be a very attrac-
tive option.

• An outlier in e1i does not affect Y1i. If it makes
y1i appear to be an outlier, we can rely more
heavily on the regression predictor x0iβ1, dis-
counting the direct estimate y1i. This is a rea-
sonable thing to do.

• An outlier in u2i signifies that x0iβ2 is not a very
good regression predictor of Y2i. If we assume
that an outlier in Y2i does not imply a corre-
sponding outlier in Y1i (and, since our mod-
els allow only one error component to have a
t-distribution, they do make this assumption),
then y2i may not provide very useful informa-
tion for predicting Y1i, and could be down-
weighted in the prediction. On the other hand,
we may ask if x0iβ2 is not a good predictor of
Y2i, should we still assume (as does our model)
that x0iβ1 is a reasonable predictor of Y1i?

• An outlier in e2i distorts y2i and should make it
less useful in predicting Y1i, so that discounting
y2i in forming the prediction is appropriate.

4. Empirical Results

We now examine empirical results to see how
using a t-distribution for one of the error compo-
nents in (8) or (9) affects inferences about various
quantities, focusing (for brevity) on posterior means
and variances or standard deviations. This includes
examining the posterior variances of Y1i (for a few
states) under these models to see whether the mod-
els address the motivating issue of dealing with the

occasional large posterior variance increases with the
bivariate model.

We first examine how assumption of a t-
distribution affects posterior means and standard
deviations of the model error variances, s11 and s22.
These are given in Table 2 at the end of the pa-
per. We see that when a t-distribution is assumed
for either u1i or e1i, that the posterior mean of
s11 increases with decreasing degrees of freedom ν.
Also, the posterior distribution of s11 becomes more
spread out (the standard deviation of s11 increases)
with decreasing ν. On the other hand, assuming
a t-distribution for either u1i or e1i has very little
effect on the posterior mean or standard deviation
of s22 (results not shown). Analogous results hold
when assuming a t-distribution for either u2i or e2i:
this results in the posterior mean and standard de-
viation of s22 increasing with decreasing ν, but has
very little effect on the posterior mean or standard
deviation of s11 (latter results not shown).

Table 3 (at end of paper) shows results on the
posterior means of the θis — their average across
states and the one or two maximum values of their
posterior means (and the corresponding posterior
standard deviations) — when a t-distribution is as-
sumed for one of the error components.3 We see
that the average of the posterior means of the θis
always decreases with decreasing ν. For the case of
assuming a t-distribution for u1i or u2i this may help
explain the reason for the increase in the posterior
means of s11 and s22 with decreasing ν, since the
product of θi and either s11 or s22 becomes, condi-
tional on θi, the state specific model error variance.
So in these cases if the average value of the θis de-
creases, then the posterior mean of s11 or s22 would
have to increase to maintain the same average level
of model error variance. This reasoning does not
seem to apply, however, to the cases of assuming a
t-distribution for e1i or e2i.

Turning now to the maximum values of the pos-
terior means of the θis, Table 3 shows that these
are for Maine (ME) and Arkansas (AR) in the CPS
equation, and for Alaska (AK) in the ACS equation.
(In the ACS equation only the values for Alaska are
shown because they are much larger than those for
any other state.) A large posterior mean for a θi
shows that the data suggest the associated variance
for the given state needs to be much larger than
in the Gaussian model to account for the observed
value of y1i or y2i, so these are the states that might
be flagged as “outliers.” Notice also, though, that

3Note that the θis in Table 3 always refer to the component
for which the t-distribution is assumed.



the corresponding standard deviations are large, re-
flecting considerable uncertainty about how large
the θi value actually is, and so there is consider-
able uncertainty about how likely it is that y1i or
y2i is an outlier. The posterior means of the max
θi increase with decreasing ν, simply reflecting the
fact that the longer is the tail of the t-distribution
of the given error component the further out in the
tail will be the maximum value of θi. Finally, no-
tice that the posterior means of θi for Alaska in the
ACS equation are considerably larger than those for
Maine or Arkansas in the CPS equation, so y2i for
Alaska is more of an outlier than y1i for Maine or
Arkansas.

Finally, we return to the issue that motivated
this investigation, the effect of apparent outliers on
posterior variances of the true poverty rates (in the
CPS equation), and how these are affected by assum-
ing a t-distribution. Table 4 (at end of paper) shows
posterior variances of Y1i for Maine and Arkansas
when t-distributions are assumed for either u1i or
e1i. We see that this leads to larger posterior vari-
ances for Y1i for Maine and Arkansas, the two states
closest to being outliers in the CPS equation. This is
somewhat consistent with what was conjectured ear-
lier — a long-tailed distribution for u1i or e1i leads
to y1i or the regression fit, x0iβ̂1, providing less in-
formation about Y1i. However, for Maine assuming
a t-distribution for e1i has the greater effect, while
for Arkansas assuming a t-distribution for u1i has
the greater effect. The reason for this difference is
unclear.

Table 4 also shows how posterior variances of
Y1i (again, CPS equation) for Alaska are affected
by assuming a t-distribution for either u2i or e2i.
In this case smaller values of ν lead to lower val-
ues of the posterior variance of Y1i, and assuming a
t-distribution for e2i has the greater effect. These ef-
fects are in the desired direction of reducing the pos-
terior variance of Y1i for Alaska by discounting its
ACS observation y2i. However, these results do not
go as far as rejecting y2i for Alaska as an outlier and
then behaving as if this were known in advance to be
the case. This (statistically unprincipled) procedure
essentially falls back on the CPS equation univari-
ate model results, which yield a posterior variance
of Y1i for Alaska of .82. The additional uncertainty
about Y1i for Alaska reflected in the higher posterior
variances in Table 4 is probably appropriate.
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Table 2. Effects of assuming a t-distribution on posterior means
(and standard deviations) of s11 and s22

t-distribution effect degrees of freedom
assumed for on 3 4 5 8 ∞ (normal)

u1i s11 1.31 1.07 .99 .89 .84
(1.34) (1.08) (.94) (.82) (.80)

e1i s11 1.68 1.24 1.08 .94 .84
(.99) (.92) (.88) (.81) (.80)

u2i s22 1.08 .89 .83 .81 .77
(.69) (.54) (.48) (.46) (.43)

e2i s22 1.05 .88 .80 .73 .77
(.43) (.43) (.42) (.42) (.43)

Table 3. Average and maximum posterior means
(and corresponding standard deviations) of θis

t-distribution degrees of freedom
assumed for 3 4 5 8 ∞ (normal)

u1i avg. θi .88 .96 .98 .99 1.00
max θi (ME) 1.71 1.39 1.28 1.10 1.00

(7.52) (3.00) (2.01) (.81) –
θi (AR) 1.55 1.25 1.17 1.05 1.00

(5.51) (2.86) (1.87) (.81) –
e1i avg. θi .85 .94 .96 .98 1.00

θi (ME) 2.45 2.18 1.91 1.54 1.00
(5.44) (2.72) (2.10) (1.06) –

max θi (AR) 3.52 2.72 2.26 1.71 1.00
(6.77) (3.26) (2.10) (1.12) –

u2i avg. θi .93 .99 .99 .99 1.00
max θi (AK) 7.23 4.69 3.35 1.93 1.00

(26.27) (12.47) (5.19) (1.70) –
e2i avg. θi .85 .96 .98 1.00 1.00

max θi (AK) 5.37 4.17 3.41 2.27 1.00
(11.28) (6.77) (3.91) (1.75) –

Table 4. Posterior variances of Y1i (CPS equation) for states with
the largest θi values assuming a t-distribution for u1i, e1i, u2i, or e2i

t-distribution degrees of freedom
assumed for state 3 4 5 8 ∞ (normal)

u1i ME 2.04 1.71 1.53 1.27 1.04
AR 2.69 2.13 1.91 1.60 1.40

e1i ME 2.32 1.75 1.49 1.26 1.04
AR 2.59 1.96 1.78 1.58 1.40

u2i AK 1.13 1.17 1.19 1.22 1.24
e2i AK .99 1.02 1.01 1.04 1.24


